Multi-ethnic genome-wide association study for atrial fibrillation

Carolina Roselli, Broad Institute of MIT and Harvard
Mark D. Chaffin, Broad Institute of MIT and Harvard
Lu-Chen Weng, Broad Institute of MIT and Harvard
Stefanie Aeschbacher, University Hospital Basel
Gustav Ahlberg, Copenhagen University Hospital
Christine M. Albert, Brigham & Womens Hospital
Peter Almgren, Lund University
Alvaro Alonso, Emory University
Christopher D. Anderson, Broad Institute of MIT and Harvard
Krishna G. Aragam, Broad Institute of MIT and Harvard

Only first 10 authors above; see publication for full author list.

Journal Title: Nature Genetics
Volume: Volume 50, Number 9
Publisher: Nature Research (part of Springer Nature) | 2018-09-01, Pages 1225-+
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1038/s41588-018-0133-9
Permanent URL: https://pid.emory.edu/ark:/25593/tdhf0

Final published version: http://dx.doi.org/10.1038/s41588-018-0133-9

Copyright information:
© 2018 The Author(s)

Accessed December 8, 2019 2:59 AM EST
Multi-Ethnic Genome-wide Association Study for Atrial Fibrillation

A full list of authors and affiliations appears at the end of the article.
These authors contributed equally to this work.

Abstract

Atrial fibrillation (AF) affects over 33 million individuals worldwide\(^1\) and has a complex heritability.\(^2\) We conducted the largest meta-analysis of genome-wide association studies for AF to

Corresponding author: Patrick T. Ellinor, MD, PhD. Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard Cardiovascular Research Center, Massachusetts General Hospital, Cambridge, MA 02142, T: 617-724-8729, ellinor@mgh.harvard.edu.

Author contributions

date, consisting of over half a million individuals including 65,446 with AF. In total, we identified 97 loci significantly associated with AF including 67 of which were novel in a combined-ancestry analysis, and 3 in a European specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait loci (eQTL) analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF.

Atrial fibrillation (AF) is the most common heart rhythm disorder, and is a leading cause of heart failure and stroke. Prior genome-wide association studies (GWAS) have identified at least 30 loci associated with AF. We conducted a large-scale analysis with over half a million participants, including 65,446 with AF, from more than 50 studies. Our AF sample was composed of 84.2% European, 12.5% Japanese, 2% African American, and 1.3% Brazilian and Hispanic populations. We used the Haplotype Reference Consortium (HRC) reference panel to impute variants from SNP array data for 75% of the samples. In the remainder, we included HRC overlapping variants from 1000 Genomes imputed data, or from a combined reference panel. We analyzed 8,328,530 common variants (minor allele frequency (MAF) >5%), 2,884,670 low frequency variants (1%> MAF ≥5%), and 936,779 rare variants (MAF ≤1%).

The combined-ancestry meta-analysis revealed 94 AF-associated loci, 67 of which were novel at genome-wide significance (P-value (P) < 1×10^{-8}). This conservative threshold accounts for testing independent variants with MAF ≥0.1% using a Bonferroni correction, while use of a more commonly utilized threshold of 5×10^{-8} resulted in the identification of an additional 10 loci. The majority of sentinel variants (n=92) were common (MAF >5%), with relative risks ranging from 1.04 to 1.55. Two low frequency sentinel variants were identified within the genes C1orf185 and UBE4B (Figure 2, Table 1, Supplementary Table 3, Supplementary Figure 1).

We then conducted a gene set enrichment analysis with the results from the combined-ancestry meta-analysis using MAGENTA. We identified 55 enriched gene sets or pathways that largely fall into cardiac developmental, electrophysiological, and cardiomyocyte contractile or structural functional groups. In total, 48 of the 67 novel loci contain one or more genes within 500kb of the sentinel variant that were part of an enriched gene set or pathway (Supplementary Figure 2).

Next, we performed ancestry-specific meta-analyses. Among individuals of European ancestry, we identified 3 additional loci associated with AF, each of which had a sub-threshold association (P < 1×10^{-6}) in the combined-ancestry meta-analysis. These loci were located close to or within the genes CDK6, EPHA3, and GOSR2 (Supplementary Table 5, Supplementary Figure 3-4). The region most significantly associated with AF in Europeans, Japanese, and African Americans (Supplementary Figure 5–6) was on chromosome 4q25, upstream of the gene PITX2 (Supplementary Figure 7). We did not
observe significant heterogeneity of effect estimates across ancestries for most associations, suggesting that top genetic susceptibility signals for AF have a relatively constant effect across ancestries (Table 1, Supplementary Table 3, Supplementary Figure 8). The proportion of heritability explained by the loci from the European ancestry analysis was 42%, compared to previously reported 25%\(^ {10}\) (Supplementary Table 6).

In conditional and joint analyses of the European ancestry results, we found 11 loci with multiple, independent AF-associated signals. At a locus centered on a cluster of sodium channel genes, we identified 3 regions that independently associate with AF within \(SCN10A, SCN5A\) and a third signal between both genes. At the previously described \(TBX5\) locus,\(^ {8}\) we detected a novel independent signal close to \(TBX3\). Pairwise linkage disequilibrium (LD) estimates between the independent variants at both loci were extremely low \((r^2 < 0.03; \text{Supplementary Table 7})\).

For 13 AF loci, the sentinel variant or a proxy \((r^2 > 0.6)\) was a missense variant. A missense variant \((\text{rs11057401})\) in \(CCDC92\) was predicted to be damaging by 4 of 5 \textit{in silico} prediction algorithms (Supplementary Table 8); and was previously associated with coronary artery disease.\(^ {11}\) Since most AF-associated variants reside in non-coding regions we sought to determine if the sentinel variants or their proxies \((r^2 > 0.6)\) fell within regulatory regions in heart tissues based on chromatin states from the Roadmap Epigenomics Consortium. At 64 out of 67 novel loci, variants were located within regulatory elements (Supplementary Table 9); AF-associated loci were also significantly enriched within regulatory elements (Supplementary Figure 9).

We then sought to link risk variants to candidate genes by assessing their effect on gene expression levels. First, since AF often arises from the pulmonary veins and left atrium (LA), we performed RNA sequencing, genotyping, and eQTL analyses in 101 human left atrial samples without structural heart disease from the Myocardial Applied Genomics Network repository. Second, we identified eQTLs from right atrial (RA) and left ventricular (LV) cardiac tissue from the Genotype Tissue Expression (GTEx) project. Finally, we performed a transcriptome-wide analysis using the MetaXcan\(^ {12}\) method, which infers the association between genetically predicted gene expression and disease risk.

We observed eQTLs to one or more genes at 17 novel loci. Of the 10 eQTLs detected in LA tissue 8 were also detected in RA or LV, with consistent directionality. For example, we observed that \(\text{rs4484922}\) was an eQTL for \(CASQ2\) in LA tissue only. Although we detected more AF loci with eQTLs in the RA or LV data, for many of these \((n=8)\) the results pointed to multiple genes per locus (Supplementary Table 10–12). LA eQTL studies may facilitate the prioritization of candidate genes, but are currently limited by sample size.

For the transcriptome-wide analyses we used GTEx human atrial and ventricular expression data as a reference. We identified 57 genes significantly associated with AF. Of these, 42 genes were located at AF loci, whereas the remaining 15 were >500kb from an AF sentinel variant (Supplementary Table 13, Figure 3). The probable candidate genes at each locus are summarized in Supplementary Table 12. For example, at the locus with lead variant \(\text{rs4484922}\) we observed results from all downstream analyses pointing towards the nearest
gene CASQ2, at rs12908437 towards the gene IGFR1, and at rs113819537 towards the gene SSPN. However, for many loci the evaluation of candidate genes remains challenging.

