Diabetes Mellitus-Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults

Sridharan Raghavan, Eastern Colorado Healthcare System
Jason L. Vassy, Boston Healthcare System
Yuk-Lam Ho, Boston Healthcare System
Rebecca J. Song, Boston Healthcare System
David R. Gagnon, Boston Healthcare System
Kelly Cho, Boston Healthcare System
Peter W Wilson, Emory University
Lawrence S Phillips, Emory University

Journal Title: Journal of the American Heart Association
Volume: Volume 8, Number 4
Publisher: Wiley Open Access: Creative Commons Attribution Non-Commercial | 2019-02-19, Pages e011295-e011295
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1161/JAHA.118.011295
Permanent URL: https://pid.emory.edu/ark:/25593/tp48q

Final published version: http://dx.doi.org/10.1161/JAHA.118.011295

Copyright information:
© 2019 The Authors.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Accessed January 22, 2020 3:03 AM EST
Diabetes Mellitus–Related All-Cause and Cardiovascular Mortality in a National Cohort of Adults

Sridharan Raghavan, MD, PhD; Jason L. Vassy, MD, MPH, SM; Yuk-Lam Ho, MPH; Rebecca J. Song, MPH; David R. Gagnon, MD, PhD; Kelly Cho, PhD, MPH; Peter W. F. Wilson, MD; Lawrence S. Phillips, MD

Background—Diabetes mellitus is a risk factor for cardiovascular disease (CVD) and has been associated with 2- to 4-fold higher mortality. Diabetes mellitus–related mortality has not been reassessed in individuals receiving routine care in the United States in the contemporary era of CVD risk reduction.

Methods and Results—We retrospectively studied 963 648 adults receiving care in the US Veterans Affairs Healthcare System from 2002 to 2014; mean follow-up was 8 years. We estimated associations of diabetes mellitus status and hemoglobin A1c (HbA1c) with all-cause and CVD mortality using covariate-adjusted incidence rates and multivariable Cox proportional hazards regression. Of participants, 34% had diabetes mellitus. Compared with nondiabetic individuals, patients with diabetes mellitus had 7.0 (95% CI, 6.7–7.4) and 3.5 (95% CI, 3.3–3.7) deaths/1000-person-years higher all-cause and CVD mortality, respectively. The age-, sex-, race-, and ethnicity-adjusted hazard ratio for diabetes mellitus–related mortality was 1.29 (95% CI, 1.28–1.31), and declined with adjustment for CVD risk factors (hazard ratio, 1.18 [95% CI, 1.16–1.19]) and glycemia (hazard ratio, 1.03 [95% CI, 1.02–1.05]). Among individuals with diabetes mellitus, CVD mortality increased as HbA1c exceeded 7% (hazard ratios, 1.11 [95% CI, 1.08–1.14], 1.25 [95% CI, 1.22–1.29], and 1.52 [95% CI, 1.48–1.56] for HbA1c 7%–7.9%, 8%–8.9%, and ≥9%, respectively, relative to HbA1c 6%–6.9%). HbA1c 6% to 6.9% was associated with the lowest mortality risk irrespective of CVD history or age.

Conclusions—Diabetes mellitus remains significantly associated with all-cause and CVD mortality, although diabetes mellitus–related excess mortality is lower in the contemporary era than previously. We observed a gradient of mortality risk with increasing HbA1c >6% to 6.9%, suggesting HbA1c remains an informative predictor of outcomes even if causality cannot be inferred. (J Am Heart Assoc. 2019;8:e011295. DOI:10.1161/JAHA.118.011295.)

Key Words: diabetes mellitus • mortality • cardiovascular disease

Diabetes mellitus affects nearly 10% of adults in the United States,1,2 is a significant risk factor for cardiovascular disease (CVD), chronic kidney disease, and numerous other complications,3 and is associated with all-cause and CVD mortality.4–8 Indeed, myocardial infarction is the leading cause of death among individuals with diabetes mellitus.4 Accordingly, the clinical care of patients with diabetes mellitus has 2 broad goals: improving glycemic control to reduce diabetic complications9–11 and modifying risk factors for complications, in particular those associated with CVD.12

Observational studies preceding contemporary CVD risk reduction strategies reported 3- to 4-fold higher all-cause and CVD mortality in participants with diabetes mellitus compared with those without diabetes mellitus.13–16 More recently, analyses of the National Health and Nutrition Examination Survey and the National Health Interview Survey demonstrated reductions in CVD mortality in individuals with and
Similarly, analyses of diabetes mellitus suggesting temporal improvements in overall CVD care. 5,6 successive survey periods spanning the 1970s to 2000, without diabetes mellitus in the United States across registry data have provided contemporary estimates of as declines in the rates of diabetes mellitus control and preventive practices from 1990 to 2010,17 as well United States showed improvements in CVD risk factor management. An analysis aimed at updating studies demonstrate improved but persistent diabetes mellitus–related excess mortality despite improvements in CVD risk factor management. An analysis aimed at updating estimates of diabetes mellitus–related mortality for patients receiving routine clinical care in the United States is needed. This study evaluated the association between type 2 diabetes mellitus and all-cause and CVD mortality, accounting for CVD risk factors, in a large, national contemporary US cohort receiving care in an integrated healthcare system. We also examined the association between hemoglobin A1c (HbA1c) and mortality among individuals with diabetes mellitus, whether this association varied by CVD history or age, and its stability over short- and long-term time horizons. Understanding the relationships between diabetes mellitus status and HbA1c with all-cause and CVD mortality in a contemporary healthcare setting in the United States could inform optimal CVD risk reduction and diabetes mellitus management strategies.

Methods
The data and all statistical code that support the findings of this study are available on reasonable request to the corresponding author. Because of the sensitive nature of the clinically derived data collected for this study, requests for data must be from qualified researchers with approved human subjects research protocols.

Study Population
This study included individuals receiving routine primary care in the US Department of Veterans Affairs Healthcare System (VA), defined as those who had at least 4 VA primary care provider visits from 2002 through 2003. We included individuals for whom diabetes mellitus status could be established and for whom baseline age, sex, race, ethnicity, non–high-density lipoprotein cholesterol, systolic blood pressure (SBP), smoking status, body mass index (BMI), and at least 3 random plasma glucose values were available in 2002 to 2003 (Figure S1). Because the study involved only secondary analysis of data collected routinely in the course of clinical care, the requirement for informed consent from study participants was waived. The Institutional Review Boards of Emory University (Atlanta, GA) and VA Boston Healthcare System (Boston, MA) approved this study.

Exposures
The primary exposure was diabetes mellitus status, defined as ≥2 uses of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis code 250.xx or ≥1 use of code 250.xx in conjunction with a primary care provider visit and use of a diabetes mellitus medication during 2002 to 2003. For analyses of HbA1c, values measured during the 2002 to 2003 enrollment period were included, and the value closest in time to measurements of covariates (eg, SBP) was used for individuals with multiple HbA1c measurements. Prior studies suggested that the association between HbA1c and mortality is nonlinear,22 so we specified HbA1c in clinically relevant categories: <6.0%, 6% to 6.9%, 7% to 7.9%, 8% to 8.9%, and ≥9.0%.

