Peculiar purulence: Hypervirulent Klebsiella pneumoniae causing pyomyositis

Okechukwu Mgbemena, Providence Hospital of North Houston
David P. Serota, Emory University
Sonali Kumar, Emory University
Jessie E. Wozniak, Emory University
David Weiss, Emory University
Russell Kempker, Emory University

Journal Title: International Journal of Infectious Diseases
Volume: Volume 65
Publisher: Elsevier: Creative Commons Attribution Non-Commercial No-Derivatives License | 2017-12-01, Pages 90-92
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1016/j.ijid.2017.09.030
Permanent URL: https://pid.emory.edu/ark:/25593/tkkwb

Final published version: http://dx.doi.org/10.1016/j.ijid.2017.09.030

Copyright information:
© 2017 The Author(s)
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed July 30, 2019 2:47 PM EDT
Case Report

Peculiar purulence: Hypervirulent *Klebsiella pneumoniae* causing pyomyositis

Okechukwu Mgbemenaa, David P. Serotab,*, Sonali Kumat, Jessie E. Wozniac, David S. Weissa, Russell Ryan Kempkera

Accepted 29 September 2017

Article history:
Received 18 August 2017
Received in revised form 25 September 2017

Keywords:
Klebsiella
Pyomyositis
Gastrocneumius
Virulence

ABSTRACT

This report describes the first confirmed case of isolated pyomyositis caused by a hypervirulent strain of *Klebsiella pneumoniae*. Pyomyositis is almost universally caused by gram-positive organisms and while the recent emergence of invasive disease due to hypervirulent *K. pneumoniae* has been well documented, the most common clinical manifestation reported is liver abscess. The *K. pneumoniae* isolate in our case had a hypervirucous phenotype as demonstrated by a positive string test and was confirmed to be hypervirulent with molecular testing. Documenting the extrahapatic manifestations of hypervirulent *Klebsiella pneumoniae* strains is important to increase clinical awareness and in guiding empiric antibiotic regimens.

© 2017 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Case presentation

Our patient was a 49-year-old man with uncontrolled diabetes (hemoglobin A1c 12.5%) and hypertension who presented to our facility in Atlanta, Georgia, United States with two weeks of right calf pain and swelling. He reported no recent trauma, intravenous drug use, nor travel and reported moderate alcohol intake. He was born in Mexico but had not travelled outside the United States in the last 2 years. On presentation he was afebrile with a swollen, erythematous, and tender right calf. He had normal bilateral dorsaisis pedis pulses. While the white blood cell count was normal, his c-reactive protein was >48 and ESR was 92. Blood cultures obtained were sterile. A computed tomography scan demonstrated a large multiloculated fluid collection with enhancing rim in the right gastrocnemius consistent with an abscess (Figure 1A). This was reconfirmed on MRI with gadolinium enhancement (Figure 1B). He was initially started on vancomycin and piperacillin-tazobactam for presumed pyomyositis.

Surgical incision and drainage was performed, revealing a septated abscess with a large amount of purulence. Cultures grew a hypervirucous strain of *K. pneumoniae* as demonstrated by a positive string test (Figure 2). As has been shown for other strains of hypervirulent *K. pneumoniae*, the isolate was susceptible to all routinely tested antibiotics except ampicillin (Siu et al., 2012). Once drug susceptibility results were available the initial antibiotic regimen was changed to levofloxacin 750 mg by mouth daily. Ultimately, a drain remained in place for 2 weeks and the patient was treated with a total course of four weeks of antibiotic therapy, which resulted in a full and uncomplicated recovery.

Additional work up included a normal abdominal ultrasound and negative stool and urine cultures performed after 5 days of antibiotics. Polymerase chain reaction was performed on the isolate and revealed presence of the wzy gene, indicating a K2 serotype. The isolate also harbored several genes (*rmpA2*, which encodes for increased capsular polysaccharide production, *iutA*, *terW*, and *silS*) indicating the presence of the pLVPK virulence plasmid.

Discussion

While the association of hypervirulent *K. pneumoniae* strains causing liver abscess has become a well-recognized syndrome in Asia, especially in Taiwan, an increasing number of cases are being reported in Europe and North America (Lee et al., 2010; Siu et al., 2012), although it remains a rare entity. It is unclear if people of Asian descent have unique genetic risk for this infection or if the
organism is more prevalent in Asian countries. Diabetes mellitus, particularly with poor glycemic control, has been identified as one of the strongest risk factors for invasive disease. Gastrointestinal colonization with hypervirulent strains is hypothesized to lead to translocation and spread to the liver by the portal venous system. A rectal swab from our patient failed to grow the organism, however he had already been on antibiotics at the time of sampling. Along with liver abscess, other common manifestations of disease include bacteremia, endogenous endophthalmitis, CNS infection, osteomyelitis, and pneumonia (Mustafa and Aduriz-Lorenzo, 2016; Prokesch et al., 2016; Tang et al., 2015). Outbreaks of highly drug resistant hypervirulent K. pneumoniae have been reported, though our patient’s strain was pan-sensitive (Gu et al., 2017). This unique case of pyomyositis adds to the list of extrahepatic manifestations due to K. pneumoniae. A majority of cases of pyomyositis are caused by gram-positive organisms. K. pneumoniae has been reported as a rare cause as well, but no prior cases have been identified as a hypervirulent strain (Wang et al., 2001). Increased awareness of hypervirulent Klebsiella pneumoniae can both help the laboratory in being able to recognize hypermucoviscous strains and assist the clinician with choosing appropriate empiric antibiotic coverage for invasive infectious syndromes.

Most hypervirulent K. pneumoniae isolates have been shown to express the plVPK virulence plasmid. The plVPK is a 219-kb virulence plasmid with 251 open reading frames (ORFs) which encodes for capsular polysaccharide synthesis regulator p-rmpA and its homolog p-rmpA2 (Chen et al., 2004). P-rmpA/A2 is present in most hypervirulent isolates and was found in more than 91% of spontaneous invasive K. pneumoniae infections with the HV phenotype in a cross-sectional study in Taiwan (Lee et al., 2010). The presence of this plasmid is thought to increase polysaccharide synthesis but the actual correlation between increased polysaccharide synthesis and increased virulence remains unclear. In a recent study, K1 and K2 serotypes were found to be more virulent than non-K1/K2 isolates because the former lack mannose sequences recognized by macrophages, thus protecting them from lectinophagocytosis (Kabha et al., 1995).

Conclusion

There has been increasing prevalence of infections caused by strains of hypervirulent K. pneumoniae, initially in Asia, and more recently on other continents. The geographic spread of this syndrome has been accompanied by an expanding spectrum of reported clinical manifestations. Multiple virulence genes encoded on the plVPK plasmid are thought to be responsible for the invasive nature of these isolates. Our report of isolated pyomyositis due to hypervirulent K. pneumoniae provides an example of how this unique virulence mechanism can result in a diverse range of clinical presentations.
All authors had access to all of the data and all were involved in the production of this manuscript.

The authors declare no competing financial interests. We would like to add an acknowledgement: The authors acknowledge Barbara Everette for her laboratory assistance in specimen testing and processing.

DSW is supported by a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease award. RRK is supported in part by the National Institutes of Allergy and Infectious Diseases Award (K23AI103044).

The authors have read the policy on ethical consent and the standards of animal care and this manuscript complies with those policies. DPS is supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

