Low aspirin use and high prevalence of pre-eclampsia risk factors among pregnant women in a multinational SLE inception cohort

Arielle Mendel, McGill University
Sasha B. Bernatsky, McGill University
John G. Hanly, Dalhousie University
Murray B. Urowitz, University of Toronto
Anne Elaine Clarke, University of Calgary
Juanita Romero-Diaz, Instituto Nacional de Ciencias Médicas y Nutrición
Caroline Gordon, University of Birmingham
Sang-Cheol Bae, Hanyang University
Daniel J. Wallace, University of California Los Angeles
Joan T. Merrill, Oklahoma Medical Research Foundation

Only first 10 authors above; see publication for full author list.

Journal Title: Annals of the Rheumatic Diseases
Volume: Volume 78, Number 7
Publisher: BMJ Publishing Group | 2019-07-01, Pages 1010+-
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1136/annrheumdis-2018-214434
Permanent URL: https://pid.emory.edu/ark:/25593/tvdfk

Final published version: http://dx.doi.org/10.1136/annrheumdis-2018-214434

Copyright information:
© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed October 7, 2019 4:47 AM EDT
Low aspirin use and high prevalence of pre-eclampsia risk factors among pregnant women in a multinational SLE inception cohort

Women with systemic lupus erythematosus (SLE) carry a substantially higher risk for pre-eclampsia compared with the general population. Aspirin reduces the risk of pre-eclampsia in high-risk pregnancies by more than half and thus is recommended in SLE. The European League Against Rheumatism recommends aspirin in SLE pregnancies, particularly in those with nephritis or positive antiphospholipid antibodies (aPL). Despite this, little is known about current practice. Therefore, we assessed the prevalence of aspirin use in SLE pregnancies within the Systemic Lupus International Collaborating Clinics inception cohort, which has been described elsewhere.

SLE women aged 18–45 with a pregnancy documented at one or more annual study visits (spanning 2000–2017) were included. For each pregnant visit, aspirin use, traditional pre-eclampsia risk factors (hypertension, chronic kidney disease, diabetes, nulliparity, body mass index ≥35, age >40), aPL, and active lupus nephritis were assessed (see variable definitions in online supplementary material). Aspirin use was compared among those with and without each/any risk factor, and over time.

We identified 475 pregnancies among 300 women. Mean SLE duration at the time of pregnancy was 5.6 years (SD 3.1). Half (51%) of pregnancies had ≥1 traditional pre-eclampsia risk factor, 34/104 (33%) had positive aPL and 53/475 (11%) had nephritis (Table 1). Aspirin was used in 121 (25%) pregnancies. While a third of pregnancies in Caucasians (71/209, 34%, 95% CI 28% to 41%) and Hispanics (20/62, 32%, 95% CI 22% to 45%) were aspirin exposed, only 9/88 (10%, 95% CI 5% to 18%) and 7/66 (11%, 95% CI 5% to 20%) of pregnancies in Black and Asian subjects were respectively aspirin exposed. Aspirin use did not differ among pregnancies with or without ≥1 traditional risk factor (58/234, 25% (95% CI 20% to 31%) vs 63/241, 26% (95% CI 21% to 32%)), any traditional risk factor individually, or nephritis (see online supplementary Table 1). There was a potential for increased aspirin use among pregnancies with positive aPL (13/34, 38%, 95% CI 24% to 55%) compared with those without aPL (16/70, 23%, 95% CI 15% to 34%), although CI overlapped. Sensitivity analyses excluding multiple pregnancies in the same women yielded similar results. Aspirin use did not increase from 2000 to 2017 (χ^2 test for trend in proportions, $p=0.13$).

Our study is the first to assess aspirin use in SLE pregnancies according to the presence of pre-eclampsia risk factors. Among the 475 SLE pregnancies in this prospective, multinational inception cohort, additional pre-eclampsia risk factors were present in half, while aspirin was taken in only one-quarter and did not differ from background aspirin use among the same women at non-pregnant visits (see online supplementary material). Even without considering SLE itself as a major risk factor, aspirin use was no more prevalent among those with other traditional indications for aspirin in pregnancy, and the majority of those with aPL and nephritis were not taking aspirin. The low aspirin use among Black SLE subjects is noteworthy given the worse reproductive outcomes observed in this population.