We then sought to assess the pleiotropic effects of the identified AF risk variants. First, we queried the NHGRI-EBI GWAS Catalog to detect associations to other phenotypes (Supplementary Table 14). Second, using the UK Biobank, we performed a phenome-wide association study (pheWAS) for 12 AF risk factors (Supplementary Table 15). As illustrated in Figure 4, distinct clusters of variants were associated with AF as well as height, BMI, and hypertension. For example, we observed a pleiotropic effect at rs880315 (CASZ1) for blood pressure and hypertension, that was also observed in the UK Biobank (association with hypertension, $P = 2.56 \times 10^{-34}$).

In sum, we identified a total of 97 distinct AF loci from 65,446 AF cases and more than 522,000 referents. In recent pre-publication results, Nielsen et al., reported 111 loci from 60,620 AF cases and more than 970,000 referents, including more than 18,000 AF cases from our prior report. We therefore performed a preliminary meta-analysis for the top loci in nonoverlapping participants from these two large efforts with a resulting total of over 93,000 AF cases and more than 1 million referents. In aggregate, we identified at least 134 distinct AF-associated loci (Supplementary Table 16).

Four major themes emerge from the identified AF loci. First, two AF loci contain genes that are primary targets for current antiarrhythmic medications used to treat AF. The SCN5A gene encodes a sodium channel in the heart, the target of sodium-channel-blockers such as flecainide and propafenone. Similarly, KCNH2 encodes the alpha subunit of the potassium channel complex, the target of potassium-channel-inhibiting medications such as amiodarone, sotalol, and dofetilide. SCN5A and KCNH2 have previously been implicated in AF through GWAS, candidate gene analysis and family-based studies.

Second, transcriptional regulation appears to be a key feature of AF etiology. TBX3 and the adjacent gene TBX5 encode transcription factors, that have been shown to regulate the development of the cardiac conduction system. Similarly, NMX2–5 encodes a transcription factor, that is an early cue for cardiac development and has been associated with congenital heart disease and heart rate (Supplementary Table 14). Further, reduced function of the transcription factor encoded by PITX2 has been associated with AF, shortening of the left atrial action potential, and with modulation of sodium channel blocker therapy in the adult left atrium. A transcriptional co-regulatory network governed by transcription factors encoded by TBX5 and PITX2 has been shown to be critical for atrial development.

Third, the transcriptome-wide analyses revealed a number of compelling findings. Decreased expression of PRRX1 associated with AF, a result consistent with findings where reduction of PRRX1 in zebrafish and stem cell-derived cardiomyocytes was associated with action potential shortening. Further, increased expression of TBX5 and KCNJ5 was associated with AF, a finding consistent with gain-of-function mutations in TBX5 reported in a family with Holt-Oram syndrome and a high penetrance of AF. Similarly, KCNJ5 encodes a potassium channel that underlies a component of the $I_{K,ach}$ current, a channel that...
is upregulated in AF. Thus, prior studies support both the role of PRRX1, TBX5, and KCNJ5 in AF and the observed directionality.

Fourth, many of the novel loci implicate genes that underlie Mendelian forms of arrhythmia syndromes. Mutations in CASQ2 lead to catecholaminergic polymorphic ventricular tachycardia.28,29 Pathogenic variants in PKP2 impair cardiomyocyte communication and structural integrity, and are a common cause of arrhythmogenic right ventricular cardiomyopathy.30,31 Mutations in GJA5, KCNH2, SCN5A, KCNJ2, MYH7, NKX2–5, have been mapped in a variety of inherited arrhythmia, cardiomyopathy, or conduction system diseases.32 Our observations highlight the pleiotropy of variation in genes specifying cardiac conduction, morphology, and function, and underscore the complex, polygenic nature of AF.

In conclusion, we conducted the largest AF meta-analysis to date and report a more than three-fold increase in the number of loci associated with this common arrhythmia. Our results lay the groundwork for functional evaluations of genes implicated by AF risk loci. Our findings also broaden our understanding of biological pathways involved in AF and may facilitate the development of therapeutics for AF.

Online Methods

Samples

Participants from more than 50 studies were included in this analysis. Participants were collected from both case-control studies for atrial fibrillation (AF) and population based studies. The majority of studies were part of the Atrial Fibrillation Genetics (AFGen) consortium and the Broad AF Study (Broad AF). Additional summary level results from the UK Biobank (UKBB) and the Biobank Japan (BBJ) were included (Figure 1). Cases include participants with paroxysmal or permanent atrial fibrillation, or atrial flutter, and referents were free of these diagnoses. Adjudication of atrial fibrillation for each study is described in the Supplementary Notes. Ascertainment of AF in the UK Biobank includes samples with one or more of the following codes 1) Non-cancer illness code, self-reported (1471, 1483), 2) Operation code (1524), 3) Diagnoses – main/secondary ICD10 (I48, I48.0–4, I48.9), 4) Underlying (primary/secondary) cause of death: ICD10 (I48, I48.0–4, I48.9) 5) Diagnoses – main/secondary ICD9 (4273), 6) Operative procedures – main/secondary OPCS (K57.1, K62.1–4).8,10,33 Baseline characteristics for each study are reported in Supplementary Table 17. We analyzed: 55,114 cases and 482,295 referents of European ancestry, 1,307 cases and 7,660 referents of African American ancestry, 8,180 cases and 28,612 referents of Japanese ancestry, 568 cases and 1,096 referents from Brazil and 277 cases and 3,081 referents of Hispanic ethnicity. Samples from the UK Biobank, the Broad AF Study, and the following studies from the AFGen consortium: SiGN, EGCUT, PHB and the Vanderbilt Atrial Fibrillation Registry, were previously not included in primary AF GWAS discovery analyses. There is minimal sample overlap from the studies MGH AF, BBJ and AFLMU between this and previous analyses. Ethics approval for participation was obtained individually by each study. All relevant ethical regulations were followed for this work. Written informed consent was obtained from all study participants.
The Institutional Review Board (IRB) at Massachusetts General Hospital reviewed and approved the overall study.

Genotyping and Genotype Calling

Samples within the Broad AF Study were genotyped at the Broad Institute using the Infinium PsychArray-24 v1.2 Bead Chip. They were genotyped in 19 batches, grouped by origin of the samples and with a balanced case control mix on each array. Common variants (≥1% MAF) were called with GenomeStudio v1.6.2.2 and Birdseed v1.33,34 while rare variants (<1% MAF) were called with zCall.35 Batch specific quality control (QC) was performed on each call-set including >95% sample call rate, Hardy-Weinberg-Equilibrium (HWE) $P > 1 \times 10^{-6}$ and variant call-rate >97%. For common variants, a consensus merge was performed between the call-sets from GenomeStudio and Birdseed. For each genotype only concordant calls between the two algorithms were kept. The common variants from the consensus call were then combined with the rare variants calls from the zCall algorithm.

Samples from all batches were joined prior to performing pre-imputation QC steps. Detailed procedures for genotyping and genotype calling for the SiGN study,36 the UK Biobank,37,38 and the Biobank Japan9 are described elsewhere. Details on genotyping and calling for all participating studies are listed in **Supplementary Table 18**.

Imputation

Pre-imputation QC filtering of samples and variants was conducted based on recommended guidelines as described in **Supplementary Table 19**. QC steps were performed by each study and are described in **Supplementary Table 18**. Most studies with European ancestry samples performed imputation with the HRC reference v1.139 panel on the Michigan Imputation Server v1.0.1.40 Studies without available HRC imputation were included based on imputation to the 1000 Genomes Phase 1 integrated v3 panel (March 2012).41 Participants of the SiGN study were imputed to a combined reference panel consisting of 1000 Genomes phase 1 plus Genome of the Netherlands.42 Studies from Brazil were imputed with the HRC reference v1.1 panel. Studies of Japanese ancestry or Hispanic ethnicity were imputed to the 1000G Phase 1 integrated v3 panel (March 2012). Studies of African American ancestry were imputed to the HRC reference v1.1 panel or the 1000G Phase 1 integrated v3 panel (March 2012). Studies were advised to use the HRC preparation and checking tool (http://www.well.ox.ac.uk/~wrayner/tools/) prior to imputation. Prephasing and imputation methods for each study are described in **Supplementary Table 18**.