Outcomes
The coprimary outcomes were all-cause mortality and CVD mortality. Deaths occurring during the first 2 years of follow-up were censored. Mortality data were based on the National Death Index23 through 2014, classified into 10 cause-of-death categories: CVD, cancer, chronic obstructive pulmonary disease, diabetes mellitus, chronic kidney disease, infection, mental illness, abnormal/accident, other chronic diseases, mental illness, abnormal/accident, other chronic diseases, mental illness, abnormal/accident, other chronic diseases,
and all other causes. CVD mortality was defined in the National Death Index as ICD-10-CM codes I00 to I02, I05 to I13, I20 to I22, I24 to I28, I30 to I38, I40, I42, I44 to I51, I60 to I63, I67 to I74, I77 to I78, I80 to I87, I89, I95, I97, I99, M30, M31, R58, G45, and R00 for the primary cause-of-death diagnosis.

Stratifying Variables

We performed analyses stratified by CVD status at baseline, defined as inpatient or outpatient diagnosis of stroke/cerebrovascular disease (ICD-9-CM diagnosis codes 430–438), coronary artery disease (ICD-9-CM diagnosis codes 410–414), peripheral vascular disease (ICD-9-CM diagnosis codes 440.2–440.4 or 443.9), or congestive heart failure (ICD-9-CM diagnosis code 428). We also performed analyses stratified at age 65 years, the mean for the study population.

Statistical Analysis

Patient-level demographics, CVD risk factors, and comorbidities were compared between individuals with and without diabetes mellitus using χ² tests for categorical data and 2-sample t tests for continuous or ordinal data. We used crude and adjusted incidence rates and multivariable Cox proportional hazards regression to examine mortality risk across diabetes mellitus and HbA1c categories. To standardize covariates across exposure categories, we estimated adjusted incidence rates using generalized linear models with the Poisson link, using inverse probability weighting by propensity for exposure category. Adjusted incidence rate and multivariable Cox proportional hazards models included demographic variables (baseline age, sex, race, and ethnicity) and baseline CVD risk factors (SBP, non–high-density lipoprotein cholesterol, BMI, and smoking status). Smoking status was determined using an algorithm developed for VA electronic health records that classifies individuals as ever or never smokers. We performed Cox proportional hazards regression with 3 additional models: one including prior CVD; a second including baseline random plasma glucose; and a third including baseline diabetes mellitus treatment (classified as no medications, insulin-containing regimens, and regimens without insulin) and baseline blood pressure treatment (prescribed or not prescribed a diuretic, β blocker, angiotensin-converting inhibitor or angiotensin receptor blocker, or calcium channel blocker). For all Cox proportional hazards models with CVD mortality as the outcome, we used cumulative incidence function methods to account for competing risk from mortality attributable to noncardiovascular causes. To determine if the association between baseline HbA1c and mortality differed over time, we repeated the multivariable Cox models with HbA1c as a time-dependent variable, evaluating the association of HbA1c with mortality in the first 2 to 5 years of follow-up and at >5 years of follow-up. Finally, to assess differential associations between HbA1c and outcomes for patients in different age strata, we included an interaction term between HbA1c and age, categorized as <65 or ≥65 years.

We used a significance threshold of P<0.05 for associations of diabetes mellitus status or HbA1c with mortality outcomes. All analyses were conducted in SAS Enterprise Guide 7.1 (SAS Inc, Cary, NC) or R, version 3.3 (R Foundation for Statistical Computing, Vienna, Austria).

Results

Of 963 648 total participants, 329 624 (34%) had diabetes mellitus. Mean follow-up time was 8 years. Participants with diabetes mellitus were more likely to be black (17.1% versus 14.5%), were more likely to have prior CVD (51.6% versus 40.3%), were more likely to have chronic kidney disease (3.1% versus 1.3%), and had a higher BMI (31.3 versus 28.8 kg/m²). There were minor differences between patients with and without diabetes mellitus in most other variables examined (Table 1). Participants with diabetes mellitus had a mean HbA1c of 7.4% at baseline, and the distribution of covariates across HbA1c categories is shown in Table S1. CVD was the most common cause of mortality, with cancer ranking second, and diabetes mellitus ranking the third most common primary cause of death among individuals with diabetes mellitus (Table S2).

Diabetes Mellitus and Mortality

Individuals with diabetes mellitus had higher crude and adjusted incidence rates of all-cause and CVD mortality (all-cause mortality: adjusted incidence rate [95% CI], 50.6 [50.3–50.8] and 43.5 [43.4–43.7] deaths/1000 person-years in individuals with and without diabetes mellitus, respectively; CVD mortality: adjusted incidence rate [95% CI], 17.6 [17.5–17.8] and 14.2 [14.1–14.3] deaths/1000 person-years in individuals with and without diabetes mellitus, respectively; Figure 1A, Table S3, model A). Differential adjusted all-cause and cardiovascular mortality between those without and with diabetes mellitus was evident over the entire follow-up period (Figure 1B). Diabetes mellitus was associated with higher all-cause and CVD mortality in individuals with and without prior CVD, but a history of CVD had a larger effect on mortality than diabetes mellitus status (Figure 1C, Table S3, model A). In addition, the adjusted risk differences (95% CIs) in all-cause and CVD mortality between those with and without diabetes mellitus were greater in those with prior CVD (9.5 [9.0–10.0] and 4.0 [3.5–4.5]) respectively.
[3.7–4.4] all-cause and CVD deaths/1000 person-years, respectively) than in those without prior CVD (2.5 [2.1–2.8] and 1.4 [1.2–1.6] all-cause and CVD deaths/1000 person-years, respectively; Figure 1D, Table S3, model A). Finally, accounting for diabetes mellitus and blood pressure treatment at baseline attenuated diabetes mellitus–related all-cause and CVD mortality (adjusted risk difference [95% CI] of all-cause mortality comparing patients with versus without diabetes mellitus decreased from 7.0 [6.7–7.4] to 2.8 [−0.2 to 5.7] deaths/1000-person-years, and from 3.5 [3.3–3.7] to 1.8 [0.03–3.6] deaths/1000-person-years for CVD mortality; Table S3, model B).

