Prognostic implications of peritumoral vasculature in head and neck cancer

Michael Evans, Emory University
Harry Baddour Jr, Emory University
Kelly R. Magliocca, Emory University
Susan Muller, Emory University
Sreenivas Nannapaneni, Emory University
Amy Chen, Emory University
Sunjin Kim, Emory University
Zhengjia Chen, Emory University
Dong Shin, Emory University
Andrew Y. Wang, Ocean NanoTech LLC

Only first 10 authors above; see publication for full author list.

Journal Title: Cancer Medicine
Volume: Volume 8, Number 1
Publisher: Wiley Open Access | 2019-01-01, Pages 147-154
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1002/cam4.1910
Permanent URL: https://pid.emory.edu/ark:/25593/tnb4q

Final published version: http://dx.doi.org/10.1002/cam4.1910

Copyright information:
© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed August 11, 2019 3:26 AM EDT
INTRODUCTION

Approximately 62 000 new cases of head and neck cancer (HNC) were expected in the United States in 2016 with nearly 13 000 expected cancer-related deaths. Worldwide, HNC is responsible for almost 200 000 deaths each year and is the sixth most common cancer by incidence. Squamous cell carcinoma of the head and neck (HNSCC) accounts for...
<table>
<thead>
<tr>
<th>Covariate</th>
<th>Level</th>
<th>All patients (N = 200)</th>
<th>Met (N = 101)</th>
<th>Non-Met (N = 99)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis</td>
<td>Median (Range)</td>
<td>61 (22-93)</td>
<td>59 (23-93)</td>
<td>63 (22-89)</td>
<td>0.163</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>70 (35)</td>
<td>33 (47.14)</td>
<td>37 (52.86)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>130 (65)</td>
<td>68 (52.31)</td>
<td>62 (47.69)</td>
<td>0.486</td>
</tr>
<tr>
<td>Grade</td>
<td>WD</td>
<td>32 (16)</td>
<td>3 (9.38)</td>
<td>29 (90.63)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>MD</td>
<td>132 (66)</td>
<td>75 (56.82)</td>
<td>57 (43.18)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>PD</td>
<td>26 (13)</td>
<td>13 (50)</td>
<td>13 (50)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>NK</td>
<td>10 (5)</td>
<td>10 (100)</td>
<td>0 (0)</td>
<td>0.486</td>
</tr>
<tr>
<td>Stage</td>
<td>I</td>
<td>41 (20.5)</td>
<td>0 (0)</td>
<td>41 (100)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>31 (15.5)</td>
<td>0 (0)</td>
<td>31 (100)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>29 (14.5)</td>
<td>17 (58.62)</td>
<td>12 (41.38)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>99 (49.5)</td>
<td>84 (84.85)</td>
<td>15 (15.15)</td>
<td>0.486</td>
</tr>
<tr>
<td>T Stage</td>
<td>T1</td>
<td>65 (32.5)</td>
<td>24 (36.92)</td>
<td>41 (63.08)</td>
<td>0.062</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>69 (34.5)</td>
<td>38 (55.07)</td>
<td>31 (44.93)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>29 (14.5)</td>
<td>17 (58.62)</td>
<td>12 (41.38)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>37 (18.5)</td>
<td>22 (59.46)</td>
<td>15 (40.54)</td>
<td>0.486</td>
</tr>
<tr>
<td>N Stage</td>
<td>N0</td>
<td>99 (49.5)</td>
<td>0 (0)</td>
<td>99 (100)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>19 (9.5)</td>
<td>19 (100)</td>
<td>0 (0)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>74 (37)</td>
<td>74 (100)</td>
<td>0 (0)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>8 (4)</td>
<td>8 (100)</td>
<td>0 (0)</td>
<td>0.486</td>
</tr>
<tr>
<td>N Stage:binary</td>
<td>N0</td>
<td>99 (49.5)</td>
<td>0 (0)</td>
<td>99 (100)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>N1-N3</td>
<td>101 (50.5)</td>
<td>101 (100)</td>
<td>0 (0)</td>
<td>0.486</td>
</tr>
<tr>
<td>Site</td>
<td>L</td>
<td>61 (30.5)</td>
<td>28 (45.9)</td>
<td>33 (54.1)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>101 (50.5)</td>
<td>40 (39.6)</td>
<td>61 (60.4)</td>
<td>0.486</td>
</tr>
<tr>
<td></td>
<td>OP</td>
<td>38 (19)</td>
<td>33 (86.84)</td>
<td>5 (13.16)</td>
<td>0.486</td>
</tr>
</tbody>
</table>

