The perception of two-tone Mooney faces in chimpanzees (Pan troglodytes)

Jessica Taubert, Emory University
Lisa Parr, Emory University

Journal Title: Cognitive Neuroscience
Volume: Volume 3, Number 1
Publisher: Taylor & Francis (Routledge): STM, Behavioural Science and Public Health Titles | 2012-03-01, Pages 21-28
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1080/17588928.2011.578737
Permanent URL: https://pid.emory.edu/ark:/25593/trjwk

Final published version: http://dx.doi.org/10.1080/17588928.2011.578737

Copyright information:
© 2012 Copyright 2012 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business.

Accessed October 18, 2019 7:24 PM EDT
The perception of two-tone Mooney faces in chimpanzees (*Pan troglodytes*)

Jessica Taubert¹ and Lisa A. Parr¹,²
¹Yerkes National Primate Research Center, Atlanta, GA 30329 USA
²Division of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322 USA

Abstract

Neurological experiments have revealed a complex network of areas in the human brain that respond more to faces than to other categories of objects and thus have been implemented in face categorization. The aim of this study was to investigate whether chimpanzees (*N* = 5), our closest living relatives, detect and categorize faces on the basis of first-order information. Further, whether this sensitivity is specific to faces or generalizes to other objects. In service to this aim, we created multiple categories of two-tone ‘Mooney’ objects (chimpanzee faces, shoes, human hands) because, by maximizing contrast, the Mooney transformation selectively degrades second-order information (the basis for individual discrimination in humans), leaving only first-order information intact. Two experiments were carried out using a 2AFC MTS procedure. The first experiment providing strong evidence that, like humans, chimpanzees categorize Mooney faces as faces. However, without second-order information, the chimpanzees could not match Mooney faces at the individual-level. In Experiment 2 four of the five chimpanzees found it easier to categorize Mooney faces than Mooney shoes. Neurological evidence strongly implicates a dedicated neural mechanism for face categorization in the human brain and our data suggest that chimpanzees share this level of specialization.

Introduction

Faces are complex visual patterns that convey an enormous range of socially relevant information. Neurological evidence strongly suggests that humans have a specialized network for analyzing and recognizing faces. This network includes the fusiform face area (FFA; Kanwisher, McDermott, & Chun, 1997) as well as distinct areas in the lateral occipital and temporal cortices (Haxby, Hoffman, & Gobbini, 2000; Weiner & Grill-Spector, 2010). The most basic aspect of face perception that this network needs to achieve is face categorization, which refers to our ability to detect a face among non-face objects.

Humans can detect faces in natural scenes with remarkable speed and accuracy (Crouzet, Kirchner & Thorpe, 2010; Rousselet, Mace, Fabre-Thorpe, 2003). This ability is facilitated by the fact all faces have the same features that are repeated in the same T-shaped pattern (Diamond & Carey, 1986; for reviews see Maurer, Mondloch, & Le Grand, 2002; Tsao & Livingstone, 2008). This basic “face” template will be from now on referred to as first-order information. A compelling demonstration of our sensitivity to first-order information is our perception of faces in Arcimboldo paintings, which are arrangements of fruit or vegetables with no explicit facial features (Moscovitch, Winocur, & Behrmann, 1997).

A number of empirical studies interested in measuring face categorization in humans have used two-tone Mooney faces (Mooney, 1957). By converting faces into black and white images, the Mooney manipulation is thought to selectively impair access to second-order information while leaving first-order information intact. Here, we define the term second-order information as the variance that exists between faces and, thus, forms the basis for
individual identification. Examples of second-order variation include spacing between features (Diamond & Carey, 1986; Haig, 1984), feature shape (Freire, Lee, & Symons, 2000; Mondloch, Le Grand, & Maurer, 2002) and surface cues (Galper, 1970; Kemp, McManus & Piggot, 1990). The Mooney manipulation distorts these cues, making Mooney faces more ambiguous and difficult to identify at the level of the individual. However, Mooney faces are readily categorized as faces because the first-order configuration of features is preserved (George, Jemel, Fiori, Chaby, & Renault, 2005; Latinus & Taylor, 2006; McKone, 2004; Moore & Cavanagh, 1998). In 1998, Kanwisher et al. reported that the human FFA is activated to the same extent by both upright grayscale faces and upright Mooney faces with increased blood flow in response to upright Mooney faces compared with inverted Mooney faces. This effect of inversion implicated FFA in face categorization processes.