In Cox proportional hazards regression models, the risk of all-cause and CVD mortality was higher in individuals with diabetes mellitus than in those without diabetes mellitus

Table 1. Study Participant Characteristics at Baseline

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All Participants</th>
<th>Those Without Diabetes Mellitus</th>
<th>Those With Diabetes Mellitus</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean±SD, y</td>
<td>65.0±11.7</td>
<td>64.7±12.2</td>
<td>65.6±10.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>936 379 (97.2)</td>
<td>612 583 (96.6)</td>
<td>323 796 (98.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>4242 (0.4)</td>
<td>2559 (0.4)</td>
<td>1683 (0.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Asian</td>
<td>3781 (0.4)</td>
<td>2245 (0.4)</td>
<td>1536 (0.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Black or African American</td>
<td>148 507 (15.4)</td>
<td>91 998 (14.5)</td>
<td>56 509 (17.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Native Hawaiian or other Pacific</td>
<td>7667 (0.8)</td>
<td>4782 (0.8)</td>
<td>2885 (0.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Other</td>
<td>519 (0.1)</td>
<td>310 (0)</td>
<td>209 (0.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Unknown or null</td>
<td>4417 (0.5)</td>
<td>3334 (0.5)</td>
<td>1083 (0.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>White</td>
<td>794 515 (82.4)</td>
<td>528 796 (83.4)</td>
<td>265 719 (80.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>48 121 (5)</td>
<td>24 947 (3.9)</td>
<td>23 174 (7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>912 171 (94.7)</td>
<td>606 538 (95.7)</td>
<td>305 633 (92.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Unknown or null</td>
<td>3356 (0.3)</td>
<td>2539 (0.4)</td>
<td>817 (0.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>CVD at baseline, n (%)</td>
<td>425 577 (44.2)</td>
<td>255 613 (40.3)</td>
<td>169 964 (51.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer at baseline, n (%)</td>
<td>274 387 (28.5)</td>
<td>185 211 (29.2)</td>
<td>89 176 (27.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mental health disease at baseline, n (%)</td>
<td>138 384 (14.4)</td>
<td>92 994 (14.7)</td>
<td>45 390 (13.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Kidney disease at baseline, n (%)*</td>
<td>18 441 (1.9)</td>
<td>8178 (1.3)</td>
<td>10 263 (3.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever</td>
<td>785 010 (81.5)</td>
<td>519 509 (81.9)</td>
<td>265 501 (80.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Never smoker</td>
<td>178 638 (18.5)</td>
<td>114 515 (18.1)</td>
<td>64 123 (19.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Statin at baseline, n (%)</td>
<td>440 617 (45.7)</td>
<td>261 336 (41.2)</td>
<td>179 281 (54.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Statin at follow-up, n (%)</td>
<td>792 749 (82.3)</td>
<td>495 221 (78.1)</td>
<td>297 528 (90.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, mean±SD, kg/m²</td>
<td>29.67±5.7</td>
<td>28.8±5.3</td>
<td>31.3±5.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Glucose, mean±SD, mg/dL</td>
<td>123.44±51.5</td>
<td>104.1±24.3</td>
<td>160.6±67.2</td>
<td><0.001</td>
</tr>
<tr>
<td>HbA1c, mean±SD, %</td>
<td>6.95±1.7</td>
<td>5.9±1.1</td>
<td>7.5±1.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol, mean±SD, mg/dL</td>
<td>189.56±42</td>
<td>192.6±41</td>
<td>183.7±43.2</td>
<td><0.001</td>
</tr>
<tr>
<td>HDL-C, mean±SD, mg/dL</td>
<td>43.44±13.1</td>
<td>44.9±13.6</td>
<td>40.5±11.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Non–HDL-C, mean±SD, mg/dL</td>
<td>146.12±41.4</td>
<td>147.7±40.6</td>
<td>143.1±42.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure, mean±SD, mm Hg</td>
<td>138.72±19.9</td>
<td>137.9±19.7</td>
<td>140.3±20.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Follow-up time, mean±SD, y</td>
<td>8.5±3.3</td>
<td>8.2±3.5</td>
<td>9.0±2.9</td>
<td><0.001</td>
</tr>
</tbody>
</table>

BMI indicates body mass index; CVD, cardiovascular disease; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein cholesterol.

*Kidney disease based on International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 404.93, 585.5, 585.6, v45.1, v56, and 996.73.
mortality strengthened in successive models that adjusted for age, sex, race, BMI, non–high-density lipoprotein cholesterol, SBP, and smoking status (Table 2). However, inclusion of prior CVD as a covariate reduced the association between diabetes mellitus and CVD mortality from hazard ratio (HR) (95% CI) of 1.26 (1.24–1.27) to 1.18 (1.16–1.19). Including baseline

Figure 1. Association between diabetes mellitus and mortality. Diabetes mellitus is associated with higher all-cause and cardiovascular mortality.

A, Incidence rate of mortality in unadjusted models and with adjustment for age, sex, race, ethnicity, body mass index (BMI), non–high-density lipoprotein (non-HDL) cholesterol, systolic blood pressure, and smoking status.

B, Estimated survival probabilities of all-cause and cardiovascular mortality in individuals without and with diabetes mellitus in models adjusted for age, sex, race, ethnicity, BMI, non-HDL cholesterol, systolic blood pressure, and smoking status (outcomes occurring in the first 2 years of follow-up were censored).

C, Diabetes mellitus is associated with increased incidence of all-cause and cardiovascular mortality in individuals without and with prior cardiovascular disease (CVD).

D, Adjusted risk difference of mortality, relative to individuals without diabetes mellitus, in individuals with diabetes mellitus with and without prior CVD.
random plasma glucose as a covariate fully attenuated the association between diabetes mellitus and all-cause mortality (HR, 0.99 [95% CI, 0.98–0.99]) and reduced the association with CVD mortality (HR, 1.03 [95% CI, 1.02–1.05]). Similarly, including baseline diabetes mellitus and blood pressure treatment fully attenuated the association between diabetes mellitus and both mortality end points (all-cause mortality HR, 0.96 [95% CI, 0.94–0.98]; CVD mortality HR, 1.00 [95% CI, 0.98–1.02]). In models adjusted for CVD risk factors and additionally for glycemia or for baseline diabetes mellitus and blood pressure treatment, a history of CVD was a stronger predictor of all-cause and CVD mortality than diabetes mellitus (Table S4).

HbA1c and Mortality

Among individuals with diabetes mellitus, individuals with HbA1c 6% to 6.9% had the lowest crude and adjusted incidence of all-cause and CVD mortality, and the incidence of all-cause and CVD mortality increased with successive HbA1c categories ≥7% (Figure 2A, Table S5). Incremental increases in all-cause and CVD mortality were greater with each increment in HbA1c ≥7% in individuals with prior CVD than in those without (Figure 2B, Table S5). HbA1c <6% was associated with higher all-cause mortality relative to HbA1c 6% to 6.9% irrespective of CVD history, and with higher CVD mortality only in individuals without prior CVD (Figure 2B, Table S5).

In Cox proportional hazards models adjusted for age, sex, race, ethnicity, BMI, non–high-density lipoprotein cholesterol, SBP, smoking status, CVD history, and baseline diabetes mellitus and blood pressure medications, we observed a J-shaped association between HbA1c and all-cause mortality over short-term (2–5 years) and long-term (>5 years) follow-up (Figure 2C). However, HbA1c was less strongly predictive of mortality at >5 years versus at 2 to 5 years for all HbA1c categories relative to HbA1c 6% to 6.9% (Figure 2C, Table S6). In competing risk models, short-term CVD mortality risk was 10%, 27%, and 48% higher in individuals with HbA1c 7% to 7.9%, 8% to 8.9%, and ≥9%, respectively, compared with those with HbA1c 6% to 6.9% (Figure 2C). The corresponding long-term CVD mortality risks were 6%, 14%, and 41% higher in individuals with HbA1c 7% to 7.9%, 8% to 8.9%, and ≥9%, respectively, compared with those with HbA1c 6% to 6.9% (Figure 2C, Table S6). HbA1c <6% was associated with higher all-cause mortality compared with HbA1c 6% to 6.9% over short- and long-term follow-up times but was associated only with higher short-term CVD mortality (Figure 2C, Table S6). We observed similar patterns of association between HbA1c ≥7% and all-cause and CVD mortality in individuals with and without prior CVD, although the HRs increased more steeply below and above a reference of HbA1c 6% to 6.9% in those without prior CVD, and HbA1c <6% was associated with higher CVD mortality only in individuals without prior CVD (Figure 2D, Table S6).

