Real-time RT-PCR for Mayaro virus detection in plasma and urine

Jesse Waggoner, Emory University
Alejandra Rojas, Universidad Nacional de Asuncion
Alisha Mohamed-Hadley, Stanford University
Yvalena Arevalo de Guillen, Universidad Nacional de Asuncion
Benjamin A. Pinsky, Stanford University

Journal Title: Journal of Clinical Virology
Volume: Volume 98
Publisher: Elsevier: 12 months | 2018-01-01, Pages 1-4
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.jcv.2017.11.006
Permanent URL: https://pid.emory.edu/ark:/25593/tmhkz

Final published version: http://dx.doi.org/10.1016/j.jcv.2017.11.006

Copyright information:
© 2017 Elsevier B.V.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed November 19, 2019 1:47 AM EST
Real-Time RT-PCR for Mayaro Virus Detection in Plasma and Urine

Jesse J. Waggonera,b,*, Alejandra Rojasc, Alisha Mohamed-Hadleyd, Yvalena Arévalo de Guillénc, and Benjamin A. Pinskyd,e

aDepartment of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
bDepartment of Global Health, Rollins School of Public Health, Atlanta, GA, USA
cDepartamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
dDepartment of Pathology, Stanford University School of Medicine, Stanford, CA, USA
eDepartment of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine

Abstract

\textbf{Background}—Mayaro virus (MAYV) causes an acute febrile illness which can be difficult to differentiate from dengue or chikungunya. MAYV RNA can be detected in plasma during the first 3-5 days of illness, but only a single rRT-PCR has been fully evaluated in the literature.

\textbf{Objectives}—To develop an rRT-PCR for MAYV and evaluate assay performance using human plasma and urine samples spiked with different MAYV strains.

\textbf{Study Design}—A MAYV rRT-PCR targeting a region of the 5′ UTR and nsp1 gene was designed from the alignment of all complete-genome MAYV sequences to be compatible with existing laboratory protocols. The assay was evaluated using human samples spiked with six MAYV strains, including strains from each of the three genotypes.

\textbf{Results}—The linear range of the MAYV rRT-PCR extended from 1.0 to 8.0 log10 copies/μL, and the lower limit of 95% detection was 8.2 copies/μL. No detection was observed when the MAYV rRT-PCR was tested with genomic RNA from related arboviruses. The assay demonstrated linear amplification of all 6 MAYV strains when spiked into human plasma samples as well as 2 strains spiked into urine.

*Corresponding Author: 1760 Haygood Drive NE, Atlanta, GA, USA, 30329. Telephone: (404) 712-2360. jesse.j.waggoner@emory.edu.

Competing interests. None declared

Ethical approval. All research in this study involved archived, de-identified patient samples. This was not deemed to be human subjects research and did not require specific ethical approval.

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Conclusions—We report the design and evaluation of an rRT-PCR for MAYV. Given the concern for MAYV emergence in the Americas and the few molecular tests that have been evaluated in the literature, this assay should provide a useful diagnostic for patients with an acute febrile illness.

Keywords
Mayaro virus; real-time RT-PCR; plasma; urine; quantitation

Background
Mayaro virus (MAYV) is a member of the Alphavirus genus (family Togaviridae) that is primarily transmitted by tree-dwelling Haemagogus species mosquitoes [1-3]. Although originally isolated in Trinidad in 1954 [1, 4], human cases have predominantly been detected in South America [1-3, 5-8]. Three genotypes of MAYV have been identified (D, L, and N), with genotype D viruses causing the majority of cases [3, 5]. Genotype L has almost exclusively been detected in Brazil, and only one strain of genotype N virus has been identified, in Peru [3, 5]. In 2015, MAYV was isolated from a symptomatic child in rural Haiti [9], raising concern for the emergence of MAYV into new areas as the virus has proven transmissible by Aedes aegypti in the laboratory [10].

Human infections with MAYV result in an acute febrile illness that is difficult to differentiate from dengue or chikungunya [1, 4, 6-9]. Patients present with fever, headache, myalgias and arthralgias; a nonpruritic rash develops in the majority of patients [4]. The diagnosis is often confirmed by serological testing [4, 5, 7, 8]. Virus is detectable by culture or reverse-transcription PCR (RT-PCR) within the first 3-5 days of illness [4, 7, 11]. However, only a few real-time RT-PCRs (rRT-PCRs) have been described in the literature [6, 8, 10, 12], and the analytical evaluation of only a single rRT-PCR has been reported to date [12].

Objectives
The objectives of the current project were to develop a sensitive and specific rRT-PCR for MAYV and evaluate assay performance using human plasma and urine samples spiked with different MAYV strains.

Study Design
MAYV rRT-PCR Design and Optimization
All MAYV sequences > 11kb and available in Genbank (n=35 sequences) were aligned using MegAlign software (DNASTAR). Primers and probes were designed using Primer3 software to target highly conserved genomic regions and to be compatible with existing laboratory protocols [13-15]. All rRT-PCRs were performed using 5μL of nucleic acid template in 25μL reactions of the SuperScript III Platinum One-Step qRT-PCR Kit (Thermo Fisher Scientific) on a Rotor-Gene Q instrument (Qiagen). Cycling conditions, assay set-up, and interpretation were performed as previously described [13, 15].