Primary statistical analyses

Genome-wide association testing on autosomal chromosomes was performed using an additive genetic effect model based on genotype probabilities. Each ancestry group was analyzed separately for each study. For the Broad AF Study, the primary statistical analysis was performed jointly on unrelated individuals, excluding one of each pair for related samples with PL_HAT >0.2 as calculated in PLINK v1.90.43,44 Samples with sex mismatches and sample call rate <97% were excluded. Ancestry groups were defined with ADMIXTURE45 based on genotyped, independent, and high quality variants, using the
supervised method with 1000Genomes phase 1 v3 samples as reference. A cutoff of 80% European ancestry was used to define the European subset and a cutoff of 60% African ancestry was used to define the African American subset. A Brazilian cohort within the Broad AF Study was analyzed separately. Principal components were calculated within each ancestry group with the smartpca program from EIGENSOFT v6.1.146. For the UK Biobank, a European subset was selected within samples with self-reported white race (British, Irish, or other) and similar genetic ancestry. Genetic similarity was defined with the aberrant47 package in R based on principal components, following the same method as described for the UK Biobank.38 We excluded samples with sex mismatches, outliers in heterozygosity and missing rates, samples that carry sex chromosome configurations other than XX or XY, and samples that were excluded from the kinship inference procedure as flagged in the UK Biobank QC file. We further removed one sample for each pair of third degree or closer relatives (kinship coefficient >0.0442), preferentially keeping samples with AF case status. Primary analyses for all other studies were performed at the study sites and the summary level data of the results were provided. Prevalent cases were analyzed in a logistic regression model and most incident cases were analyzed in a Cox proportional hazards model. Studies with both prevalent and incident cases analyzed these either separately using a logistic regression model or Cox proportional hazards model respectively, or jointly in a logistic regression model. The following tools were used for primary GWAS: ProbABEL,48 SNPTEST,49 FAST,50 mach2dat (http://www.sph.umich.edu/csg/yli), R,51 EPACTS (http://genome.sph.umich.edu/wiki/EPACTS), Hail (https://github.com/hail-is/hail) and PLINK44 (Supplementary Table 18). Summary level results were filtered, keeping variants with imputation quality >0.3 and MAF * imputation quality * N events ≥10. Post-analysis QC steps of summary level results included a check of allele frequencies, inspection of Manhattan-plots, QQ-plots, PZ-plots, and the distribution of effect estimates and standard errors, calculation of genomic inflation (\(\lambda_{GC}\)), and consistent directionality for known AF risk variants.5

Meta-analyses

Summary level results were meta-analyzed jointly with METAL (released on 2011–03-25) using a fixed effects model with inverse-variance weighted approach, correcting for genomic control.52 Separate meta-analyses were conducted for each ancestry. The results for the Japanese9 and Hispanic8 specific analyses have previously been reported and therefore their ancestry-specific results are not shown. Variants were included if they were present in at least two studies and showed an average MAF ≥0.1%. To correct for multiple testing, a genome-wide significance threshold of \(P < 1 \times 10^{-8}\) was applied for each analysis. This threshold is based on a naive Bonferroni correction for independent variants with MAF ≥0.1%, using an LD threshold of \(r^2 < 0.8\) to estimate the number of independent variants based on European ancestry LD.53 As these meta-analyses are based on effect estimates and standard errors from both logistic regression and Cox proportional hazards regression, we report variant effects as relative risk, calculated as the exponential of effect estimates. For sentinel variants reaching genome-wide significance in the combined ancestry meta-analysis, we assessed if effect estimates were homogeneous across ancestries by calculating an \(I^2\) statistic,54 across ancestry specific meta-analyses. We account for multiple testing.
across 94 variants using a Bonferroni correction, resulting in a significance threshold of \(P < 5.32 \times 10^{-4} \) for the heterogeneity test.

Broad AF LD reference and proxies

A linkage disequilibrium (LD) reference file was created including 26,796 European ancestry individuals from the Broad AF study. The LD reference was based on HRC imputed genotypes. Monomorphic variants and variants with imputation quality <0.1 were removed prior to conversion to hard calls. A genotype probability (GP) threshold filter of GP >0.8 was applied during hard call conversion. For multi-allelic sites the more common alleles were kept. Variants were included in the final reference file if the variant call rate was >70%.

We identified proxies of sentinel variants as variants in LD of \(r^2 > 0.6 \) based on the Broad AF LD reference file, using PLINK v1.90.43,44

Meta-analysis of provisional loci

We meta-analyzed 111 variants from externally reported15 provisional loci within predominantly non-overlapping samples from the Broad AF Study, BBJ, EGCUT, PHB, SiGN and the Vanderbilt AF Registry with METAL (released on 2011–03-25).52 The predominantly nonoverlapping samples included a total of 32,957 AF cases and 83,546 referents, with minimal overlap from the studies MGH AF, BBJ and AFLMU. We subsequently meta-analyzed these results with the reported provisional results with METAL using a fixed effects model with inverse-variance weighted approach. We analyzed a total of 93,577 AF cases and 1,053,762 referents. We compared our discovery results with the provisional loci using the same significance cutoff of \(P < 5 \times 10^{-8} \) for both results. Overlapping loci were identified, if the reported sentinel variants were located within 500kb of each other. For overlapping loci with differing sentinel variants we calculated the LD between the sentinel variants, based on the Broad AF LD reference panel of European ancestry.

Variant consequence on protein coding sequence

The most severe consequence for variants was identified with the Ensembl Variant Effect Predictor version 89.7 using RefSeq as gene reference and the option “pick” to identify one consequence per variant with the default pick order.55 We queried sentinel variants and their proxies to identify tagged variants with HIGH and MODERATE impact including the following consequences: “transcript_ablation”, “splice_acceptor_variant”, “splice_donor_variant”, “stop_gained”, “frameshift_variant”, “stop_lost”, “start_lost”, “transcript_amplification”, “inframe_insertion”, “inframe_deletion”, “missense_variant” and “protein_altering_variant”. We evaluated each identified consequence on the protein coding sequence with in silico prediction tools to assess potentially damaging effects. The evaluation included MutationTaster56 (disease causing automatic or disease causing), SIFT57 (damaging), LRT58 (deleterious), Polyphen259 prediction based on HumDiv and HumVar (probably damaging or possibly damaging).

Nat Genet. Author manuscript; available in PMC 2018 September 13.
Chromatin states

Chromatin state annotation.—We identified chromatin states for sentinel variants and their proxies from the Roadmap Epigenomics Consortium 25-state model (2015)60 using HaploReg v4.61 We looked for chromatin states occurring in any included tissues as well as chromatin states occurring in heart tissue. Heart tissues include E065: Aorta, E083: Fetal Heart, E095: Left Ventricle, E104: Right Atrium and E105: Right Ventricle.