Subgroup Analyses

In age-stratified analyses, individuals ≥65 years of age at baseline had higher incidence of all-cause and CVD mortality. In both age groups, the lowest incidence rates of mortality were observed for those with HbA1c 6% to 6.9%, and mortality increased with increasing HbA1c categories were greater in older than in younger individuals in crude and adjusted models (Figure 3B, Table S7). In Cox proportional hazards models, there was a significant interaction between age and HbA1c category and both all-cause and CVD mortality (interaction P<0.0001 for both outcomes). In contrast to the results on the risk difference scale, the relative hazard of CVD mortality increased more steeply with increasing HbA1c categories ≥7% in individuals <65 years of age than in those ≥65 years of age (Figure 3C, Table S8). HbA1c <6% was associated with higher all-cause mortality than HbA1c 6% to 6.9% in both age groups, and with higher short-term CVD mortality only in those ≥65 years (Figure 3C, Table S8). As in the unstratified analysis, baseline HbA1c was more strongly associated with short-term mortality than long-term mortality.

Discussion

In this study of individuals receiving care in an integrated national healthcare system, we found that diabetes mellitus
Figure 2. Association between hemoglobin A1c (HbA1c) and mortality. HbA1c is associated with all-cause and cardiovascular mortality after accounting for modifiable cardiovascular disease (CVD) risk factors. A, Incidence rate of all-cause and cardiovascular mortality across categories of baseline HbA1c in models adjusted for age, sex, race, ethnicity, body mass index (BMI), non-high-density lipoprotein (non-HDL) cholesterol, systolic blood pressure, smoking status, and diabetes mellitus and blood pressure treatment. B, Adjusted risk difference of all-cause and cardiovascular mortality, relative to individuals with HbA1c 6% to 6.9%, in individuals across categories of baseline HbA1c, stratified by baseline CVD history. Association between HbA1c category and short- and long-term all-cause and cardiovascular mortality in Cox proportional hazards models, adjusted for age, sex, race, ethnicity, BMI, non-HDL cholesterol, systolic blood pressure, smoking status, CVD history, and diabetes mellitus and blood pressure treatment (C), and stratified by CVD history (D). DOI: 10.1161/JAHA.118.011295
was independently associated with all-cause and CVD mortality even after adjusting for CVD risk factors. Relative to unadjusted models, the association between diabetes mellitus and mortality was modestly attenuated when accounting for prior CVD and nearly completely attenuated when adjusting for random plasma glucose levels or diabetes mellitus and blood pressure treatment. In contrast to older studies that described 3- to 4-fold excess mortality associated with diabetes mellitus, our contemporary US cohort, diabetes mellitus was associated with only an 18% increase in CVD mortality in models adjusted for other CVD risk factors. Among individuals with diabetes mellitus, we found all-cause and CVD mortality risk were lowest in individuals with HbA1c between 6% and 6.9%, all-cause mortality risk was higher in those with HbA1c <6%, and both all-cause and CVD mortality increased with HbA1c ≥7% in all participants and in analyses stratified by age or CVD history.
Furthermore, this pattern of association was observed over both short (2–5 years) and long (>5 years) follow-up times. Finally, there was a significant interaction between HbA1c and age group, but similar qualitative patterns of association between HbA1c and mortality in individuals younger and older than 65 years of age.

This study, set in a national, clinically-derived cohort in the United States, supports prior work in European populations demonstrating that contemporary individuals with type 2 diabetes mellitus are at excess risk of mortality.7,8,19–21 We extend the prior literature by demonstrating that accounting for CVD risk factors diminishes the association of diabetes mellitus with mortality, and that the association is nearly completely attenuated by further adjustment for glucose levels or treatment. Overall, diabetes mellitus had a smaller association with mortality in our study than in recent cohort studies based in Europe and elsewhere7,13–16,19,21 and studies before the broad adoption of CVD risk factor reduction.14,16 In contrast to a recent study set in Denmark,27 we found that diabetes mellitus was a significant predictor of mortality, even in individuals without prior CVD. Among those with diabetes mellitus, glycemia appears to be a risk factor for all-cause and CVD mortality independent of other modifiable CVD risk factors, a finding in this US clinical cohort that mirrors data from a Swedish national registry.8 Taken together, our results suggest that improvements in diabetes mellitus care in the United States17,18 are reflected in improvements in diabetes mellitus–related mortality, supported by the attenuation of the association between diabetes mellitus and mortality after accounting for risk factor levels and treatment.

There has been recent attention to potential diabetes mellitus overtreatment, particularly among older patients.28–33 However, we found that HbA1c <6% was associated with higher all-cause mortality irrespective of age and that optimal outcomes occurred among those with HbA1c between 6% and 6.9%. A greater absolute benefit but diminishing relative benefit was accrued with better baseline glycemia by those ≥65 years of age than in younger individuals. The analyses stratified by CVD history mirrored the age-stratified results. Individuals in the higher-risk subgroup (those with prior CVD) had greater absolute risk reductions but smaller relative risk reductions, comparing HbA1c 6% to 6.9% with higher HbA1c categories. The stratified analyses suggest that achieving HbA1c 6% to 6.9% is associated with lower short- and long-term mortality in those for whom glucose lowering is safe.

Our study has several limitations. First, causal inferences are limited by our observational design, and we cannot estimate the influence of unmeasured confounders, including social factors, such as socioeconomic status or family history of CVD. However, our analysis included many covariates and clinical risk factors, and the findings were consistent over short- and long-term follow-up, suggesting that the associations between HbA1c and mortality are unlikely to be attributable solely to time-varying confounding events. Second, this study focused on associations of a single baseline measurement of exposures and covariates with mortality. Because we did not examine changes in risk factors or treatment over time, we were unable to draw conclusions about the effects of longitudinal risk factor control and clinical outcomes. Similarly, because our study aimed to estimate associations of baseline diabetes mellitus status and glycemic control with mortality, our study design did not permit evaluation of associations between specific treatments and clinical outcomes. Third, we included >27 000 women, but...
the study population was predominantly male. Finally, external validity to the general US population may be limited given that our study was limited to patients receiving primary care through the VA, who are older, who are more likely to be men, and who have more comorbidities than counterparts receiving care outside the VA.