| Table 1 Characteristics of SLE pregnancies overall and according to aspirin use |
|---------------------------------|---------------------------------|---------------------------------|
| Characteristic | All pregnant visits (n=475)* | Pregnant visits with aspirin (n=121) | Pregnant visits without aspirin (n=354) |
| Patient characteristic | | | |
| Age, mean (SD) | 31.0 (4.9) | 30.5 (4.6) | 31.2 (5.0) |
| Ethnicity, n (%) | | | |
| Asian | 66 (14) | 7/66 (11) | 59/66 (89) |
| Native North American | 3 (1) | 2/3 (67) | 1/3 (33) |
| Black | 88 (19) | 9/88 (10) | 79/88 (90) |
| Caucasian | 209 (44) | 71/209 (34) | 138/209 (66) |
| Hispanic | 62 (13) | 20/62 (32) | 42/62 (68) |
| Indian subcontinent | 25 (5) | 8/25 (32) | 17/25 (68) |
| Other | 22 (5) | 4/22 (18) | 18/22 (82) |
| Country, n (%) | | | |
| Canada | 121 (25) | 27/121 (22) | 94/121 (78) |
| USA | 105 (22) | 20/105 (19) | 85/105 (81) |
| Mexico | 52 (11) | 19/52 (37) | 33/52 (63) |
| Europe | 146 (31) | 49/146 (34) | 97/146 (66) |
| South Korea | 51 (11) | 6/51 (12) | 45/51 (88) |
| Any postsecondary education, n (%) | 310/452 (69) | 69/310 (22) | 241/310 (78) |
| BMI, mean (SD) | 25.8 (5.9) | 26.3 (5.2) | 25.6 (6.1) |
| Obstetrical history | | | |
| Parity, mean (SD) | 1.1 (1.0) | 1.1 (1.0) | 1.2 (1.0) |
| Nulliparous, n (%) | 134/461 (29) | 37/134 (28) | 97/134 (72) |
| Previous fetal loss <24 weeks, n (%) | 84/456 (18) | 22/84 (26) | 62/84 (74) |
| SLE characteristics | | | |
| Disease duration (years), mean (SD) | 5.6 (3.3) | 5.6 (3.3) | 5.6 (3.3) |
| SLEDAI, mean (SD) | 3.3 (3.8) | 3.0 (3.6) | 3.4 (3.9) |
| SLICC damage score, mean (SD) | 0.5 (1.0) | 0.6 (1.0) | 0.5 (1.0) |
| Any positive aPL, n (%) | 34/104 (33) | 13/34 (38) | 21/34 (62) |
| LAC, n (%) | 19/104 (18) | 6/19 (32) | 13/19 (68) |
| ACL, n (%) | 12/104 (12) | 3/12 (25) | 9/12 (75) |
| GP1 IgG, n (%) | 18/104 (17) | 9/18 (50) | 9/18 (50) |
| Nephritis, n (%) | 53 (11) | 11/53 (21) | 42/53 (79) |
| Comorbidities | | | |
| Any renal disease†, n (%) | 83 (17) | 17/83 (20) | 66/83 (80) |
| CKD (eGFR<90 mL/min/1.73 m²), n (%) | 43/459 (9) | 6/43 (14) | 37/43 (86) |
| CKD stage ≤3 (eGFR<60 mL/ min/1.73 m²), n (%) | 11/459 (2) | 5/11 (45) | 6/11 (55) |
| Hypertension, n (%) | 79 (17) | 24/79 (30) | 55/79 (70) |
| Taking anticoagulation, n (%) | 28 (6) | 12/28 (43) | 15/28 (54) |
| Year of pregnancy visit | | | |
| 2005–2009, n (%) | 157 (33) | 46/157 (29) | 111/157 (71) |
| 2010–2014, n (%) | 218 (46) | 52/218 (24) | 166/218 (76) |
| 2015–2017, n (%) | 61 (13) | 12/61 (20) | 49/61 (80) |

*Denominator=475 unless otherwise stated.
†Includes chronic kidney disease, active nephritis and/or nephrotic syndrome within the last year.
ACL, anticardiolipin antibody; aPL, antiphospholipid antibody; BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GP1, anti-B2-glycoprotein-1; LAC, lupus anticoagulant; SLE, systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; SLICC, Systemic Lupus International Collaborating Clinics.
Study limitations include lack of data on gestational age and pregnancy outcomes. In addition, aspirin could have been introduced at/or following the study visit when the pregnancy was documented, highlighting the importance of the rheumatologist in reviewing aspirin use and initiating it, if not already done, in pregnant SLE women. However, assuming either a somewhat normal or a left-skewed distribution of gestational ages at the pregnant visits, a substantial proportion of visits would have taken place after 12–16 weeks’ gestation, by which time aspirin should have been initiated. 2,3

In conclusion, we have potentially identified an important gap between practices and current recommendations for the care of pregnant SLE women, and call for further studies of factors contributing to aspirin use in lupus pregnancies.