Metastasis status

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Level</th>
<th>All patients (N = 167)</th>
<th>Met (N = 90)</th>
<th>Non-Met (N = 77)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVD:cut by ROC (High ≥ 40.667)</td>
<td>High</td>
<td>65 (38.92)</td>
<td>55 (84.62)</td>
<td>10 (15.38)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>102 (61.08)</td>
<td>35 (34.31)</td>
<td>67 (65.69)</td>
<td>0.003</td>
</tr>
<tr>
<td>MVD:cut by DFS optimal (High ≥ 53)</td>
<td>High</td>
<td>26 (15.57)</td>
<td>21 (80.77)</td>
<td>5 (19.23)</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>141 (84.43)</td>
<td>69 (48.94)</td>
<td>72 (51.06)</td>
<td>0.003</td>
</tr>
<tr>
<td>MVD:cut by OS optimal (High ≥ 39.667)</td>
<td>High</td>
<td>67 (40.12)</td>
<td>56 (83.58)</td>
<td>11 (16.42)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>100 (59.88)</td>
<td>34 (34)</td>
<td>66 (66)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariate</th>
<th>Level</th>
<th>All patients (N = 166)</th>
<th>Met (N = 90)</th>
<th>Non-Met (N = 77)</th>
<th>P-value *</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVD:cut by ROC (High ≥ 3.001)</td>
<td>High</td>
<td>132 (79.52)</td>
<td>64 (48.48)</td>
<td>68 (51.52)</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>34 (20.48)</td>
<td>26 (76.47)</td>
<td>8 (23.53)</td>
<td>0.003</td>
</tr>
<tr>
<td>LVD:cut by DFS optimal (High ≥ 8.667)</td>
<td>High</td>
<td>70 (42.17)</td>
<td>36 (51.43)</td>
<td>34 (48.57)</td>
<td>0.538</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>96 (57.83)</td>
<td>54 (56.25)</td>
<td>42 (43.75)</td>
<td>0.538</td>
</tr>
</tbody>
</table>

(Continues)
about 90% of cancers in this area. The subsites of the head and neck involved include the oral cavity, oropharynx, and larynx. Nearly, two-thirds of patients present with locally advanced disease with a 5-year overall survival rate (OS) of less than 50% secondary to regional recurrence, lymph node metastasis (LNM), and the development of second primary tumors (SPTs).4,5

The propensity for tumor progression and metastasis is integrally associated with the peritumoral region known as the tumor microenvironment (TME).6-8 The TME consists of a variety of cells including endothelial, inflammatory, and immune cells as well as fibroblasts. In addition, the TME contains the extracellular matrix (ECM) and numerous signaling molecules including cytokines. Endothelial cells are responsible for the formation of vascular and lymphatic vessels, through the processes of angiogenesis and lymphangiogenesis, respectively. As with many epithelial tumors, HNSCC tends to metastasize via the lymphatic route more often than hematogenously; metastasis is thought to involve spread via existing vessels within the TME (ie, peritumoral) as well as invasion of new vessels formed within the primary tumor itself (ie, intratumoral).6,9

The study of tumor biology and its correlation with clinical and pathologic variables allows for treatment teams to individualize therapy as well as improve patient education regarding treatment and prognosis. Currently, there is conflicting evidence regarding the role of lymphatic vessel density (LVD) and blood microvessel density (MVD) in HNSCC metastasis and prognosis.10-12 Most studies consist of small study populations and are limited to one or two head and neck sub-sites. A larger study incorporating multiple sub-sites is needed to address the role of LVD and MVD, particularly in the TME, on HNSCC metastasis and prognosis.

In our study, peritumoral lymphatic and blood vasculatures in 200 HNSCC tissue specimens were examined and correlations with patient outcomes were investigated in order to predict tumor behavior and guide treatment.
CA) to decrease the background signal. Next, the slides were incubated with two primary antibodies simultaneously (CD31: ab76533, rabbit monoclonal, 1:200 dilution and D240: ab77854, mouse monoclonal, 1:80 dilution, Abcam Inc Cambridge, MA) overnight at 4°C, left at room temperature for 20 minutes, and washed with PBS. The slides were then incubated with secondary antibody for 20 minutes at room temperature and with DAKO EnVision™ G2 Doublestain system (Rabbit/Mouse: DAB/Permanent Red) following the manufacturer’s instructions (DAKO North America, Inc Carpinteria, CA).