Our study has several clinically relevant implications. First, diabetes mellitus prevention could impact long-term mortality in individuals at risk for CVD, especially in those with a history of CVD, and should continue to be included along with smoking cessation, blood pressure control, and lipid management as the basis for CVD prevention. Second, diabetes mellitus–related mortality appears to be substantially reduced now that CVD risk factor control is the standard of care, and diabetes mellitus and prior CVD should no longer be considered equivalent risk factors for CVD mortality. In fact, the attenuation of the association between diabetes mellitus and mortality after accounting for prior CVD, CVD risk factors, and diabetes mellitus control or treatment suggests that excess diabetes mellitus–related mortality may be largely preventable with improved treatment and risk factor management. Third, the association of HbA1c <6% with higher mortality in our national cohort mirrors that observed in other clinical settings and supports the notion that overly intensive glycemic control could be associated with adverse outcomes. Finally, each 1% increment in HbA1c ≥7% was associated with higher short- and long-term all-cause and CVD mortality, irrespective of age category or CVD history. Although the results of our observational study might suggest that HbA1c 6% to 6.9% or, alternatively, the lowest safely achievable HbA1c level >7% could be considered as a target for management of patients with diabetes mellitus, this conclusion has not been supported by randomized trials failing to demonstrate a macrovascular benefit of intensive glycemic control compared with standard glycemic targets. Rather, even in the absence of a causal association between lower HbA1c and mortality, HbA1c may be an informative marker of important clinical outcomes in individuals with diabetes mellitus and may serve to identify individuals at higher or lower risk of mortality, even after accounting for other CVD risk factors.

Author Contributions

Study design was conceived by Raghavan, Vassy, Cho, Gagnon, Wilson, Phillips. Data collection and organization were performed by Ho, Cho, Wilson, Phillips. Analyses were performed by Ho, Song, Cho, Gagnon. Results were interpreted by Raghavan, Vassy, Ho, Cho, Gagnon, Wilson, Phillips. All authors participated in manuscript writing and critical revision, and all authors approve of the manuscript submission in its current form.

Sources of Funding

Ho, Song, Gagnon, Cho, Wilson, and Phillips are supported by Veterans Health Administration Merit Grant I01-CX001025. Raghavan is supported by a University of Colorado General Internal Medicine Small Grant and American Heart Association Award 17MCPRP33670728. Vassy is supported by Veterans Health Administration Career Development Award IK2-CX001262. Phillips is also supported by Food and Drug Administration award R01FD003527, Veterans Health Administration Health Services Research & Development Award IIR 07-138, National Institutes of Health awards R21DK099716, DK066204, U01 DK091958, U01 DK098246, and P30DK111024, and a Cystic Fibrosis Foundation award PHILLI12A0. The sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. All authors are also supported in part by the Veterans Health Administration. This work is not intended to reflect the official opinion of the Veterans Health Administration or the US government.

Disclosures

Phillips has served on Scientific Advisory Boards for Janssen and the Profil Institute for Clinical Research; and has or had research support from Merck, Amgen, Lilly, Novo Nordisk, Sanofi, PhaseBio, Roche, Abbvie, Vascular Pharmaceuticals, Janssen, Glaxo SmithKline, Pfizer, and the Cystic Fibrosis Foundation. In the past, he was a speaker for Novartis and Merck, but not for the past 5 years. Phillips is also a cofounder, officer, board member, and stockholder of a company, DIASYST, Inc, which is developing software aimed to help improve diabetes mellitus management. The remaining authors have no disclosures to report.

References

Supplemental Material
Figure S1. CONSORT diagram of study cohort development from VA electronic health records.

At least 4 primary care provider visits in 2002-2003:
N = 1,881,816

Excluded due to missing covariates:
- Age: 100,020
- Non-HDL cholesterol: 11
- Body mass index: 6804
- Random plasma glucose: 858,357
Total = 918,168

With complete covariates:
N = 963,648

Without diabetes:
N = 634,024

With diabetes:
N = 329,624

With baseline hemoglobin A1c measurement:
N = 297,392

Without baseline hemoglobin A1c measurement:
N = 32,232
Table S1. Characteristics of participants with diabetes at baseline, stratified by baseline HbA1c.