Evidence of spared face categorization in individuals deprived of early visual experience due to congenital cataracts (Mondloch, Le Grand, & Maurer, 2003) converges with several studies of newborn infants to suggest that our ability to categorize faces is operational at birth or shortly hereafter (Morton & Johnson, 1991). The classic finding of infants tracking face-like configurations for longer periods of time than similar non-face configurations implies that we categorize faces as being distinct from other visual objects after only 9 minutes of life (Goren, Sarty, & Wu, 1975). This observation, and others like it (Leo & Simion, 2009; Macchi Cassia, Turati, & Simion, 2004), strongly suggest that we are born with an ability to distinguish faces from other kinds of objects, however it is difficult, if not impossible, to draw conclusions about the ontogenetic development of human cognition based on preferences in human infants alone. Here, we investigate first-order sensitivity in adult chimpanzees assuming that if our ability to categorize faces is experience-expectant then it is likely to be conserved in our closest living relative.

A recent report suggests that, like humans, chimpanzees also have a specialized neural network for processing face stimuli (Parr, Hecht, Barks, Preuss, & Votaw, 2009). Although there is a sizable body of research to suggest that chimpanzees can recognize individual faces (for example see Parr, et al., 1998), it is not known how sensitive they are to first-order information in faces. To probe this sensitivity in Experiment 1 we used a standard two alternative forced choice match-to-sample (MTS) paradigm and designed trials that required five chimpanzees to match two classes of Mooney objects (faces or shoes; see Fig. 1b) using different types of information. In the image match task, subjects were required to match identical Mooney images using pictorial cues. In the category match condition the chimpanzees were asked to match the Mooney objects at the basic category level, i.e. using first-order information to match different exemplars that belong to the same object category (see Fig.1c), whereas in the individual match trials the chimpanzees were asked to match Mooney objects at the individual level, i.e. using second-order information to match different images of the same exemplar (see Fig. 1c). We reasoned that if chimpanzees can extract first-order cues, but not second-order cues, from Mooney objects then accuracy would be greater in the category match task than in the individual match task. In Experiment 2, we asked if there was an advantage for faces over other objects in detection tasks.

Experiment 1: Methods

Subjects

Five adult chimpanzees (*Pan troglodytes*) served as subjects in this study. Two were male. At the time of testing, the subjects were 16 - 23 years old and were housed at the Yerkes National Primate Research Center (Atlanta, GA). All five subjects had previously participated in many cognitive experiments involving matching faces and objects, but had
never been previously presented with Mooney manipulated images (for examples of previous experiments see Parr, Dove, and Hopkins, 1998; Taubert & Parr, 2010).

Stimuli

The digit stimuli were prepared using Adobe photoshop. Twelve grayscale photographs of familiar conspecific’s faces (neutral expression, full frontal). Six of the faces were males. Each face was positioned on a square canvas that was subsequently resized to 350 × 350 pixels. All background information was replaced with a black background. Contrast and brightness was matched as much as possible using the preset parameters of the automatic contrast filter. From now on these faces and shoes will be referred to as the original faces. The Mooney faces were obtained by thresholding the original stimuli so that all pixels were either black or white. The threshold level was held constant and set at 140 (see Fig. 1b).

Photographs were also taken of twelve shoes. Although it is difficult to select a class of objects that are equivalent to faces both in terms of complexity and familiarity, we choose shoes because the subjects had had numerous opportunities throughout their lives to see different kinds of shoes on their human caregivers. The original and Mooney shoes were prepared in the same way.

Design and procedure

The stimuli were presented to subjects in a match-to-sample format on a 17-inch colour monitor. The computer and monitor were housed in an audio-visual cart covered in clear Plexiglas that could be wheeled to the front of the subject’s home cage for test sessions. The monitor was positioned approximately 50 cm away from where the subject was sitting. A joystick was then attached to the front of the home cage, allowing the subject to manipulate the cursor on the computer screen.

Each trial began with the presentation of a sample stimulus (4 cm wide), centered at the top of a black screen. A white cursor appeared in the center of the screen, directly below the sample. The subject was then required to make an orienting response toward the sample. Once the cursor touched the sample stimulus, two comparison stimuli appeared at the bottom of the screen, equidistant from the sample. A correct response was recorded if the cursor was used to select the comparison stimulus that matched the sample (the target). Correct responses were reinforced with food, hand delivered by the experimenter, and followed by a two second inter-trial interval (ITI). An error was recorded if the subject selected the comparison stimulus that did not match the sample (the foil). Incorrect responses were not reinforced and were followed by a 7 second ITI. During an ITI the screen was black. This procedure was repeated 60 times in a single session with each of the twelve stimuli appearing as a sample / target (and a foil) an equal number of times. Subjects were tested twice a day with one session taking place at approximately 10 am and the other at approximately 3 pm.