J Clin Virol. Author manuscript; available in PMC 2019 January 01.
Analytical Evaluation

Analytical performance of the MAYV rRT-PCR was evaluated according to published recommendations and previous evaluations in our laboratory [13-16]. Dynamic range and lower limit of 95% detection (95% LLOD) studies were performed using quantitated, synthesized single-stranded DNA (ssDNA) containing the consensus MAYV target sequence from the aforementioned alignment, which matched strain BNI-1 (genotype D, 100% identity) [6]. The dynamic range was evaluated by testing 4 replicates of serial 10-fold dilutions from 8.0 log10 copies/μL to 1 copy/μL of eluate. To establish the 95% LLOD, 10 replicates of 5, 2-fold dilutions extending from, and including, the lower limit of the dynamic range were tested on a single run.

Specificity of the MAYV rRT-PCR was evaluated by testing genomic RNA from the following viruses: DENV-1 Hawaii 1944, DENV-2 New Guinea C strain, DENV-3 strain H87, and DENV-4 strain H241, CHIKV (strain R80422a provided by the CDC Division of Vector Borne Diseases and the S27 Petersfield strain from Vircell Microbiologists, Granada, Spain), West Nile (4 strains), Japanese encephalitis, tick-borne encephalitis, yellow fever (17D and Asibi strains), Saint Louis encephalitis, Zika (MR766 strain), Semliki forest, Ross river, Getah, Barmah forest, and Una [14].

MAYV Strains and Spiked Human Samples

Lyophilized culture supernatants from six MAYV strains were kindly provided by the World Reference Center for Emerging Viruses and Arboviruses (Table 1). Strains were reconstituted in 1mL of culture media and diluted 500-fold. Diluted stocks were used to spike MAYV-negative human plasma and urine and prepare four, serial 10-fold dilutions in these specimen types. Total nucleic acids were extracted from 200μL of the spiked sample using an eMAG instrument (bioMerieux) with a 50μL elution volume. Plasma samples were extracted in duplicate, and urine was extracted in triplicate. Each eluate was tested in the MAYV rRT-PCR immediately. The concentration of RNA in the eluates was calculated from a 4-point standard curve (8.0, 6.0, 4.0, and 2.0 log10 copies/μL).

Statistics

Basic statistics and linear regressions were performed using Excel software (IBM). Probit analysis was performed using SPSS (IBM) to determine the 95% LLOD of the MAYV rRT-PCR.

Results

Analytical Evaluation

Primers and probes designed to different genomic regions were first tested in silico using BLASTn to query the NCBI nucleotide database and identify potential cross-reactions with other alphaviruses or pathogens that may cause a similar clinical presentation. Selected primer and probe sets were then compared side-by-side using genomic RNA from the 11a-10 strain of MAYV (Table 1). The most sensitive assay, which targets a region of the 5′ untranslated region and non-structural protein 1 gene, was selected for further development.
Primer and probe concentrations were optimized and concentrations used in the final reaction mixture are shown in Table 2.

The linear range of the MAYV rRT-PCR extended from 1.0 to 8.0 log10 copies/μL (Figure 1A and 1B). The 95% LLOD of was calculated to be 8.2 copies/μL of eluate (95% confidence interval, 5.7-18.5). Assay exclusivity was confirmed by testing genomic RNA from a panel of related viral pathogens. No amplification in the MAYV rRT-PCR was observed for any of these viruses. Additionally, a set of serum (n=72) and plasma (n=40) samples from patients without a history of travel to South America was tested, and no amplification was detected.

Spiked Human Samples

Dilution series of spiked plasma samples were prepared for each MAYV strain (Table 1) with estimated concentrations ranging from 1.5 to 6.9 log10 copies/μL. Dilution series in MAYV-negative human urine were also prepared using the 11a-10 and ARV 0565 strains. Estimated MAYV RNA concentration ranged from 1.9-4.9 log10 copies/μL for the 11a-10 strain and from 2.9-5.9 for ARV 0565. Amplification in the MAYV rRT-PCR was linear for each tested strain and specimen type (R² for each linear regression > 0.99).

Discussion

The MAYV rRT-PCR demonstrated analytically sensitive MAYV detection and similar performance for strains of each MAYV genotype [5]. Assay sensitivity may be particularly important for MAYV detection as viremia is only detectable for 3-5 days following symptom onset [4, 7, 10]. Quantified serum viral loads in set of 22 patients ranged from 2.7 to 5.3 log10 PFU equivalents/mL [10]. In a separate study, 13/14 patients who presented on days 1-3 post-symptom onset had detectable MAYV RNA, but both patients who presented on day 4 tested negative [7].