<table>
<thead>
<tr>
<th></th>
<th>HbA1c ≤ 6%</th>
<th>HbA1c 6-6.9%</th>
<th>HbA1c 7-7.9%</th>
<th>HbA1c 8-8.9%</th>
<th>HbA1c ≥ 9%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=40439</td>
<td>N=90609</td>
<td>N=73805</td>
<td>N=42497</td>
<td>N=50042</td>
<td></td>
</tr>
<tr>
<td>Age, mean ± SD (years)</td>
<td>65.94 ± 10.8</td>
<td>67.4 ± 10.3</td>
<td>66.77 ± 10.2</td>
<td>64.87 ± 10.5</td>
<td>60.75 ± 10.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>39643 (98%)</td>
<td>89039 (98.3%)</td>
<td>72532 (98.3%)</td>
<td>41833 (98.4%)</td>
<td>49039 (98%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td>American Indian or Alaska Native</td>
<td>219 (0.5%)</td>
<td>402 (0.4%)</td>
<td>374 (0.5%)</td>
<td>214 (0.5%)</td>
<td>345 (0.7%)</td>
</tr>
<tr>
<td></td>
<td>Asian</td>
<td>156 (0.4%)</td>
<td>417 (0.5%)</td>
<td>410 (0.6%)</td>
<td>217 (0.5%)</td>
<td>260 (0.5%)</td>
</tr>
<tr>
<td></td>
<td>Black or African American</td>
<td>6401 (15.8%)</td>
<td>13654 (15.1%)</td>
<td>11651 (15.8%)</td>
<td>7588 (17.9%)</td>
<td>13082 (26.1%)</td>
</tr>
<tr>
<td></td>
<td>Native Hawaiian or Other Pacific</td>
<td>330 (0.8%)</td>
<td>740 (0.8%)</td>
<td>657 (0.9%)</td>
<td>390 (0.9%)</td>
<td>485 (1%)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>18 (0%)</td>
<td>58 (0.1%)</td>
<td>55 (0.1%)</td>
<td>32 (0.1%)</td>
<td>35 (0.1%)</td>
</tr>
<tr>
<td></td>
<td>Unknown or Null</td>
<td>117 (0.3%)</td>
<td>222 (0.2%)</td>
<td>193 (0.3%)</td>
<td>151 (0.4%)</td>
<td>287 (0.6%)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td>White</td>
<td>33198 (82.1%)</td>
<td>75116 (82.9%)</td>
<td>60465 (81.9%)</td>
<td>33905 (79.8%)</td>
<td>35548 (71%)</td>
</tr>
<tr>
<td></td>
<td>Hispanic or Latino</td>
<td>2638 (6.5%)</td>
<td>5808 (6.4%)</td>
<td>5155 (7%)</td>
<td>3291 (7.7%)</td>
<td>4717 (9.4%)</td>
</tr>
<tr>
<td></td>
<td>Not Hispanic or Latino</td>
<td>37720 (93.3%)</td>
<td>84642 (93.4%)</td>
<td>68505 (92.8%)</td>
<td>39085 (92%)</td>
<td>45106 (90.1%)</td>
</tr>
<tr>
<td></td>
<td>Unknown or Null</td>
<td>81 (0.2%)</td>
<td>159 (0.2%)</td>
<td>145 (0.2%)</td>
<td>121 (0.3%)</td>
<td>219 (0.4%)</td>
</tr>
<tr>
<td>CVD at baseline, n (%)</td>
<td>20403 (50.5%)</td>
<td>47835 (52.8%)</td>
<td>39243 (53.2%)</td>
<td>22139 (52.1%)</td>
<td>22981 (45.9%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer at baseline, n (%)</td>
<td>12394 (30.6%)</td>
<td>27146 (30%)</td>
<td>20363 (27.6%)</td>
<td>10555 (24.8%)</td>
<td>9496 (19%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mental Health Disease at baseline, n (%)</td>
<td>7260 (18%)</td>
<td>12065 (13.3%)</td>
<td>8952 (12.1%)</td>
<td>5589 (13.2%)</td>
<td>7495 (15%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Kidney Disease at baseline, n (%)</td>
<td>1606 (4%)</td>
<td>2869 (3.2%)</td>
<td>2272 (3.1%)</td>
<td>1337 (3.1%)</td>
<td>1177 (2.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking Status, n (%)</td>
<td>Ever</td>
<td>32788 (81.1%)</td>
<td>73435 (81%)</td>
<td>59209 (80.2%)</td>
<td>34047 (80.1%)</td>
<td>39935 (79.8%)</td>
</tr>
<tr>
<td></td>
<td>Never Smoker</td>
<td>7651 (18.9%)</td>
<td>17174 (19%)</td>
<td>14596 (19.8%)</td>
<td>8450 (19.9%)</td>
<td>10107 (20.2%)</td>
</tr>
<tr>
<td>Statin at baseline, n (%)</td>
<td>19489 (48.2%)</td>
<td>49605 (54.7%)</td>
<td>41703 (56.5%)</td>
<td>24178 (56.9%)</td>
<td>26185 (52.3%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Statin during follow-up, n (%)</td>
<td>34629 (85.6%)</td>
<td>81462 (89.9%)</td>
<td>67339 (91.2%)</td>
<td>39024 (91.8%)</td>
<td>46154 (92.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI, mean ± SD (kg/m²)</td>
<td>30.84 ± 5.9</td>
<td>31.13 ± 5.8</td>
<td>31.32 ± 5.9</td>
<td>31.56 ± 6</td>
<td>31.6 ± 6.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Glucose, mean ± SD (mg/dL)</td>
<td>119.78 ± 35.7</td>
<td>135.31 ± 40.5</td>
<td>156.94 ± 49.5</td>
<td>181.77 ± 62.3</td>
<td>234.25 ± 89.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Total Cholesterol, mean ± SD (mg/dL)</td>
<td>176.01 ± 39.4</td>
<td>179.01 ± 39.3</td>
<td>181.53 ± 40.1</td>
<td>186.11 ± 43.2</td>
<td>199.48 ± 52.5</td>
<td><0.001</td>
</tr>
<tr>
<td>HDLC, mean ± SD (mg/dL)</td>
<td>40.93 ± 12</td>
<td>40.6 ± 11.2</td>
<td>40.38 ± 11.1</td>
<td>40.27 ± 11.3</td>
<td>40.85 ± 12.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Non-HDL Cholesterol, mean ± SD (mg/dL)</td>
<td>135.08 ± 38.7</td>
<td>138.4 ± 38.8</td>
<td>141.15 ± 39.7</td>
<td>145.84 ± 42.8</td>
<td>158.63 ± 52.2</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic Blood Pressure, mean ± SD (mmHg)</td>
<td>139.09 ± 20.1</td>
<td>140.15 ± 20</td>
<td>140.89 ± 20</td>
<td>141.16 ± 20.4</td>
<td>140.4 ± 20.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Count of comorbidities, median (IQR)</td>
<td>11 (7, 16)</td>
<td>11 (7, 16)</td>
<td>11 (7, 15)</td>
<td>11 (7, 16)</td>
<td>11 (7, 16)</td>
<td><0.001</td>
</tr>
<tr>
<td>Follow-up time, mean ± SD (years)</td>
<td>9.0 ± 2.9</td>
<td>9.0 ± 2.8</td>
<td>8.9 ± 2.9</td>
<td>8.9 ± 2.9</td>
<td>9.0 ± 2.9</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table S2. Causes of death since 2002 of US veterans with and without diabetes.

<table>
<thead>
<tr>
<th>Causes of death</th>
<th>All participants n (%)</th>
<th>Non-diabetic n (%)</th>
<th>Diabetic n (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular diseases</td>
<td>139756 (32.8)</td>
<td>81616 (31.6)</td>
<td>58140 (34.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cancer</td>
<td>100788 (23.6)</td>
<td>68332 (26.5)</td>
<td>32456 (19.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>COPD*</td>
<td>28860 (6.8)</td>
<td>20518 (8.0)</td>
<td>8342 (5.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>20093 (4.7)</td>
<td>2477 (1)</td>
<td>17616 (10.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>14027 (3.3)</td>
<td>7035 (2.7)</td>
<td>6992 (4.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Infection</td>
<td>11822 (2.8)</td>
<td>6765 (2.6)</td>
<td>5057 (3.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mental Illness</td>
<td>11594 (2.7)</td>
<td>8125 (3.1)</td>
<td>3469 (2.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Abnormal/Accident</td>
<td>6603 (1.5)</td>
<td>4418 (1.7)</td>
<td>2185 (1.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Other chronic diseases</td>
<td>312 (0.1)</td>
<td>242 (0.1)</td>
<td>70 (0)</td>
<td><0.001</td>
</tr>
<tr>
<td>All other</td>
<td>92589 (21.7)</td>
<td>58485 (22.7)</td>
<td>34104 (20.2)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* COPD = chronic obstructive pulmonary disease
Table S3. Crude and adjusted mortality in participants with and without diabetes, stratified by baseline cardiovascular disease.

<table>
<thead>
<tr>
<th></th>
<th>All-cause Mortality</th>
<th>CVD Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude</td>
<td>Model A*</td>
</tr>
<tr>
<td></td>
<td>Incidence Rate‡</td>
<td>Incidence Rate‡</td>
</tr>
<tr>
<td>All participants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>43.2 (43.0, 43.4)</td>
<td>43.5 (43.4, 43.7)</td>
</tr>
<tr>
<td>Diabetic</td>
<td>50.1 (49.8, 50.3)</td>
<td>50.6 (50.3, 50.8)</td>
</tr>
<tr>
<td>Risk Difference</td>
<td>6.9 (6.6, 7.2)</td>
<td>7.0 (6.7, 7.4)</td>
</tr>
<tr>
<td>Prior CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>65.6 (65.3, 66.0)</td>
<td>64.0 (63.6, 64.3)</td>
</tr>
<tr>
<td>Diabetic</td>
<td>70.0 (69.5, 70.4)</td>
<td>73.5 (73.1, 73.9)</td>
</tr>
<tr>
<td>Risk Difference</td>
<td>4.4 (3.8, 4.9)</td>
<td>9.5 (9.0, 10.0)</td>
</tr>
<tr>
<td>No Prior CVD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-diabetic</td>
<td>29.8 (29.6, 30.0)</td>
<td>30.0 (29.8, 30.2)</td>
</tr>
<tr>
<td>Diabetic</td>
<td>32.0 (31.7, 32.3)</td>
<td>32.4 (32.1, 32.7)</td>
</tr>
<tr>
<td>Risk Difference</td>
<td>2.3 (1.9, 2.6)</td>
<td>2.5 (2.1, 2.8)</td>
</tr>
</tbody>
</table>

