Hemodialysis quality metrics and patient-reported ability to work

Nancy Kutner, Emory University
Rebecca Zhang, Emory University

Journal Title: Hemodialysis International
Volume: Volume 22, Number 1
Publisher: Wiley: 12 months | 2018-01-01, Pages 136-137
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1111/hdi.12573
Permanent URL: https://pid.emory.edu/ark:/25593/tmh45

Final published version: http://dx.doi.org/10.1111/hdi.12573

Copyright information:
© 2017 International Society for Hemodialysis

Accessed January 31, 2020 9:39 PM EST
Hemodialysis Quality Metrics and Patient-reported Ability to Work

Nancy G. KUTNER, PhD¹ and Rebecca ZHANG, MS²

¹Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
²Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA

To the Editor

Although quality improvement activities for dialysis care represent a well-established focus within the renal community, a recent in-depth review expresses concern about an excessive increase in the number of recommended quality assessment measures, with limited attention to important patient-centered aspects of quality care.¹ In a related vein, others have recently advocated that dialysis facility performance metrics should include evidence of activities that facilitate patient access to outcomes such as transplantation² and job maintenance³ after dialysis start. However, traditional clinical performance indicators remain the dominant quality assessment domain for calendar year 2016 (PY 2018) and beyond.¹ In a large cohort of prevalent hemodialysis (HD) patients, we examined the association of clinical care indicators with ability to work (patient-reported), an HD outcome recently identified as being among patients’ top 10 priorities.⁴

A special United States Renal Data System (USRDS) study of prevalent patients on center-based HD enrolled over 700 patients at 14 outpatient dialysis clinics in Atlanta, Georgia and the San Francisco Bay Area, California⁵; 528 of these study participants were in the working ages of 20–64. Participating clinics were affiliated with large dialysis providers, medium size providers, and academic medical centers. Eligible study participants were English- or Spanish-speaking, on HD for at least 3 months, and capable of giving informed consent. Study coordinators reviewed medical records and asked in a standardized interview: “Are you now able to work for pay?” and “Are you now working for pay (receiving taxable wages)?” whether full-time or part-time.

Working-age participants’ attainment of 5 clinical performance indicators⁶ is shown in Table 1. A logistic regression analysis adjusted for patient characteristics and dialysis facility clustering showed that the likelihood of a patient’s reporting ability to work increased with
the number of clinical performance targets attained (OR 1.25 [95% CI 1.03–1.52]; \(P = .03 \)), paralleling research findings reported by Lacson et al. for patients’ SF-36 scores.\(^7\) However, only 36% (189/528) of working-age participants reported ability to work, and only 37% (70/189) of those patients were currently working. As of 2016 the Centers for Medicare & Medicaid Services (CMS) quality reporting measures added monitoring of patient depression,\(^8\) an issue important for outcomes like work ability,\(^9\) but the CMS quality strategy allegedly “still has far to go” to capture patient-centered issues and preferences.\(^1\) Retaining key clinical performance targets while also efficiently individualizing measures relevant for patient priorities across age and care continua challenge the future direction of dialysis quality assessment.

Acknowledgments

The authors gratefully acknowledge the participation of persons on dialysis and the assistance of study coordinators at the Atlanta and San Francisco study sites. The interpretation and reporting of the data presented here are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US government. Preliminary portions of the data were presented in abstract form at the American Society of Nephrology Kidney Week 2012, San Diego, California, November 2, 2012.

References

Hemodial Int. Author manuscript; available in PMC 2019 January 01.
Table 1

Attainment of Clinical Performance Targets by Working-age Maintenance HD Patients: 528 USRDS Special Study Participants Aged 20–64

<table>
<thead>
<tr>
<th>Clinical Performance Indicators</th>
<th>% Who Attained Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrated Kt/V ≥ 1.2</td>
<td>90.7</td>
</tr>
<tr>
<td>No HD catheter</td>
<td>77.6</td>
</tr>
<tr>
<td>Hemoglobin 10–12 g/dL</td>
<td>59.6</td>
</tr>
<tr>
<td>Albumin ≥ 4.0 g/dL</td>
<td>52.5</td>
</tr>
<tr>
<td>Phosphorus 3.5–5.5 mg/L</td>
<td>49.4</td>
</tr>
</tbody>
</table>

Note: Quality indicator goals were defined as by Lacson et al.\(^7\) with the exception of hemoglobin (11–12 g/dL in Lacson et al. study). Laboratory values were abstracted from medical records for the date closest to the study interview date when patients reported ability to work. Current vascular access in use was ascertained at the time of the interview. Mean (S.D.) targets met = 3.3 (1.1).

Abbreviations: HD, hemodialysis; USRDS, United States Renal Data System