2.3 | MVD and LVD analyses

Two investigators (HMB and KRM) analyzed and quantified peritumoral MVD and LVD for each specimen. Peritumoral was defined as <500 microns of the tumor border but not contained within the tumor itself (intratumoral). Each investigator was blinded to patients’ outcomes.Slides stained for CD31 and D240 were counted to determine MVD and LVD, respectively. A representative image of CD31 and D240 staining is shown in Figure 1. Each slide was initially examined by light microscopy at ×100 magnification using a Chalkley grid. At this magnification, the three areas with the highest number of stained vessels were identified as “hot spots”. Vessels in each of these “hot spots” were then counted using x400 magnification. Identification of vessels was performed using the method specified by Weidner, in which “any brown staining endothelial cell or cell cluster that was clearly separate from adjacent microvessels, tumor cells and other connective tissue elements were considered a single, countable microvessel”. With this method, MVD and LVD are expressed as the number of stained vessels per optical field. No counts were performed in areas of necrosis or inflammation. Sections in which three “hot spots” could not be identified were excluded from further analysis. If the two investigators scored differences of greater than ten vessels per high‐power optical field, sections were reviewed again until a consensus was reached. Once this happened, the vessel counts in each of the three “hot spots” were averaged to yield an average MVD and LVD.

2.4 | Statistical analysis

Clinical characteristics were compared between patients with and without metastasis using the Wilcoxon rank‐sum test for numerical covariates and chi‐squared or Fisher’s exact test for categorical covariates, where appropriate. Univariate association of MVD or LVD with patient characteristics was examined with the Kruskal‐Wallis test and Spearman’s rank correlation coefficient.

To estimate the ability of a single biomarker or multiple biomarkers to predict metastasis status, a receiver operating characteristic (ROC) curve was created with an area under the curve (AUC) measured. The cut‐off values to obtain 90% sensitivity and 90% specificity were estimated. To obtain the optimal cut‐off points with the best discrimination power for metastasis status, sensitivity and specificity pairs were obtained in the logistic regression under all the possible thresholds. The optimal cut‐off point of each single biomarker and the combined biomarker was calculated where the maximum sum of sensitivity and specificity was achieved.

Survival functions were estimated by the Kaplan‐Meier method and a log‐rank test was used to assess the difference in DFS or OS between patients with high or low biomarker levels. A Cox proportional hazards model was employed to examine the effect of protein expression levels and covariates on DFS and OS. The proportional hazards assumption was also checked. Multivariable analysis was conducted by entering variables into a Cox proportional hazards model and using a backwards variable selection method with an alpha removal of 0.1. To further estimate the ability of a single biomarker to predict metastasis status, an area under the curve (AUC) measured. The cut‐off values to obtain 90% sensitivity and 90% specificity were estimated. To obtain the optimal cut‐off points with the best discrimination power for metastasis status, sensitivity and specificity pairs were obtained in the logistic regression under all the possible thresholds. The optimal cut‐off point of each single biomarker and the combined biomarker was calculated where the maximum sum of sensitivity and specificity was achieved.

Survival functions were estimated by the Kaplan‐Meier method and a log‐rank test was used to assess the difference in DFS or OS between patients with high or low biomarker levels. A Cox proportional hazards model was employed to examine the effect of protein expression levels and covariates on DFS and OS. The proportional hazards assumption was also checked. Multivariable analysis was conducted by entering variables into a Cox proportional hazards model and using a backwards variable selection method with an alpha removal of 0.1. All analyses were performed using SAS 9.3 (SAS Institute, Inc, Cary, NC) with a significance level of 0.05.

3 | RESULTS

3.1 | Association of patients’ characteristics and MVD and LVD with LNM by univariate analyses

As shown in Table 1, initial analysis of 200 patients’ tissue samples consistently showed that disease stage, grade of
differentiation, and tumor site were significantly associated with LNM while T-stage was only moderately associated with LNM. HNSCC in the oropharynx (OP) had a higher rate of LNM than that in the oral cavity (OC) and larynx (L; \(P < 0.001 \)).

Among 200 cases, MVD was quantifiable in 167 tissue samples and LVD was quantifiable in 166 slides. Univariate analysis showed that peritumoral MVD was significantly associated with LNM \((P < 0.001) \), while no significant association was observed between peritumoral LVD and LNM \((P = 0.154); \) Table 1).