* Model A = Adjusted for age, sex, race, ethnicity, body mass index, non-HDL cholesterol, systolic blood pressure, and smoking status
† Model B = Model A + diabetes medications and blood pressure medications
‡ deaths/1000-person-years
<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>All-cause Mortality</th>
<th>Cardiovascular Mortality*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 4†</td>
<td>Model 5‡</td>
</tr>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.16 (1.15, 1.17)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prior CVD</td>
<td>1.60 (1.59, 1.62)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*Cardiovascular mortality estimated in competing risk models that account for death due to non-cardiovascular causes.
† Model 4 = adjusted for age, sex, race, ethnicity, body mass index, non-HDL cholesterol, systolic blood pressure, and smoking status.
‡ Model 5 = Model 4 + random plasma glucose.
§ Model 6 = Model 4 + diabetes medications and blood pressure medications.
‖ Hazard ratio of mortality in individuals with versus without diabetes or with versus without a history of cardiovascular disease (CVD).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>All-cause Mortality</th>
<th>CVD Mortality</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude</td>
<td>Model A‡</td>
<td>Model B†</td>
<td>Crude</td>
<td>Model A‡</td>
</tr>
<tr>
<td></td>
<td>Incidence</td>
<td>Incidence</td>
<td>Incidence</td>
<td>Incidence Rate‡</td>
<td>Incidence Rate‡</td>
</tr>
<tr>
<td></td>
<td>Rate‡</td>
<td>Risk Difference</td>
<td>Rate‡</td>
<td>Risk Difference</td>
<td>Risk Difference</td>
</tr>
<tr>
<td>HbA1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>(48.4, 49.9)</td>
<td>(46.7, 48.0)</td>
<td>2.2 (1.4, 3.0)</td>
<td>(50.0, 51.6)</td>
<td>3.7 (2.8, 4.6)</td>
</tr>
<tr>
<td></td>
<td>49.3</td>
<td>45.1</td>
<td>47.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>(48.4, 49.8)</td>
<td>(44.7, 45.5)</td>
<td>Reference</td>
<td>(46.6, 47.5)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>51.3</td>
<td>48.8</td>
<td>48.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>(50.8, 51.9)</td>
<td>(48.3, 49.3)</td>
<td>3.7 (3.1, 4.3)</td>
<td>(48.1, 49.0)</td>
<td>1.5 (0.8, 2.2)</td>
</tr>
<tr>
<td></td>
<td>52.2</td>
<td>54.2</td>
<td>52.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0-8.9</td>
<td>(51.5, 52.9)</td>
<td>(53.6, 54.9)</td>
<td>9.1 (8.3, 9.9)</td>
<td>(51.9, 53.3)</td>
<td>5.5 (4.7, 6.4)</td>
</tr>
<tr>
<td></td>
<td>49.6</td>
<td>61.7</td>
<td>60.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>(48.9, 50.2)</td>
<td>(60.9, 62.5)</td>
<td>16.6 (15.7, 17.5)</td>
<td>(59.2, 60.9)</td>
<td>13.0 (12.0, 13.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>(67.2, 69.7)</td>
<td>(64.6, 66.8)</td>
<td>1.4 (0.1, 2.7)</td>
<td>(69.4, 72.0)</td>
<td>3.6 (2.1, 5.1)</td>
</tr>
<tr>
<td></td>
<td>68.1</td>
<td>64.3</td>
<td>67.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>(67.3, 69.0)</td>
<td>(63.6, 65.0)</td>
<td>Reference</td>
<td>(66.3, 67.8)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>71.1</td>
<td>69.1</td>
<td>68.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>(70.2, 72.0)</td>
<td>(68.3, 69.9)</td>
<td>4.8 (3.7, 5.9)</td>
<td>(67.9, 69.5)</td>
<td>1.6 (0.5, 2.7)</td>
</tr>
<tr>
<td></td>
<td>72.9</td>
<td>75.3</td>
<td>73.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0-8.9</td>
<td>(71.7, 74.2)</td>
<td>(74.2, 76.5)</td>
<td>11.0 (9.6, 12.4)</td>
<td>(72.3, 74.7)</td>
<td>6.4 (5.0, 7.8)</td>
</tr>
<tr>
<td></td>
<td>73.0</td>
<td>84.3</td>
<td>82.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>(71.8, 74.3)</td>
<td>(83.0, 85.6)</td>
<td>20.0 (18.5, 21.5)</td>
<td>(80.7, 83.5)</td>
<td>15.0 (11.5, 18.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HbA1c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>(31.6, 33.2)</td>
<td>(30.7, 32.3)</td>
<td>3.2 (2.3, 4.1)</td>
<td>(32.7, 34.5)</td>
<td>4.2 (3.2, 5.1)</td>
</tr>
<tr>
<td></td>
<td>31.2</td>
<td>28.3</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>(30.7, 31.7)</td>
<td>(27.8, 28.8)</td>
<td>Reference</td>
<td>(28.9, 29.9)</td>
<td>Reference</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>30.4</td>
<td>30.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>(31.7, 32.9)</td>
<td>(29.9, 31.0)</td>
<td>2.1 (1.3, 2.9)</td>
<td>(29.8, 30.9)</td>
<td>0.9 (0.2, 1.7)</td>
</tr>
<tr>
<td></td>
<td>33.1</td>
<td>34.4</td>
<td>33.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0-8.9</td>
<td>(32.3, 33.9)</td>
<td>(33.6, 35.2)</td>
<td>6.1 (5.2, 7.0)</td>
<td>(32.8, 34.4)</td>
<td>4.2 (3.2, 5.2)</td>
</tr>
<tr>
<td></td>
<td>32.8</td>
<td>40.5</td>
<td>39.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>(32.1, 33.5)</td>
<td>(39.6, 41.4)</td>
<td>12.2 (11.2, 13.2)</td>
<td>(38.8, 40.7)</td>
<td>10.3 (9.3, 11.4)</td>
</tr>
</tbody>
</table>

1 Model A = Adjusted for age, sex, race, ethnicity, body mass index, non-HDL cholesterol, systolic blood pressure, and smoking status
2 Model B = Model A + diabetes medications and blood pressure medications
3 deaths/1000 person-year
Table S6. Hazard ratios for all-cause and cardiovascular mortality across levels of HbA1c over short- and long-term follow-up times, stratified by baseline cardiovascular disease.