Regulatory region enrichment.—1,000 sets of control loci were generated by matching SNPs to sentinel variants from the AF combined-ancestry analysis, with the SNP62Snap tool. We used the European 1000 Genomes Phase 3 population to match via minor allele frequency, gene density, distance to nearest gene and LD buddies using $r^2 >0.6$ as LD cutoff and otherwise default settings. We excluded input SNPs and HLA SNPs from the matched SNPs. Loci were defined as SNPs and their proxies with $r^2 >0.6$ based on LD from the European 1000 Genomes Phase 3 population. We identified SNPs in regulatory regions across all tissues and in cardiac tissues (E065, E095, E104, E105) based on the Roadmap Epigenomics Consortium 25-state model (2015)60 using HaploReg v4.61 Regulatory regions included the following states: 2_PromU, 3_PromD1, 4_PromD2, 9_TxReg, 10_TxEnh5, 11_TxEnh3, 12_TxEnhW, 13_EnhA1, 14_EnhA2, 15_EnhAF, 16_EnhW1, 17_EnhW2, 18_EnhAc, 19_DNase, 22_PromP and 23_PromBiv. We calculated the percent overlap of each annotation per locus, defined as number of SNPs per locus that fall in regulatory regions divided by total number of SNPs per locus. Statistical significance was calculated with a permutation test from the \textit{perm} package in R.63

Expression quantitative trait loci (eQTL)

Variants identified from GWAS were assessed for overlap with eQTLs from two sources: 1) \textbf{Left atrial (LA) tissue from the Myocardial Applied Genomics Network (MAGNet) repository.} We performed RNA sequencing (RNA-seq) on 101 left atrial tissue samples from the MAGNet repository (http://www.med.upenn.edu/magnet/) on the Illumina HiSeq 4000 platform at the Broad Institute Genomic Services. Left atrial tissue was obtained at the time of cardiac transplantation from normal donors with no evidence of structural heart disease. All left atrial samples were from individuals of European ancestry. A summary of the clinical characteristics for these samples is shown in \textbf{Supplementary Table 20}. Reads were aligned to the reference genome by STAR v2.4.1a64 and assigned to genes based on the GENCODE gene annotation.65 Gene expression was measured in fragments per kilobase of transcript per million mapped reads (FPKM) and subsequently quantile-normalized and adjusted for age, sex, and the first 10 principal components. Genotyping was performed on the Illumina OmniExpressExome-8v1 array and imputed to the HRC reference panel. Principal components were calculated with the smartpca program from EIGENSOFT v6.1.146 and European ancestry was confirmed by assessing principal components in the samples combined with 1000 Genomes European samples.41 Associations between gene expression and genotypes were tested in a linear regression model with QTLtools v1.0,46 in order to detect \textit{cis}-eQTLs, defined as eQTLs within 1MB of the transcription start site of a gene. To account for multiple testing, an empirical false discovery rate (FDR) was used to identify significant eQTLs with a FDR <5%. 2) \textbf{Genotype-Tissue Expression (GTEx) project.}67 We queried the GTEx version 6p database for \textit{cis}-eQTLs with significant
association to gene expression levels in the two available heart tissues: left ventricle and right atrial appendage.

Association between predicted gene expression and risk of atrial fibrillation

To investigate transcriptome-wide associations between predicted gene expression and AF disease risk, we employed the method MetaXcan v0.3.5. MetaXcan extends the previous method PrediXcan to predict the association between gene expression and a phenotype of interest, using summary association statistics. Gene expression prediction models were generated from eQTL datasets using Elastic-Net to identify the most predictive set of SNPs. Only models that significantly predict gene expression in the reference eQTL dataset (FDR <0.05) were considered. Pre-computed MetaXcan models for the two available heart tissues (left ventricle and right atrial appendage) in the genotype-tissue expression project version 6p (GTEx) were used to predict the association between gene expression and risk of AF. Summary level statistics from the combined ancestry meta-analysis were used as input. 4859 genes were tested for left ventricle and 4467 genes were tested for right atrial appendage. Bonferroni correction was applied to account for the number of genes tested across both tissues, resulting in a significance threshold of $P < 5.36 \times 10^{-6}$, calculated as $0.05/(4859 + 4467)$.

Conditional and joint analyses

Conditional and joint analyses of GWAS summary statistics were performed with Genomewide Complex Trait Analysis (GCTA v1.25.2) using a stepwise selection procedure to identify independently-associated variants on each chromosome. We used the Broad AF LD reference file for LD calculations.

Gene set enrichment analysis (GSEA)

A Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) v2.4 was performed with a combined gene set input database (GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA) based on publicly available data. The analysis was conducted using the summary level results from the combined ancestry meta-analysis. 4045 gene sets were included and multiple testing was corrected via false discovery rate (FDR). Gene sets were manually assigned to one or more of the following functional groups: developmental, electrophysiological, contractile/structural, and other. Genes within 500 kilobases of a sentinel variant were identified based on the longest spanning transcribed region in the RefSeq gene reference. For each gene set, genes close to significant loci were listed. The selected genes were assigned to one or more functional groups based on their affiliation to gene sets. Functional groups from gene sets with a single label were preferentially assigned.

Association with other phenotypes

To determine if the sentinel AF risk variants had associations with other phenotypes, two sources of data were used:
1) **GWAS catalog.**

We queried the NHGRI-EBI Catalog of published genome-wide association studies\(^{73,74}\) (accessed 2017–08–31) to detect associations of AF risk variants with other phenotypes.

2) **UK Biobank phenome-wide association study (PheWAS).**

A PheWAS was conducted in the UK Biobank in European ancestry individuals. Ancestry definition and sample QC exclusions were performed in the same manner as for the primary statistical analysis, as described above. We further removed one sample for each pair of second degree or closer relatives (kinship coefficient >0.0884), preferentially keeping the sample with case status or non-missing phenotype. We included the following phenotypes: height, body mass index (BMI), smoking, hypertension, heart failure, stroke, mitral regurgitation, bradyarrhythmia, peripheral vascular disease (PVD), hypercholesterolemia, coronary artery disease (CAD), and type II diabetes. Phenotype definitions are shown in **Supplementary Table 21**. Number of samples analyzed, as well as case and referent counts for each phenotype are listed in **Supplementary Table 22**. Binary phenotypes were analyzed with a logistic regression model and quantitative phenotypes with a linear regression model using imputed genotype dosages in PLINK 2.00.\(^{44}\) As covariates we included sex, age at first visit, genotyping array, and the first 10 principal components.

Proportion of heritability explained

We calculated SNP-heritability (\(h^2_g\)) of AF-associated loci with the REML algorithm in BOLT-LMM v2.2\(^{75}\) in 120,286 unrelated samples of European ancestry from a subset of the UK Biobank dataset comprising a prior interim release as previously described in separate work from our group.\(^{10}\) We defined loci based on a 1MB (+/− 500kb) window around 84 sentinel variants from the European ancestry meta-analysis. We transformed the \(h^2_g\) estimates into liability scale (AF prevalence = 2.45% in UK Biobank). We then calculated the proportion of \(h^2_g\) explained at AF loci by dividing the \(h^2_g\) estimate of AF-associated loci by the total \(h^2_g\) for AF, that was based on 811,488 LD-pruned and hard-called common variants (MAF ≥1%).\(^{10}\)

Life Sciences Reporting Summary

Further information on experimental esign is available in the Life Sciences Reporting Summary.

Data Availability and Accession Code Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request. The results of this study are available on the Cardiovascular Disease Knowledge Portal (http://www.broadcvdi.org/). The left atrial RNAsequencing data can be accessed via dbGaP under the accession number phs001539.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Authors

Shah140, Alaa A. Shalaby135,141, Jaemin Shim142, M. Benjamin Shoemaker43, Joylene E. Siland58, Juha Sinisalo143, Moritz F. Sinne81,82, Agnieszka Slowik120, Albert V. Smith61,62, Blair H. Smith144, J. Gustav Smith1,145, Jonathan D. Smith13, Nicholas L. Smith58,69, Elsayed Z. Soliman146, Nona Sotoodehnia147, Bruno H. Stricker148,149, Albert Sun140, Han Sun13, Jesper H. Svendsen5,7, Toshihiro Tanaka150, Kahraman Tanriverdi50, Kent D. Taylor31, Maris Teder-Laving51, Alexander Teumer48,151, Sébastien Thériault56,119, Stella Trompet78,115, Nathan R. Tucker1,2, Arnljot Tveit33,152, Andre G. Uitterlinden148, Pim Van Der Harst58, Isabelle C. Van Gelder58, David R. Van Wagoner13, Niek Verweij58, Efthymia Vlachopoulou100, Uwe Völker48,153, Biqi Wang154, Peter E. Weeke5,43, Bob Weijs38, Raul Weiss155, Stefan Weiss48,153, Quinn S. Wells43, Kerri L. Wiggins19, Jorge A. Wong156, Daniel Woo157, Bradford B. Worrall158, Pil-Sung Yang118, Jie Yao31, Zachary T. Yoned43, Tanja Zeller137,138, Lingyao Zeng86, Steven A. Lubitz#1,2,159, Kathryn L. Lunetta#15,154, and Patrick T. Ellinor#1,2,159

