Clinical significance of tri-nucleotide repeats in Fragile X testing: A clarification of American College of Medical Genetics guidelines

Kathryn E. Kronquist, Kaiser Permanente Regional Reference Laboratory
Stephanie Sherman, Emory University
Elaine B. Spector, University of Colorado Denver

Journal Title: Genetics in Medicine
Volume: Volume 10, Number 11
Publisher: Springer Nature [academic journals on nature.com]: Hybrid Journals - choice of CC licence | 2008-01-01, Pages 845-847
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1097/GIM.0b013e31818c2606
Permanent URL: https://pid.emory.edu/ark:/25593/tjd9d

Final published version: http://dx.doi.org/10.1097/GIM.0b013e31818c2606

Copyright information:
© American College of Medical Genetics. Unauthorized reproduction of this article is prohibited.
Accessed February 2, 2019 7:25 AM EST

Response to letter by Chodirker and Chudley

To the Editor:

We have read the letter to the editor by Drs. Chodirker & Chudley entitled “Routine Genetic Testing for Asperger Syndrome” with great interest. We thank them for their thoughtful comments and recommendations given toward a complex issue. We also appreciate the opportunity to respond to their letter.

Our initial response is, in general, agreement with the basic premise put forth. That is, there is a paucity of published studies that have specifically looked at a diagnostic yield when Asperger syndrome is selected out from the rest of the Autism Spectrum Disorders.

Given the absence of such reports, Drs. Chodirker and Chudley reviewed the literature in search of documentation of genetic testing abnormalities and persons with Asperger syndrome. What they found was a handful of cases of patients with Asperger syndrome and abnormal genetic tests. Given the small number of cases that could be extracted from the literature, it is not possible to approach a statistical estimate with certainty. It is interesting to note from their table that they ultimately found 147 patients with Asperger syndrome in the existing reports, with 13 (9%) positive tests. It is notable that this is still in the reported range of positive studies from independent reports.

One point that we would raise as different from their interpretation is in the dismissal of several positive tests as “unlikely” to be etiologically causative or “comorbid.” We suggest that the identification of the six chromosome anomalies should be considered as possibly/probably related. In particular, the association of 22q11 deletions and autism is well-though documented that in our opinion, it should not be dismissed.

Another point of note is that all existing studies share some sort of selection bias, by nature of the clinical source of patients ascertained. Such bias has often been cited as leading to an overestimate of the diagnostic yield. Still, recent studies that have not found Fragile X in their patients have suggested that preselection (either intentional or not) may remove patients with Fragile X and lead to an underestimate.1,2

Finally, the foundation for what are made as recommendations based on an existing (albeit incomplete) body of literature comes down to the proverbial “lumper” versus “splitter” bias of the genetics provider making the recommendations. In the latter’s mind, one should not make a recommendation for genetic testing in Asperger syndrome until there are specific studies that have addressed that particular issue. Alternatively, a synthesis of the literature coupled with an understanding of what a spectrum means could lead one to recommend studies for all those who fall into the spectrum until there is evidence to the contrary. With the goal of providing a unifying diagnosis for as many patients as possible, we fall into this category.

G. Bradley Schaefer, MD
University of Arkansas for Medical Sciences
Arkansas Children’s Hospital
Little Rock, Arkansas

Nancy J. Mendelsohn, MD
Division of Medical Genetics
Children’s Hospitals & Clinics of Minnesota
Minneapolis, Minnesota

References

Clinical significance of tri-nucleotide repeats in Fragile X testing: A clarification of American College of Medical Genetics guidelines

To the Editor:

The purpose of this letter is to reconcile a discrepancy between two documents issued by the American College of Medical Genetics: the Technical Standards and Guidelines for Frag-
ile X testing published in 2001 and updated in 2005 and the Genetics Practice Guidelines statement on diagnostic and carrier testing for Fragile X syndrome published in 2005. In the Practice Guidelines, a broad range of 41–60 trinucleotide repeats was described for the intermediate or "gray zone" in Fragile X syndrome based on a research context. That is, research groups used this broader range to identify high-risk alleles. More relevant to the clinical setting, a range of 45–54 trinucleotide repeats was quoted for the gray zone in the Technical Standards and Guidelines publication. For a summary of these ranges please see Table 1.