<table>
<thead>
<tr>
<th>HbA1c</th>
<th>2-5 year mortality</th>
<th>>5 year mortality</th>
<th>CVD Mortality</th>
<th>>5 year mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio (95% CI)</td>
<td>p-value</td>
<td>Hazard Ratio (95% CI)</td>
<td>p-value</td>
</tr>
<tr>
<td>All participants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>1.14 (1.11, 1.18)</td>
<td><0.0001</td>
<td>1.06 (1.04, 1.09)</td>
<td><0.0001</td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>1.06</td>
<td>1.04</td>
<td>1.08</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>(1.03, 1.08)</td>
<td><0.0001</td>
<td>(1.03, 1.06)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>1.18</td>
<td>1.15</td>
<td>1.27</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>(1.14, 1.21)</td>
<td><0.0001</td>
<td>(1.12, 1.17)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>1.45</td>
<td>1.37</td>
<td>1.48</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>(1.41, 1.49)</td>
<td><0.0001</td>
<td>(1.35, 1.40)</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.12</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>(1.19, 1.32)</td>
<td><0.0001</td>
<td>(1.08, 1.16)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Participants with prior CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>1.04</td>
<td>1.03</td>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>(1.01, 1.07)</td>
<td>0.005</td>
<td>(1.01, 1.06)</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>1.14</td>
<td>1.12</td>
<td>1.28</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td>(1.10, 1.18)</td>
<td><0.0001</td>
<td>(1.09, 1.15)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>1.38</td>
<td>1.29</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>(1.33, 1.43)</td>
<td><0.0001</td>
<td>(1.26, 1.33)</td>
<td><0.0001</td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>1.12</td>
<td>1.16</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>(1.19, 1.32)</td>
<td><0.0001</td>
<td>(1.08, 1.16)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Participants without prior CVD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>1.07</td>
<td>1.04</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>(1.02, 1.12)</td>
<td>0.007</td>
<td>(1.01, 1.07)</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>1.17</td>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>(1.15, 1.29)</td>
<td><0.0001</td>
<td>(1.13, 1.21)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>1.53</td>
<td>1.46</td>
<td>1.66</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>(1.45, 1.61)</td>
<td><0.0001</td>
<td>(1.41, 1.51)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Table S7. Crude and adjusted mortality in participants with diabetes across levels of HbA1c, stratified by age.

<table>
<thead>
<tr>
<th>HbA1c</th>
<th>All-cause Mortality</th>
<th>CVD Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude Incidence Rate(^a)</td>
<td>Model A* Incidence Rate(^a)</td>
</tr>
<tr>
<td></td>
<td>(Crude)</td>
<td>(Model A)</td>
</tr>
<tr>
<td>< 65 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>25.6</td>
<td>25.3</td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>24.0</td>
<td>23.6</td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>26.3</td>
<td>25.8</td>
</tr>
<tr>
<td>8.0-8.9</td>
<td>34.5</td>
<td>36.1</td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>(33.9, 35.2)</td>
<td>(35.4, 36.8)</td>
</tr>
<tr>
<td>≥ 65 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6.0</td>
<td>70.0</td>
<td>67.9</td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>66.4</td>
<td>65.0</td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>70.3</td>
<td>70.3</td>
</tr>
<tr>
<td>8.0-8.9</td>
<td>75.9</td>
<td>77.7</td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>(80.7, 83.6)</td>
<td>(86.0, 88.8)</td>
</tr>
</tbody>
</table>

\(^a\) Model A = Adjusted for age, sex, race, ethnicity, body mass index, non-HDL cholesterol, systolic blood pressure, and smoking status

\(^\dagger\) Model B = Model A + diabetes medications and blood pressure medications

\(^\ddagger\) deaths/1000-person-year
Table S8. Hazard ratios for all-cause and cardiovascular mortality across levels of HbA1c over short- and long-term follow-up times, stratified by age.

<table>
<thead>
<tr>
<th>HbA1c</th>
<th>All-cause Mortality</th>
<th></th>
<th></th>
<th></th>
<th>CVD Mortality</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-5 year mortality</td>
<td>>5 year mortality</td>
<td>2-5 year mortality</td>
<td>>5 year mortality</td>
<td></td>
<td>2-5 year mortality</td>
<td>>5 year mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hazard Ratio</td>
<td>p-value</td>
<td>Hazard Ratio</td>
<td>p-value</td>
<td>Hazard Ratio</td>
<td>p-value</td>
<td>Hazard Ratio</td>
<td>p-value</td>
</tr>
<tr>
<td>< 6.0</td>
<td>1.21</td>
<td><0.0001</td>
<td>1.09</td>
<td>0.0002</td>
<td>1.06</td>
<td>0.3</td>
<td>(0.94, 1.20)</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>(1.14, 1.30)</td>
<td></td>
<td>(1.04, 1.14)</td>
<td></td>
<td>(0.94, 1.20)</td>
<td></td>
<td>(0.90, 1.06)</td>
<td></td>
</tr>
<tr>
<td>6.0-6.9</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
<td>Reference</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.03</td>
<td></td>
<td>1.05</td>
<td></td>
<td>1.16</td>
<td></td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.97, 1.09)</td>
<td>0.4</td>
<td>(1.01, 1.09)</td>
<td>0.02</td>
<td>(1.05, 1.28)</td>
<td>0.003</td>
<td>(1.06, 1.21)</td>
<td>0.0003</td>
</tr>
<tr>
<td>7.0-7.9</td>
<td>1.11</td>
<td>0.0007</td>
<td>1.12</td>
<td><0.0001</td>
<td>1.18</td>
<td><0.0001</td>
<td>(1.15, 1.32)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>(1.05, 1.18)</td>
<td></td>
<td>(1.12, 1.22)</td>
<td></td>
<td>(1.18, 1.46)</td>
<td></td>
<td>(1.15, 1.32)</td>
<td></td>
</tr>
<tr>
<td>≥ 9.0</td>
<td>1.37</td>
<td><0.0001</td>
<td>1.39</td>
<td><0.0001</td>
<td>1.53</td>
<td><0.0001</td>
<td>(1.49, 1.69)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>(1.30, 1.45)</td>
<td></td>
<td>(1.39, 1.49)</td>
<td></td>
<td>(1.53, 1.84)</td>
<td></td>
<td>(1.49, 1.69)</td>
<td></td>
</tr>
</tbody>
</table>

HbA1c								
-------	---------------------	----------------------	----------------------	----------------------	---------------	----------------------	----------------------	
	2-5 year mortality	>5 year mortality	2-5 year mortality	>5 year mortality		2-5 year mortality	>5 year mortality	
	Hazard Ratio	p-value	Hazard Ratio	p-value	Hazard Ratio	p-value	Hazard Ratio	p-value
< 6.0	1.12	<0.0001	1.06	<0.0001	1.09	0.003	(0.96, 1.05)	0.8
	(1.09, 1.16)		(1.03, 1.09)		(1.03, 1.15)		(0.96, 1.05)	
6.0-6.9	Reference	-	Reference	-	Reference	-	Reference	-
	1.06		1.04		1.10		1.05	
	(1.03, 1.09)	0.0001	(1.02, 1.06)	0.0001	(1.05, 1.15)	0.0001	(1.01, 1.09)	0.007
7.0-7.9	1.18	0.0001	1.14	0.0001	1.29	0.0001	1.12	
	(1.14, 1.22)		(1.11, 1.17)		(1.22, 1.36)		(1.07, 1.17)	
≥ 9.0	1.42	0.0001	1.30	0.0001	1.45		1.27	
	(1.37, 1.47)		(1.26, 1.33)		(1.36, 1.53)		(1.21, 1.33)	