To our knowledge, this represents only the second published analytical evaluation of an rRT-PCR for MAYV [12]. Benefits to the design reported here include the use of a standard hydrolysis probe, compared to a minor groove binding probe [12], and an amplification protocol compatible with published assays for dengue, chikungunya, and Zika viruses [14, 15]. As MAYV infections have been rare to date, neither rRT-PCR was evaluated with samples from naturally infected patients. In the current evaluation, however, performance of the MAYV rRT-PCR was evaluated using spiked plasma and urine. The latter specimen type may prove useful in the MAYV detection given the short-lived viremia mentioned above. Only a single report describes RT-PCR testing for MAYV in two urine samples (both negative) collected 3 months after symptom onset [7]. As such, more studies are needed to evaluate the potential utility of testing urine specimens to increase the window of MAYV detection by molecular methods.

Given the concern for MAYV emergence and the few molecular tests that have been evaluated in the literature, the MAYV rRT-PCR described in this report should provide a useful diagnostic for patients with an acute febrile illness in the Americas.
Acknowledgments

We thank Drs. Scott Weaver, Robert Tesh, and Kenneth Plante at the University of Texas Medical Branch at Galveston for kindly providing Mayaro virus strains from the World Reference Center for Emerging Viruses and Arboviruses.

Funding. Research was supported by National Institutes of Health (NIH) grant K08AI110528 (JJW, salary support) and a Robert E. Shope International Fellowship in Infectious Diseases (JJW) distributed by the American Society for Tropical Medicine and Hygiene. Research was also supported by a fellowship from the Consejo Nacional de Ciencia y Tecnología (CONACYT) of Paraguay, awarded as part of the Programa de Vinculación de Científicos y Tecnólogos (ARS).

References

Highlights

- A new real-time RT-PCR for Mayaro virus (MAYV) detection was developed and evaluated. This is only the second reported evaluation of an rRT-PCR for MAYV.
- The MAYV rRT-PCR had a linear range extending from 1.0 to 8.0 log10 copies/μL and a lower limit of 95% detection of 8.2 copies/μL.
- The assay demonstrated specific MAYV detection when evaluated using RNA from related arboviruses.
- Linear amplification was confirmed using six MAYV strains, representing each of the three genotypes, spiked into plasma and urine samples.
- This assay should provide a useful test for patients with an acute febrile illness in the Americas.
Figure 1.
Dynamic range of the MAYV rRT-PCR. (A) Amplification curves for serial 10-fold dilutions of quantified MAYV standard extending from 1.0 to 8.0 log10 copies/μL (solid curves), including a no-template control (dashed line). The standard was a ssDNA oligonucleotide containing the consensus MAYV target sequence. (B) Linear regression of the results obtained in A. Four replicates of each concentration were tested on a single run.
Table 1

MAYV strains tested using the MAYV rRT-PCR.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Accession Number</th>
<th>Country (State)</th>
<th>Year</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARV 0565</td>
<td>DQ487397, KP842800</td>
<td>Perú (San Martin)</td>
<td>1995</td>
<td>D</td>
<td>[3, 5]</td>
</tr>
<tr>
<td>BE H 256</td>
<td>DQ487381, KP842819</td>
<td>Brazil (Pará)</td>
<td>1955</td>
<td>L</td>
<td>[3, 5]</td>
</tr>
<tr>
<td>BEH 342912</td>
<td>DQ487387</td>
<td>Brazil (Pará)</td>
<td>1978</td>
<td>D</td>
<td>[3]</td>
</tr>
<tr>
<td>FCB 0587</td>
<td>NA</td>
<td>Bolivia (Nuflo de Chavez)</td>
<td>2007</td>
<td></td>
<td>[10]</td>
</tr>
<tr>
<td>FMD 3213</td>
<td>KP842812</td>
<td>Perú (Madre de Dios)</td>
<td>2010</td>
<td>N</td>
<td>[5]</td>
</tr>
<tr>
<td>INHRR 11a-10</td>
<td>KP842795</td>
<td>Venezuela (Portuguesa)</td>
<td>2010</td>
<td>D</td>
<td>[5]</td>
</tr>
</tbody>
</table>

a Genbank accession number, not available for FCB 0587.
Table 2

Primers and probe sequences for the MAYV rRT-PCR.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence (5′ → 3′)</th>
<th>Concentration<sup>a</sup></th>
<th>Location<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAYV Forward</td>
<td>AAGCTCTTCCTCTGCATTGC</td>
<td>300nM</td>
<td>51-70</td>
</tr>
<tr>
<td>MAYV Reverse 1</td>
<td>TGCTGGAAACGCTCTCTGTA</td>
<td>300nM</td>
<td>141-160</td>
</tr>
<tr>
<td>MAYV Reverse 2</td>
<td>TGCTGGAAATGCTCTTTGTA</td>
<td>300nM</td>
<td></td>
</tr>
<tr>
<td>MAYV Probe<sup>c</sup></td>
<td>GCCGAGAGCGCTTTTTAAAAATCAC</td>
<td>200nM</td>
<td>116-140</td>
</tr>
</tbody>
</table>

^aThe concentration of each oligonucleotide in the final reaction mixture.

^bGenomic locations are provided based on the reference sequence “Mayaro virus isolate BR/SJRP/LPV01/2015, complete genome” (Genbank: KT818520.1).

^cThe 5′ fluorophore and 3′ quencher on the MAYV probe were Cal Fluor Orange 560 and BHQ-1, respectively.