Differences in the intermediate range then led to discrepancies in the reported ranges for Fragile X premutations. In the Practice Guidelines, the premutation range is characterized as 61–200 repeats, whereas in the Technical Standards and Guidelines, the premutation range is defined as 55–200 repeats. The American College of Obstetricians and Gynecologists based their committee opinion on the ACMG Practice Guidelines, leading to confusion among physicians in interpretation of Fragile X test reports. The ranges for intermediate and premutation Fragile X alleles quoted in the 2005 Practice Guidelines have never been used in laboratory practice. After an extensive review of the literature in 2005, the Quality Assurance Committee of the ACMG determined that no changes were required to the ranges originally published in 2001.

In a recent article summarizing two multidisciplinary workshops focused on reproductive counseling for FMR1 premutation carriers, Wittenberger et al. defined the four allelic forms of FMR1 with respect to CGG repeat size. They stated that consensus has been reached, both in the literature and in the workshops regarding the size of the premutation at 55–200 repeats, and the full mutation at >200 repeats and these ranges agree with those in the Technical Standards and Guidelines as summarized in Table 1. Wittenberger et al. also stated that consensus has not yet been reached for the lower limit of the intermediate or gray zone (i.e., 45–54 repeats or 40–54 repeats).

The clinical significance of intermediate and low premutation size alleles is 3-fold. First, it is the extent to which they may be prone to instability, particularly expansion, in future generation size alleles increase the risk for premutation-associated Fragile X tremor ataxia syndrome (FXTAS). FXTAS is a late-onset neurodegenerative disorder with predominant features of cerebellar ataxia and intention tremor. Onset is usually in persons older than 50 years. The risk and/or severity of the disorder is associated with repeat size, the highest risk being associated with larger repeats. Among individuals with late-onset cerebellar ataxia, the prevalence of premutation alleles was 13 times greater than expected based on its prevalence in the general population as assessed by a recent meta-analysis.8 Lastly, the clinical significance of intermediate/low premutation repeat size alleles is the extent to which they impose a risk for premutation-associated ovarian insufficiency. The prevalence of premature ovarian failure (POF) or cessation of menses before 40 years of age is about 20%, although it is highly associated with repeat size: the risk seems to increase with increasing premutation repeat size between 59 and 99, thereafter the risk of POF plateaus or even decreases for women with repeat sizes over 100.9 Premutation carriers have been identified in about 3% of women with sporadic POF and in about 12% of women with familial POF.

Thus, at this point, the risk and/or severity of all three disorders associated with premutation alleles (i.e., instability during transmission, FXTAS and POF) is established for alleles 55–200 repeats. The risk among the alleles in the lower part of this range, 55–70 is significantly lower than that in the upper range, 70–200, for all three disorders.

Table 2 shows the distribution of repeats among the allelic forms of FMR1 between 41 repeats and 200 repeats as defined in the two conflicting ACMG publications. The table demonstrates that, were genetic counseling to be based on the Practice

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of the CGG repeat length ranges for each allelic class as defined by the four reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretation</td>
<td>Technical standards1</td>
</tr>
<tr>
<td>Unaffected</td>
<td><45</td>
</tr>
<tr>
<td>Intermediate, gray zone</td>
<td>45–54</td>
</tr>
<tr>
<td>Full mutation</td>
<td>>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Comparison of the clinical interpretation of each allelic class by the two sets of guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. repeats</td>
<td>Interpretation according to technical standards and guidelines</td>
</tr>
<tr>
<td>41–44</td>
<td>Unaffected</td>
</tr>
<tr>
<td>45–54</td>
<td>Intermediate, gray zone</td>
</tr>
<tr>
<td>55–60</td>
<td>Premutation</td>
</tr>
<tr>
<td>61–200</td>
<td>Premutation</td>
</tr>
</tbody>
</table>
Guidelines, individuals with 59 and 60 repeats, who are at risk to have an affected child in the next generation, would not be counseled appropriately. Furthermore, a greater number of patients would be identified to have intermediate or gray zone alleles. As stated above, carrying the label of intermediate or gray zone currently has no established clinical significance and may cause unwarranted concern to families.

In conclusion, the Quality Assurance Committee and the Professional Practice and Guidelines Committee of the ACMG have determined that no changes are required to the ranges published originally in 2001 and restated in 2005 in the Technical Standards and Guidelines for Fragile X testing. The ACMG Quality Assurance Committee and the Professional Practice and Guidelines Committee recommend that the following ranges for CGG repeat size be used in the laboratory as well as in clinical practice:

- Unaffected: <45
- Intermediate: 45–54
- Premutation: 55–200
- Full mutation: >200

References

Kathryn E. Kronquist, PhD, FACMG
Molecular/Genetics Department
Kaiser Permanente Regional Reference Laboratory
Denver, Colorado

Stephanie L. Sherman, PhD, FACMG
Department of Human Genetics
Emory University
Atlanta, Georgia