Affiliations

1Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 2Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA 3University Hospital Basel, Basel, Switzerland 4Cardiovascular Research Institute Basel, Basel, Switzerland 5The Heart Centre, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark 6Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen. The Danish National Research Foundation Centre for Cardiac Arrhythmia, Copenhagen, Denmark 7Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark 8Divisions of Preventive and Cardiovascular Medicine, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, USA 9Department of Clinical Sciences, Lund University, Malmo, Sweden 10Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA 11Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA 12McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 13Departments of Cardiovascular Medicine, Cellular and Molecular Medicine, Molecular Cardiology, and Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA 14Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, Washington, USA 15NHLBI and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA 16Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA 17Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA 18Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA 19Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA

Nat Genet. Author manuscript; available in PMC 2018 September 13.
Georgia, USA 21Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA 22The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA 23Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA 24Johns Hopkins University, Baltimore, Maryland, USA 25Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK 26Penn Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 27Intermountain Heart Institute, Intermountain Medical Center, Murray, Utah, USA 28Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah, USA 29Divisions of Preventive Medicine and Genetics, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, USA 30Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA 31Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LAbioMed at Harbor-UCLA Medical Center, Torrance, California, USA 32Seoul National University Hospital, Seoul, Korea 33Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Drammen, Norway 34Baltimore Veterans Affairs Medical Center, Department of Neurology, Baltimore, Maryland, USA 35University of Maryland School of Medicine, Department of Neurology, Baltimore, Maryland, USA 36Population Health Research Institute, McMaster University, Hamilton, Canada 37Department of Biostatistics, University of Liverpool, Liverpool, UK 38Maastricht University Medical Center+ and Cardiovascular Research Institute Maastricht, Department of Cardiology, Maastricht, The Netherlands 39Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 40Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA 41University of Illinois Chicago, Chicago, Illinois, USA 42Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany 43Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA 44Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany 45Munich Cluster for Systems Neurology (SyNergy), Munich, Germany 46German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 47Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany 48DZHk (German Centre for Cardiovascular Research), partner site: Greifswald, Greifswald, Germany 49Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA 50University of Massachusetts Medical School Worcester, Worcester, Massachusetts, USA 51Estonian Genome Center, University of Tartu, Tartu, Estonia 52Heart Center, Department of cardiology Tampere University Hospital, Finland and Faculty of Medicine and Life Sciences, University of Tampere, Finland 53Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia 54St Vincent’s Hospital, Darlinghurst, New South Wales, Australia 55Faculty of Medicine, University of New South Wales, Kensington, New
South Wales, Australia 56Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK 57Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands 58University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands 59Dept. of Neuroscience, Saint Francis Medical Center, Trenton, New Jersey, USA 60School of Health and Medical Sciences, Seton Hall University, South Orange, New Jersey, USA 61Icelandic Heart Association, Kopavogur, Iceland 62Faculty of Medicine, University of Iceland, Reykjavik, Iceland 63Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden 64Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA 65Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden 66Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, USA 67MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK 68Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, Washington, USA 69Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA 70Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere 71Musculoskeletal Research Programme, Division of Applied Medicine, University of Aberdeen, Aberdeen, UK 72Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil 73Boston VA Research Institute, Inc., Boston, Massachusetts, USA 74Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA 75Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan 76Department of Neurology, Neurovascular Research Group IMIM-Hospital del Mar (Institut Hospital del Mar d’Investigacions Mèdiques), Barcelona, Spain 77Universitat Autònoma de Barcelona, Medicine Department, Barcelona, Spain 78Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands 79Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands 80Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands 81Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany 82DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart Alliance, Munich, Germany 83Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland 84Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan 85Cardiovascular Research Institute, University of California, San Francisco, California, USA 86Deutsches Herzzentrum München, Klinik für Herz- und Kreislaufforschungen, Technische Universität München, Munich, Germany 87Department of Neurology, Medical University of Graz, Graz, Austria 88Institute of Cardiovascular Sciences,
University of Birmingham, Birmingham, UK 89 Sandwell and West Birmingham Hospitals NHS Trust and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK 90 AFNET, Münster, Germany 91 Department of Medicine, University of Utah, Salt Lake City, Utah, USA 92 RIKEN Center for Integrative Medical Sciences, Yokohama, Japan 93 Department of Cardio-Thoracic Surgery, Heart Center, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland 94 Dept. Disease Genomics, Bayer, Wuppertal, Germany 95 Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA 96 Division of Nephrology & Hypertension, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah, USA 97 Korea University Guro Hospital, Seoul, Korea 98 Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden 99 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK 100 Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland 101 The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA 102 The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA 103 Institute of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK 104 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 105 Heart Institute, University of Sao Paulo, Sao Paulo, Brazil 106 Division of Cardiology, University of California, San Francisco, California, USA 107 Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria 108 Synlab Academy, Synlab Services GmbH, Mannheim, Germany 109 Department of Internal Medicine, Clinical Sciences, Lund University, Malmo, Sweden 110 Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, Texas, USA 111 Dell Medical School, Austin, Texas, USA 112 Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany 113 University of Pennsylvania, Philadelphia, Pennsylvania, USA 114 Department of Clinical Sciences, Lund University and Skåne University Hospital, Malmo, Sweden 115 Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands 116 Atrial Fibrillation NETwork, Muenster, Germany 117 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK 118 Yonsei University Health System, Seoul, Korea 119 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada 120 Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland 121 Laboratory of Genetics and Molecular Biology, Heart Institute, University of Sao Paulo, Sao Paulo, Brazil 122 Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA 123 Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington, USA 124 Department of Genetics, Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands 125 Li
Ka Shing Center for Health Information and Discovery, Big Data Institute, Oxford University, Oxford, UK

Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA

Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHRI), Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain

Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, Spain

Biomedical Network Research Centre on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain

University Institute of Clinical Chemistry, University of Bern, Switzerland

Labormedizinisches Zentrum Dr. Risch, Schaan, Liechtenstein

University of Colorado School of Medicine, Aurora, Colorado, USA

J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA

Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, LA BioMed at Harbor-UCLA Medical Center, Torrance, California, USA

Division of Cardiology, University of Pittsburgh, Pennsylvania, USA

Division of Cardiology, University of Alberta, Edmonton, Canada

Department of General and Interventional Cardiology, University Heart Centre Hamburg, Hamburg, Germany

DZHK (German Centre for Cardiovascular Research), partner site: Hamburg/Kiel/Lübeck, Hamburg, Germany

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA

Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA

Cardiology Division, Pittsburgh VA Healthcare System, Pittsburgh, Pennsylvania, USA

Korea University Anam Hospital, Seoul, Korea

Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland

Division of Population Health Sciences, University of Dundee, Scotland, UK

Department of Cardiology, Clinical Sciences, Lund University and Skåne University Hospital, Lund, Sweden

Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston Salem, North Carolina, USA

Cardiovascular Health Research Unit, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington, USA

Department of Epidemiology and Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands

Inspectorate of Health Care, Utrecht, The Netherlands

Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan

Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany

Institute of Clinical Medicine, University of Oslo, Oslo, Norway

Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany

Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA

Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA

Division of Cardiology, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada

University of Cincinnati College of Medicine, Cincinnati, Ohio, USA

University of Virginia Health System.
Acknowledgements

A full list of acknowledgments appears in the Supplementary Note.

References

32. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear. Rhythm 8, 1308–1339 (2011).
37. Genotyping and quality control of UK Biobank, a large-scale, extensively phenotyped prospective resource. at <http://www.ukbiobank.ac.uk/wpcontent/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf>
42. Shaun P & Christopher C PLINK v1.90b3.32.

