About this item:

186 Views | 259 Downloads

Author Notes:

To whom correspondence should be addressed. Tel.: 415-723-2424; Fax: 415-725-1848.

We are indebted to Joyce Hunt and John Mote, Jr., for expert technical assistance.

We thank C. Allen Smith and Ann Ganesan for helpful discussions and for critical reading of this manuscript.

Subjects:

Research Funding:

This work was supported by Outstanding Investigator Grant CA 44349 from the National Cancer Institute (to P. C. H.) and Postdoctoral Fellowship PF-3594 from the American Cancer Society (to B. A. D.).

Keywords:

  • Science & Technology
  • Life Sciences & Biomedicine
  • Biochemistry & Molecular Biology
  • ESCHERICHIA-COLI
  • EXCISION REPAIR
  • MUTATION SPECTRUM
  • MAMMALIAN-CELLS
  • INVITRO
  • STRAND
  • CARCINOGEN
  • GENE
  • TERMINATION
  • N-ACETOXY-N-2-ACETYLAMINOFLUORENE

Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II

Tools:

Journal Title:

Journal of Biological Chemistry

Volume:

Volume 271, Number 18

Publisher:

, Pages 10588-10594

Type of Work:

Article | Final Publisher PDF

Abstract:

A prominent model for the mechanism of transcription-coupled DNA repair proposes that an arrested RNA polymerase directs the nucleotide excision repair complex to the transcription-blocking lesion. The specific role for RNA polymerase II in this mechanism can be examined by comparing the extent of polymerase arrest with the extent of transcription-coupled repair for a specific DNA lesion. Previously we reported that a cyclobutane pyrimidine dimer that is repaired preferentially in transcribed genes is a strong block to transcript elongation by RNA pol II (Donahue, B. A., Yin, S., Taylor, J.- S., Reines, D., and Hanawalt, P. C. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8502-8506). Here we report the extent of RNA polymerase II arrest by the C-8 guanine DNA adduct formed by N-2-aminofluorene, a lesion that does not appear to be preferentially repaired. Templates for an in vitro transcription assay were constructed with either an N-2-aminofluorene adduct or the helix- distorting N-2-acetylaminofluorene adduct situated at a specific site downstream from the major late promoter of adenovirus. Consistent with the model for transcription-coupled repair, an aminofluorene adduct located on the transcribed strand was a weak pause site for RNA polymerase II. An acetylaminofluorene adduct located on the transcribed strand was an absolute block to transcriptional elongation. Either adduct located on the nontranscribed strand enhanced polymerase arrest at a nearby sequence- specific pause site.

Copyright information:

© 1996 by The American Society for Biochemistry and Molecular Biology, Inc.

Export to EndNote