1Division of Rheumatology, McGill University Health Centre, Montreal, Quebec, Canada
2Division of Clinical Epidemiology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
3Division of Rheumatology, Department of Medicine and Department of Pathology, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, Nova Scotia, Canada
4Lupus Program, Centre for Prognosis Studies in the Rheumatic Disease and Krembil Research Institute, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
5Division of Rheumatology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
6Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición, Salud, Mexico
7Rheumatology Research Group, Instituto de Inflammation and Ageing, University of Birmingham, Birmingham, UK
8Rheumatology Department, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
9Division of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea
10Cedars-Sinai Medical Centre, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
11Department of Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
12Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York City, New York, USA
13Department of Medicine, Centre for Rheumatology, University College London, London, UK
14Department of Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
15Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
16Thorston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
17Division of Rheumatology, Centre Hospitalier Universitaire de Québec et Université Laval, Quebec City, Quebec, Canada
18Center for Rheumatology Research, Landspitali University Hospital, Reykjavik, Iceland
19Division of Rheumatology, Feinberg School of Medicine, Northwestern University Chicago, Chicago, Illinois, USA
20Lupus Research Unit, The Rayne Institute, St Thomas’ Hospital, King’s College London School of Medicine, London, UK
21Lupus Center of Excellence, Feinstein Institute for Medical Research, Manhasset, New York, USA
22Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
23Lupus Center of Excellence, Feinstein Institute for Medical Research, Manhasset, New York, USA
24Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
25Copenhagen Lupus and Vasculitis Clinic, Section 4724, Center for Rheumatology and Spine Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
26Department of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
27University of California San Diego School of Medicine, La Jolla, California, USA
28Division of Rheumatology, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
29Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
30Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
31Copenhagen Lupus and Vasculitis Clinic, Section 4724, Center for Rheumatology and Spine Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
32Division of Rheumatology, Mount Sinai Hospital and University Health Network, Toronto, Ontario, Canada
33NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
34Arthritis Research UK Centre for Epidemiology, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
35Centre de Reference Maladies Auto-immunes et Systemiques Rares, Service de Medicine Interne, Hospital Cochin, Paris, France

Correspondence to Évelyne Vinet, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3S5, Canada; evelyne.vinet@mcgill.ca

Handling editor Josef S Smolen

Contributors EV had full access to all the data in this study and takes full responsibility as a guarantor for the integrity of the data and the accuracy of the data analysis. EV, AM, SBB, JGH, MBU, AEC, JRD, CG, SCB, DIW, JTM, JPB, DAL, AR, EMG, MP, MAD, PRF, DDG, KS, RRG, MAK, CA, MM, GSA, SM, ON, AJ, AA2, RFV, MRC, GRI, SL, KCK, MI, DLK, CAP, SJ, AA, JSG, INB and NCC conceived and designed the study. EV, AM, SBB, JGH, MBU, AEC, JRD, CG, SCB, DIW, JTM, JPB, DAL, AR, EMG, MP, MAD, PRF, DDG, KS, RRG, MAK, CA, MM, GSA, SM, ON, AJ, AA2, RFV, MRC, GRI, SL, KCK, MI, DLK, CAP, SJ, AA, JSG, INB and NCC analysed the data. EV, AM, SBB, JGH, MBU, AEC, JRD, CG, SCB, DIW, JTM, JPB, DAL, AR, EMG, MP, MAD, PRF, DDG, KS, RRG, MAK, CA, MM, GSA, SM, ON, AJ, AA2, RFV, MRC, GRI, SL, KCK, MI, DLK, CAP, SJ, AA, JSG, INB and NCC interpreted the data and drafted the manuscript.

Funding This study was funded through a McGill University Health Centre Research Award. EV receives a salary support from a Fonds de Recherche Québec Santé Clinical Research Scholar-Junior 1 Award. SCB is supported by the Bio & Medical Technology Development Program of the National Research Foundation funded by the Ministry of Science and ICT (NRF-2017M3A9B4050335). SJ is supported by the Danish Rheumatism Association (A-3865). AEC is supported by an Arthritis Society Chair in Rheumatic Diseases. The Hopkins Lupus Cohort is supported by a National Institutes of Health grant (R01 AR069572) awarded to MP. The Birmingham SLUC cohort was funded by a Lupus UK grant awarded to CG.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval McGill University Health Centre.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data available.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially.
and license their derivative works on different terms, provided the original work is
properly cited, appropriate credit is given, any changes made indicated, and the use
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No
commercial re-use. See rights and permissions. Published by BMJ.
► Additional material is published online only. To view please visit the journal
online (http://dx.doi.org/10.1136/annrheumdis-2018-214434).

To cite Mendel A, Bernatsky SB, Hanly JG, et al. Ann Rheum Dis
2019;78:1010–1012.
Received 12 September 2018
Revised 21 November 2018
Accepted 3 December 2018
Published Online First 20 December 2018

REFERENCES
1 Clowse MEB, Jamison M, Myers E, et al. A national study of the complications of lupus
growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet
4 LeFevre ML, U.S. Preventive Services Task Force. Low-dose aspirin use for the prevention
of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force
5 Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women’s
health and the management of family planning, assisted reproduction, pregnancy and
menopause in patients with systemic lupus erythematosus and/or antiphospholipid
6 Urowitz MB, Gladman DD, Ibañez D, et al. Clinical manifestations and coronary artery
disease risk factors at diagnosis of systemic lupus erythematosus: data from an
7 Buyon JP, Kim MY, Guerra MM. Predictors of Pregnancy Outcome in a Prospective,