74. Burdett T et al. The NHGRI-EBI Catalog of published genome-wide association studies. at <www.ebi.ac.uk/gwas>

Figure 1. Study and analysis flowchart

Top, overview of the participating studies, number of AF cases and referents, and the percent of samples imputed with each reference panel. Middle, summary of the primary analyses and the newly discovered loci for AF. Bottom, overview of the secondary analyses to evaluate AF risk variants and loci.
Figure 2. Manhattan plot of combined-ancestry meta-analysis

The plot shows 67 novel (red) and 27 known (blue) genetic loci associated with AF at a significance level of $P < 1 \times 10^{-8}$ (dashed line), for the combined-ancestry meta-analysis ($n = 588,190$). The significance level accounts for multiple testing of independent variants with MAF $\geq 0.1\%$ using a Bonferroni correction. P-values (two-sided) were derived from a meta-analysis using a fixed effects model with an inverse-variance weighted approach. The y-axis has a break between $-\log_{10}(P)$ of 30 and 510 to emphasize the novel loci.
Figure 3. Volcano plot of transcriptome-wide analysis from human heart tissues

The plots show the results from the transcriptome-wide analysis based on left ventricle (a, n=190) and right atrial appendage (b, n=159) tissue from GTEx, calculated with the MetaXcan method based on the combined-ancestry summary level results (n=588,190). Each plotted point represents the association results for an individual gene. The x-axis shows the effect size for associations of predicted gene expression and AF risk for each tested gene. The y-axis shows the –log10(P) for the associations per gene. Genes with positive effect (red) showed an association of increased predicted gene expression with AF risk. Genes with negative effect (blue) showed an association of decreased predicted gene expression with AF risk. The highlighted genes are significant after Bonferroni correction for all tested genes and tissues with a P-value < 5.36x10^-6. The result for one gene for right atrial appendage (b) is not shown (SNX4, Effect = 6.94, P = 0.2).

Roselli et al. Nat Genet. Author manuscript; available in PMC 2018 September 13.
Figure 4. Cross-trait associations of AF risk variants with AF risk factors in the UK Biobank

The heatmap shows associations of novel and known sentinel variants at AF risk loci from the combined-ancestry meta-analysis. Shown are variants and phenotypes with significant associations after correcting for 12 phenotypes via Bonferroni with $P < 4.17 \times 10^{-3}$. P-values (two-sided) were derived from linear and logistic regression models. Listed next to each trait is the number of cases for binary traits or total sample size for quantitative traits.

Hierarchical clustering was performed on a variant level using the complete linkage method based on Euclidian distance. Coloring represents Z-scores for each respective trait or disease, oriented toward the AF risk allele. Red indicates an increase in the trait or disease risk while blue indicates a decrease in the trait or disease risk. Abbreviations, BMI, body-mass index, CAD, coronary artery disease, PVD, pulmonary vascular disease.
Table 1.