The factorial design included six separate conditions (see Fig. 1c). There were two kinds of stimuli that appeared as samples (faces or shoes) and three different tasks. In the image match task subjects were asked to match a Mooney sample stimulus (a face or shoe) to the exact same image. The foil was another example from the same category. This control task was necessary to verify that the subjects understood how to respond accurately to the MTS procedure and that there was no bias against shoes.

In the category match task the subjects were required to ignore the individual identity of the sample and, instead, select comparison stimulus that belonged to the same category as the sample. For example, if the sample was a Mooney face, then target was also Mooney face, but one belonging to a different individual, and the foil was a Mooney shoe (see Fig. 1c).
the third task, hereby referred to as the *individual match* task, the subjects were given an original stimulus as the sample and were asked to match this grayscale image to the Mooney equivalent (see Fig. 3c). Thus, even though the subjects were asked to match the same photograph, a strict image match strategy would not facilitate performance because the Mooney transformation was only applied to the comparison stimuli. The six unique conditions were completed in a counterbalanced order.

Experiment 1: Results and Discussion

Subject performance (percent correct) was analyzed in a repeated measures 2×3 ANOVA where the within-subject factors included stimulus type (faces v shoes) and task (image match, category match and individual match). The main effects of stimulus and task were significant [stimuli, $F(2, 8) = 14.34, p = 0.02$; task, $F(2, 8) = 23.25, p < 0.01$; see Fig. 2], however the interaction between stimulus and task was not [$F(2, 8) = 0.19, p = 0.83$]. Thus, on average subjects performed better with shoes than with faces and there was no difference in the pattern of performance across the three tasks dependent on stimulus type. A paired t-test was run to check that the subjects were as accurate in the face image matching condition as they were in the shoe image matching condition [$t(4) = 0.75, p = 0.495$].

To follow-up on the main effect of task, the three tasks were compared in a pair-wise fashion using the Bonferroni adjustment ($\alpha / 3 = 0.017$). As predicted, these comparisons revealed that, on average, subjects made more errors in the individual match condition than in the image match [$t(4) = 6.25, p = 0.003$] or category match [$t(4) = 7.33, p = 0.002$] conditions (see Fig. 2). These results indicate that chimpanzees were more successful at categorizing Mooney images than identifying them. The follow up tests did not reveal evidence consistent with a difference between the image match and category match conditions [$t(4) = 1.91, p = 0.129$].

Experiment 2: Testing the Mooney face advantage

Having established that chimpanzees can categorize Mooney objects in Experiment 1, we designed an additional task to determine whether chimpanzees are more sensitive to the first-order information in faces compared to other objects (Moore & Cavanagh, 1998). In Experiment 2 was necessary because in the first experiment the trials that comprised the category match task always involved a face: In the face category trials, faces were presented as the sample / target pairs and in the shoe category trials faces were presented as the foils. Thus, it is reasonable to conclude that accuracy in both the face and shoe conditions could have been based on the rapid categorization of faces, either to match, or to ignore.

In Experiment 2 we used the Mooney faces and shoes that were created in Experiment 1 and introduced a novel set of Mooney hands. Hands were chosen as a stimulus class because the chimpanzees had had daily experience with a variety of human hands as opposed to other classes of objects, e.g. cars or houses. The experiment was divided into two conditions; the Mooney face condition, where faces were categorized against hands and vice versa, and the Mooney shoe condition, where shoes were categorized against hands and vice versa (see Fig. 3). If subjects found it easier to categorize faces than to categorize shoes, as predicted, then the subjects would be more accurate in the Mooney face condition compared to the Mooney shoe condition. Alternatively if the subjects are simply good at categorizing all Mooney objects, then they will perform similarly in both conditions.
Experiment 2: Methods

Stimuli

The Mooney stimuli from Experiment 1 were also used in Experiment 2 again. In addition, twelve photographs of hands were transformed using the same thresholding procedure described above. These images will be referred to as Mooney hands.

Design and procedure

The procedure for Experiment 2 was identical to the procedure described in Experiment 1; subjects were asked to respond to a simultaneous 2AFC MTS task. In Experiment 2, however, there were only two experimental conditions (Mooney face v Mooney shoe), which were blocked in separate sessions that were counterbalanced across subjects. Each session was comprised of 60 discrete trials. In the Mooney face condition, 30 of the 60 total trials required subjects to match a Mooney face to another Mooney face, against a Mooney hand foil. In the remaining 30 trials a Mooney hand was presented the sample stimulus. The corresponding match was another Mooney hand and the foil was a Mooney face (see Fig. 3). The trial structure was the same in the Mooney shoe condition except that shoes were presented instead of faces.