Further analyses showed that high MVD was significantly associated with higher disease stage \((P < 0.001) \) and N-stage \((P < 0.001) \), while low LVD was significantly associated with high disease stage \((P = 0.015) \) and T-stage \((P = 0.001); \) Table S1). Furthermore, HNSCC in both OP and OC showed higher LVD than that in L \((P = 0.021) \).

3.2 Multivariate association and prediction of metastasis status with MVD and LVD and other covariates

In a multivariable model, high MVD \((P < 0.001) \), low LVD \((P = 0.002) \), and OP disease \((P = 0.013) \) were significantly associated with LNM (Table 2).

We performed ROC analyses to compare the power of LNM prediction using MVD and LVD, both alone and in combination. As shown in Figure 2, the combination of MVD and LVD had a stronger predictive discrimination power (AUC: 0.8042) than either MVD or LVD alone. In this model, the maximized sum of sensitivity and specificity was 85.1% and 77.3%, respectively, for LNM prediction (Table S2).

3.3 Univariate survival analysis of DFS and OS

Patients with LNM had a higher risk of disease progression and poorer overall survival than those without LNM \((P = 0.043 \text{ and } <0.001, \text{ respectively}; \) Tables S3 and S4). A low MVD and high LVD were significantly associated with DFS after being dichotomized by the optimal cut-off point driven by survival analysis \((P = 0.017 \text{ and } 0.020, \text{ respectively, Figures 3A,B, and Table S3}); \) Similarly, low LVD showed a highly significant correlation with OS after being dichotomized by the optimal cut-off point driven by survival analysis \((P < 0.001); \) Table S4).

3.4 Multivariable survival analysis of DFS and OS with MVD and LVD and covariates

In a multivariable model, high LVD was significantly associated with DFS \((P = 0.022); \) Table 3). Furthermore, high LVD \((P = 0.001) \), lack of LNM \((P = 0.032) \), female sex \((P = 0.002) \), and OP disease \((P < 0.001) \) were all significantly associated with longer OS (Table 3).
peritumoral MVD is inversely related to disease‐free survival. Our simultaneous investigation of peritumoral MVD and LVD is a novel strength of our study, as is our analysis of tumor biopsies taken prior to any treatment. Lymphatic vessels, as part of the immune system, play a role in the regulation of tumor immunity in the TME. A recent publication has suggested that lymphatic vessels not merely conduits for fluid and immune cell transport. Accumulated data in the past several years indicate that lymphatic endothelial cells support T‐cell survival, inhibit exaggerated T‐cell proliferation during immune response, and maintain T‐cell memory. Whether peritumoral LVD is correlated with T‐cell and B‐cell populations and sensitivity to immune therapy deserves further investigation.

Our study has some limitations. While we analyzed both MVD and LVD in the peritumoral region, we did not investigate intratumoral vasculature. We also encountered some technical difficulties with staining certain samples, mainly cartilage and salivary tissue. Due to the nature of retrospective samples from a pre‐existing sample set, variability in the amount of tumor present on each slide was encountered. In cases with little residual tumor on the slide limited selection of sites at which one can score peritumoral vessels. By studying a spectrum of primary site HNSCC the variability of tissue types surrounding the tumor or invaded by tumor increased. A sample of carcinoma infiltrating regional lamina propria, skeletal muscle, minor salivary gland, tonsillar lymphoid tissue and/or abutting laryngeal cartilages would likely have a different ratio of lymphatics/blood vessel density depending on the environment. Finally, we do not have information regarding HPV status for the patients with OP disease because the tissues samples were collected before 2003. Therefore, our study did not consider HPV as a factor in the statistical analysis.
In conclusion, our study focused on the TME and revealed that high peritumoral MVD is positively related to metastasis, while high peritumoral LVD has a negative relationship with both metastasis and progression of HNSCC. Our findings stress the importance of distinguishing between peritumoral and intratumoral histologic analysis, and suggest a potential prognostic utility for sampling and assessing the tumor microenvironment in head and neck cancers. Future investigations could compare peritumoral and intratumoral MVD and LVD within the same patients and assess their correlations with metastasis and overall survival.

ACKNOWLEDGMENT
The authors thank Dr. Anthea Hammond for her editing of the manuscript. The present study was supported by grants from National Institute of Health (NIH/NCI R43 183312) to Andrew Y. Wang and Zhuo Georgia Chen.

CONFLICTS OF INTEREST
No potential conflicts of interest to disclose.

ORCID
Zhuo G. Chen https://orcid.org/0000-0002-2572-1926

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.