Novel loci in combined-ancestry meta-analysis

<table>
<thead>
<tr>
<th>Rsid</th>
<th>Ch</th>
<th>hg19</th>
<th>Risk/Re f Allele</th>
<th>RA F [%]</th>
<th>RR</th>
<th>95% CI</th>
<th>PMETA</th>
<th>Nearest Gene(s)</th>
<th>Func</th>
<th>imp Qua l</th>
<th>F^2HET</th>
<th>P^2HET</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1875853</td>
<td>1</td>
<td>10167425 A/G</td>
<td>0.5</td>
<td>1.55</td>
<td>1.36–1.77</td>
<td>1.18×10^-10</td>
<td>UBE4B</td>
<td>missense</td>
<td>0.81</td>
<td>0.0</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>rs880315</td>
<td>1</td>
<td>10796866 C/T</td>
<td>37.4</td>
<td>1.04</td>
<td>1.03–1.06</td>
<td>5.04×10^{-9}</td>
<td>CASZ1</td>
<td>intronic</td>
<td>0.97</td>
<td>40.7</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>rs14651872</td>
<td>6</td>
<td>5153039 A/G</td>
<td>2.6</td>
<td>1.18</td>
<td>1.12–1.24</td>
<td>2.05×10^-10</td>
<td>C1orf1185</td>
<td>intronic</td>
<td>0.96</td>
<td>0.0</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>rs4484922</td>
<td>1</td>
<td>116310818 G/C</td>
<td>68.3</td>
<td>1.07</td>
<td>1.05–1.08</td>
<td>4.57×10^-16</td>
<td>CASQ2</td>
<td>intronic</td>
<td>0.98</td>
<td>0.0</td>
<td>0.689</td>
<td></td>
</tr>
<tr>
<td>rs79187193</td>
<td>1</td>
<td>147255831 G/A</td>
<td>94.8</td>
<td>1.12</td>
<td>1.08–1.16</td>
<td>8.07×10^-10</td>
<td>GJA5</td>
<td>upstream</td>
<td>0.97</td>
<td>39.8</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td>rs4951261</td>
<td>1</td>
<td>205717823 C/A</td>
<td>38.2</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>1.17×10^-09</td>
<td>NUCKS1</td>
<td>intronic</td>
<td>0.99</td>
<td>0.0</td>
<td>0.788</td>
<td></td>
</tr>
<tr>
<td>rs6546620</td>
<td>2</td>
<td>26199940 C/T</td>
<td>75.3</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>2.96×10^-14</td>
<td>KIF3C</td>
<td>intronic</td>
<td>0.95</td>
<td>33.0</td>
<td>0.201</td>
<td></td>
</tr>
<tr>
<td>rs6742276</td>
<td>2</td>
<td>61768745 A/G</td>
<td>61.2</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>2.42×10^-11</td>
<td>XPO1</td>
<td>upstream</td>
<td>0.99</td>
<td>0.0</td>
<td>0.731</td>
<td></td>
</tr>
<tr>
<td>rs72926475</td>
<td>2</td>
<td>86594487 G/A</td>
<td>87.0</td>
<td>1.07</td>
<td>1.05–1.10</td>
<td>3.49×10^-10</td>
<td>REEP1,KDM13A</td>
<td>intergenic</td>
<td>0.97</td>
<td>38.7</td>
<td>0.180</td>
<td></td>
</tr>
<tr>
<td>rs56181519</td>
<td>2</td>
<td>175555714 C/T</td>
<td>74.0</td>
<td>1.08</td>
<td>1.06–1.10</td>
<td>1.52×10^-09</td>
<td>WIPI1 ,CHRNA1</td>
<td>intergenic</td>
<td>0.94</td>
<td>0.0</td>
<td>0.519</td>
<td></td>
</tr>
<tr>
<td>rs295114</td>
<td>2</td>
<td>20195602 C/T</td>
<td>59.7</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>1.76×10^-20</td>
<td>SPATS2L</td>
<td>intronic</td>
<td>1.00</td>
<td>21.9</td>
<td>0.275</td>
<td></td>
</tr>
<tr>
<td>rs2306272</td>
<td>3</td>
<td>66434643 C/T</td>
<td>31.8</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>4.54×10^-11</td>
<td>LRG1</td>
<td>missense</td>
<td>0.99</td>
<td>30.6</td>
<td>0.218</td>
<td></td>
</tr>
<tr>
<td>rs17490701</td>
<td>3</td>
<td>111587879 G/A</td>
<td>85.7</td>
<td>1.07</td>
<td>1.05–1.10</td>
<td>5.43×10^-11</td>
<td>PHLD2</td>
<td>intronic</td>
<td>0.97</td>
<td>46.8</td>
<td>0.111</td>
<td></td>
</tr>
<tr>
<td>rs4855075</td>
<td>3</td>
<td>179170494 T/C</td>
<td>14.3</td>
<td>1.06</td>
<td>1.04–1.08</td>
<td>4.00×10^-09</td>
<td>GNB4</td>
<td>upstream</td>
<td>0.95</td>
<td>10.1</td>
<td>0.348</td>
<td></td>
</tr>
<tr>
<td>rs38222299</td>
<td>4</td>
<td>10118745 T/G</td>
<td>67.9</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>1.93×10^-09</td>
<td>WDR1</td>
<td>upstream</td>
<td>0.96</td>
<td>0.0</td>
<td>0.922</td>
<td></td>
</tr>
<tr>
<td>rs3960788</td>
<td>4</td>
<td>103915618 C/T</td>
<td>42.4</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>2.09×10^-12</td>
<td>SLC9B1</td>
<td>intronic</td>
<td>0.98</td>
<td>35.7</td>
<td>0.183</td>
<td></td>
</tr>
<tr>
<td>rs55754224</td>
<td>4</td>
<td>114428714 T/C</td>
<td>25.0</td>
<td>1.05</td>
<td>1.03–1.07</td>
<td>9.25×10^-09</td>
<td>CAMK2D</td>
<td>intronic</td>
<td>0.99</td>
<td>0.0</td>
<td>0.511</td>
<td></td>
</tr>
<tr>
<td>rs10213171</td>
<td>4</td>
<td>148937537 G/C</td>
<td>8.2</td>
<td>1.11</td>
<td>1.08–1.14</td>
<td>6.09×10^-14</td>
<td>ARHGAP10</td>
<td>intronic</td>
<td>0.96</td>
<td>0.0</td>
<td>0.584</td>
<td></td>
</tr>
<tr>
<td>rs174048</td>
<td>5</td>
<td>142650404 C/T</td>
<td>15.7</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>1.05×10^-11</td>
<td>ARHGAP26,NR3C1</td>
<td>intergenic</td>
<td>0.99</td>
<td>0.0</td>
<td>0.852</td>
<td></td>
</tr>
<tr>
<td>rs6882776</td>
<td>5</td>
<td>172664163 G/A</td>
<td>67.2</td>
<td>1.06</td>
<td>1.05–1.08</td>
<td>3.18×10^-14</td>
<td>NXX2–5</td>
<td>upstream</td>
<td>0.95</td>
<td>0.0</td>
<td>0.858</td>
<td></td>
</tr>
<tr>
<td>rs73366713</td>
<td>6</td>
<td>16415751 G/A</td>
<td>86.2</td>
<td>1.11</td>
<td>1.09–1.14</td>
<td>5.80×10^-21</td>
<td>ATXN1</td>
<td>intronic</td>
<td>0.94</td>
<td>0.0</td>
<td>0.879</td>
<td></td>
</tr>
<tr>
<td>rs34969716</td>
<td>6</td>
<td>18210109 A/G</td>
<td>31.1</td>
<td>1.09</td>
<td>1.07–1.11</td>
<td>2.91×10^-25</td>
<td>KDM1B</td>
<td>intronic</td>
<td>0.80</td>
<td>19.5</td>
<td>0.290</td>
<td></td>
</tr>
<tr>
<td>rs3176326</td>
<td>6</td>
<td>36647289 G/A</td>
<td>80.4</td>
<td>1.06</td>
<td>1.04–1.08</td>
<td>7.95×10^-11</td>
<td>CDKN1A</td>
<td>intronic</td>
<td>0.95</td>
<td>0.0</td>
<td>0.450</td>
<td></td>
</tr>
<tr>
<td>rs1179845</td>
<td>6</td>
<td>149399100 T/G</td>
<td>8.9</td>
<td>1.12</td>
<td>1.09–1.15</td>
<td>8.38×10^-17</td>
<td>USF</td>
<td>downstream</td>
<td>0.83</td>
<td>56.5</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td>rs55734480</td>
<td>7</td>
<td>14372009 A/G</td>
<td>26.6</td>
<td>1.05</td>
<td>1.03–1.07</td>
<td>7.34×10^-10</td>
<td>DGKB</td>
<td>intronic</td>
<td>0.94</td>
<td>0.0</td>
<td>0.441</td>
<td></td>
</tr>
<tr>
<td>rs6462078</td>
<td>7</td>
<td>28413187 A/C</td>
<td>74.7</td>
<td>1.06</td>
<td>1.04–1.08</td>
<td>1.35×10^-11</td>
<td>CREB5</td>
<td>intronic</td>
<td>0.98</td>
<td>22.2</td>
<td>0.278</td>
<td></td>
</tr>
<tr>
<td>Rsid</td>
<td>Chr</td>
<td>hg19</td>
<td>Risk/Reference Allele</td>
<td>RA F [%]</td>
<td>RR</td>
<td>95% CI</td>
<td>P META</td>
<td>Nearest Genes</td>
<td>Func</td>
<td>imp Qua l</td>
<td>P HET</td>
<td>P HET</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------</td>
<td>-----------------------</td>
<td>----------</td>
<td>------</td>
<td>--------------------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>rs74910854</td>
<td>7</td>
<td>74110705</td>
<td>G/A</td>
<td>6.9</td>
<td>1.10</td>
<td>1.07–1.13</td>
<td>GTF2I</td>
<td>intronic</td>
<td>0.74</td>
<td>24.4</td>
<td>0.265</td>
<td></td>
</tr>
<tr>
<td>rs62483627</td>
<td>7</td>
<td>106856002</td>
<td>A/G</td>
<td>23.5</td>
<td>1.05</td>
<td>1.03–1.07</td>
<td>COG5</td>
<td>intronic</td>
<td>0.98</td>
<td>15.1</td>
<td>0.318</td>
<td></td>
</tr>
<tr>
<td>rs7789146</td>
<td>7</td>
<td>150661409</td>
<td>G/A</td>
<td>80.3</td>
<td>1.06</td>
<td>1.04–1.08</td>
<td>KCNH2</td>
<td>intronic</td>
<td>0.96</td>