Experiment 2: Results and Discussion

Subject performance in the face condition was directly compared to performance in the shoe condition using a simple paired t-test. Although performance was better in Mooney face condition ($M = 77.33$, $SEM = 6.62$) than in the Mooney shoe condition ($M = 65.67$, $SEM = 4.79$) this was not statistically different [$t(4) = 1.98$, $p = 0.12$]. However, we note that four out of five subjects demonstrated the predicted advantage for Mooney faces over Mooney shoes (see Fig. 4). When the Mooney face condition was run on Lamar, he only responded correctly 36 times (60% correct) which was the lowest individual score and more than one standard deviation away from the group mean. Using a binomial distribution (one-tail) we also found that Lamar was the only subject who did not perform above chance in the Mooney face condition ($p = 0.08$). It is possible, therefore, that his result represents an influential outlier. The same comparison was significant when Lamar's data was removed from the analysis [Mooney face condition, $M = 81.67$, $SEM = 6.45$; Mooney shoe condition, $M = 64.17$, $SEM = 5.87$; $t(3) = 16.27$, $p = 0.001$].

General Discussion

In this paper, we investigated ability to detect and categorize faces in chimpanzees. Experiment 1 showed that chimpanzees easily categorized Mooney faces as being distinct from Mooney shoes (category matching task). However, while the chimpanzees demonstrated an ability to match individual faces when the sample and match were identical (image matching task), the individual match task revealed that the chimpanzees could not extract sufficient information from the Mooney faces to discriminate them on an individual-level. These results are consistent with Mooney face perception in human adults (George, et al., 2005; Latinus & Taylor, 2006; McKone, 2004) and infants (Leo & Simion, 2009) and are consistent with the notion that individual face recognition in chimpanzees is based on the presence of second-order information (Parr, et al., 1998).

In Experiment 2 we aimed to clarify whether performance on the category task was due to the rapid categorization of faces. Overall there was no advantage for faces over shoes, however the effect neared significance and was influenced by the performance of one subject who performed better categorizing shoes than faces (see Fig. 4). Once these data were removed from the analysis there was evidence of a profound advantage for
categorizing faces. The implication is that there may be some individual variation in face categorization and potentially some competition with other objects categories. It is reasonable to conclude, therefore, that while most chimpanzees are more sensitive to faces than shoes in a categorization task this might not hold across all individuals and all situations.

In conclusion, we have provided the first clear evidence that chimpanzees are sensitive to first-order information in objects and that first-order information is not sufficient is for individual discrimination. Even though it was not a significant effect across the whole group, we also found some evidence consistent with the idea that chimpanzees are more sensitive to the first-order information in faces than in another class of objects, shoes. The pattern that emerges in these data implies that chimpanzees have the same response to Mooney faces as humans (George, et al., 2005; Latinus & Taylor, 2006; McKone, 2004; Moore & Cavanagh, 1998) and that face categorization is accomplished by conserved neural machinery (Kanwisher, et al., 1998; Parr, et al., 2009)

Acknowledgments

This investigation was supported by RR-00165 from the NIH/NCRR to the Yerkes National Primate Research Center, and R01-MH068791 to LA Parr. We thank Erin Siebert for her help collecting data and two anonymous reviewers for their helpful comments.

References

Figure 1.
(a) Two examples of the experimental stimuli, one from each of the object categories. (b) Summary of the factorial design for Experiment 1 with examples of trials taken from each of the six unique conditions. In every trial, the sample was presented at the top of the screen with the two comparison stimuli below. In these examples, the correct choice is the left comparison stimulus; however, in the experiment, the position of the correct choice was selected at random.
Figure 2.
Accuracy in Experiment 1: Individual scores are provided with the group averages presented in the top left corner (error bars: ±1 SEM).
Figure 3.
Experiment 2: examples of the types of trials that occurred in the two conditions. The correct response (the stimulus that matches the central sample) in these examples is on the left.
Figure 4.
Accuracy in Experiment 2: The group averages are presented in the top left corner (error bars: ±1 SEM). Individual scores are also provided. Black bars indicate individual scores consistent with a categorization advantage for Mooney faces. The white bars indicate scores inconsistent with the predicted advantage for Mooney faces.