<td>66.0</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>rs7846485</td>
<td>8</td>
<td>21807375</td>
<td>C/A</td>
<td>86.8</td>
<td>1.09</td>
<td>1.07–1.12</td>
<td>XP07</td>
<td>intronic</td>
<td>0.99</td>
<td>0.0</td>
<td>0.676</td>
<td></td>
</tr>
<tr>
<td>rs62521286</td>
<td>8</td>
<td>124551975</td>
<td>G/A</td>
<td>6.7</td>
<td>1.13</td>
<td>1.10–1.16</td>
<td>FBX032</td>
<td>intronic</td>
<td>0.96</td>
<td>0.0</td>
<td>0.678</td>
<td></td>
</tr>
<tr>
<td>rs35006907</td>
<td>8</td>
<td>125859817</td>
<td>A/C</td>
<td>32.9</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>MTSS1, LINC0096.4</td>
<td>regulatory reg.</td>
<td>0.97</td>
<td>0.0</td>
<td>0.542</td>
<td></td>
</tr>
<tr>
<td>rs69931266</td>
<td>8</td>
<td>141762649</td>
<td>A/G</td>
<td>53.8</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>PTK2</td>
<td>intronic</td>
<td>0.99</td>
<td>5.7</td>
<td>0.374</td>
<td></td>
</tr>
<tr>
<td>rs4977397</td>
<td>9</td>
<td>20235004</td>
<td>A/G</td>
<td>57.0</td>
<td>1.04</td>
<td>1.03–1.06</td>
<td>SLC24A2, MLLT3</td>
<td>intergenic</td>
<td>0.95</td>
<td>38.3</td>
<td>0.166</td>
<td></td>
</tr>
<tr>
<td>rs4743034</td>
<td>9</td>
<td>109632353</td>
<td>A/G</td>
<td>23.4</td>
<td>1.05</td>
<td>1.03–1.07</td>
<td>ZNF462</td>
<td>intronic</td>
<td>1.00</td>
<td>0.0</td>
<td>0.963</td>
<td></td>
</tr>
<tr>
<td>rs1076036</td>
<td>9</td>
<td>127178266</td>
<td>G/T</td>
<td>64.7</td>
<td>1.04</td>
<td>1.03–1.06</td>
<td>PSMB7</td>
<td>upstream</td>
<td>0.97</td>
<td>0.0</td>
<td>0.680</td>
<td></td>
</tr>
<tr>
<td>rs7919685</td>
<td>10</td>
<td>65315800</td>
<td>G/T</td>
<td>53.3</td>
<td>1.06</td>
<td>1.04–1.07</td>
<td>REEP3</td>
<td>intronic</td>
<td>1.00</td>
<td>49.2</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>rs11001667</td>
<td>10</td>
<td>77935345</td>
<td>G/A</td>
<td>22.2</td>
<td>1.06</td>
<td>1.05–1.08</td>
<td>C10orf11</td>
<td>intronic</td>
<td>0.98</td>
<td>26.8</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td>rs1044288</td>
<td>10</td>
<td>103605714</td>
<td>T/C</td>
<td>66.2</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>C10orf76</td>
<td>3' UTR</td>
<td>0.98</td>
<td>14.0</td>
<td>0.325</td>
<td></td>
</tr>
<tr>
<td>rs1822273</td>
<td>11</td>
<td>20010513</td>
<td>G/A</td>
<td>27.1</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>NAV2</td>
<td>intronic</td>
<td>0.98</td>
<td>0.0</td>
<td>0.764</td>
<td></td>
</tr>
<tr>
<td>rs949078</td>
<td>11</td>
<td>121629007</td>
<td>C/T</td>
<td>27.1</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>sortilin, mininoG</td>
<td>intergenic</td>
<td>0.97</td>
<td>0.0</td>
<td>0.600</td>
<td></td>
</tr>
<tr>
<td>rs11381953</td>
<td>12</td>
<td>26348429</td>
<td>A/G</td>
<td>74.3</td>
<td>1.05</td>
<td>1.03–1.07</td>
<td>SSPPN</td>
<td>upstream</td>
<td>0.98</td>
<td>0.0</td>
<td>0.597</td>
<td></td>
</tr>
<tr>
<td>rs12809354</td>
<td>12</td>
<td>32978437</td>
<td>C/T</td>
<td>14.7</td>
<td>1.08</td>
<td>1.06–1.11</td>
<td>PFK2</td>
<td>intronic</td>
<td>0.97</td>
<td>31.5</td>
<td>0.211</td>
<td></td>
</tr>
<tr>
<td>rs7976885</td>
<td>12</td>
<td>57103154</td>
<td>T/C</td>
<td>27.9</td>
<td>1.06</td>
<td>1.04–1.07</td>
<td>NACA</td>
<td>downstream</td>
<td>0.98</td>
<td>2.4</td>
<td>0.393</td>
<td></td>
</tr>
<tr>
<td>rs35349325</td>
<td>12</td>
<td>70097464</td>
<td>T/C</td>
<td>54.1</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>BEST3</td>
<td>upstream</td>
<td>0.96</td>
<td>0.0</td>
<td>0.863</td>
<td></td>
</tr>
<tr>
<td>rs17180703</td>
<td>12</td>
<td>67228187</td>
<td>G/A</td>
<td>56.0</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>KRR1, PHLD1</td>
<td>intergenic</td>
<td>0.97</td>
<td>0.0</td>
<td>0.482</td>
<td></td>
</tr>
<tr>
<td>rs12180346</td>
<td>12</td>
<td>115991017</td>
<td>T/C</td>
<td>14.9</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>TBX5-AS1, TBX3</td>
<td>intergenic</td>
<td>0.84</td>
<td>0.0</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>rs12298484</td>
<td>12</td>
<td>124418674</td>
<td>C/T</td>
<td>67.4</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>DNAH10</td>
<td>intronic</td>
<td>1.00</td>
<td>0.0</td>
<td>0.973</td>
<td></td>
</tr>
<tr>
<td>rs9580438</td>
<td>13</td>
<td>23373406</td>
<td>C/T</td>
<td>32.5</td>
<td>1.06</td>
<td>1.04–1.07</td>
<td>LINC00540, BASPIPI</td>
<td>intergenic</td>
<td>0.98</td>
<td>0.0</td>
<td>0.485</td>
<td></td>
</tr>
<tr>
<td>rs28631169</td>
<td>14</td>
<td>23888183</td>
<td>T/C</td>
<td>19.9</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>MYH7</td>
<td>intronic</td>
<td>0.97</td>
<td>14.5</td>
<td>0.319</td>
<td></td>
</tr>
<tr>
<td>rs2145587</td>
<td>14</td>
<td>32981484</td>
<td>A/G</td>
<td>28.1</td>
<td>1.08</td>
<td>1.06–1.10</td>
<td>AKAP6</td>
<td>intronic</td>
<td>0.94</td>
<td>0.0</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td>rs73241997</td>
<td>14</td>
<td>35173775</td>
<td>T/C</td>
<td>16.4</td>
<td>1.07</td>
<td>1.05–1.10</td>
<td>SNX6, CFL2</td>
<td>intergenic</td>
<td>0.98</td>
<td>62.2</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>rs10873299</td>
<td>14</td>
<td>77426711</td>
<td>A/G</td>
<td>38.4</td>
<td>1.05</td>
<td>1.03–1.07</td>
<td>LRRC74, IRF2BPL</td>
<td>intergenic</td>
<td>0.96</td>
<td>4.4</td>
<td>0.381</td>
<td></td>
</tr>
<tr>
<td>rs62011291</td>
<td>15</td>
<td>63800013</td>
<td>G/A</td>
<td>22.9</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>USP5</td>
<td>intronic</td>
<td>0.96</td>
<td>0.0</td>
<td>0.727</td>
<td></td>
</tr>
<tr>
<td>Rsid</td>
<td>Chr</td>
<td>hgl9</td>
<td>Risk/Ref Allele</td>
<td>RAF</td>
<td>RR</td>
<td>95% CI</td>
<td>P<sub>META</sub></td>
<td>Nearest Gene(s)*</td>
<td>Func</td>
<td>impQual</td>
<td>I<sup>2</sup></td>
<td>HET</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-------</td>
<td>-----------------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>rs12591736</td>
<td>15</td>
<td>70454139</td>
<td>G/A</td>
<td>82.0</td>
<td>1.06</td>
<td>1.04–1.08</td>
<td>2.47×10<sup>-09</sup></td>
<td>TLE3, UACA</td>
<td>intergenic</td>
<td>0.92</td>
<td>0.0</td>
<td>0.966</td>
</tr>
<tr>
<td>rs12908004</td>
<td>15</td>
<td>80676925</td>
<td>G/A</td>
<td>15.9</td>
<td>1.08</td>
<td>1.06–1.10</td>
<td>1.95×10<sup>-14</sup></td>
<td>LINCO00927, ARNT2</td>
<td>intronic</td>
<td>0.96</td>
<td>57.4</td>
<td>0.052</td>
</tr>
<tr>
<td>rs12908437</td>
<td>15</td>
<td>99287375</td>
<td>T/C</td>
<td>39.2</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>1.25×10<sup>-10</sup></td>
<td>IGF1R</td>
<td>intronic</td>
<td>0.98</td>
<td>0.0</td>
<td>0.818</td>
</tr>
<tr>
<td>rs2286466</td>
<td>16</td>
<td>2014283</td>
<td>G/A</td>
<td>80.9</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>3.53×10<sup>-14</sup></td>
<td>RPS2</td>
<td>synonymous</td>
<td>0.92</td>
<td>0.0</td>
<td>0.882</td>
</tr>
<tr>
<td>rs8073937</td>
<td>17</td>
<td>7435040</td>
<td>G/A</td>
<td>36.6</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>1.02×10<sup>-11</sup></td>
<td>POLR2A, TNFSF1 2</td>
<td>intergenic</td>
<td>0.96</td>
<td>12.3</td>
<td>0.335</td>
</tr>
<tr>
<td>rs72811294</td>
<td>17</td>
<td>12618680</td>
<td>G/C</td>
<td>88.7</td>
<td>1.07</td>
<td>1.05–1.09</td>
<td>6.87×10<sup>-09</sup></td>
<td>MYOCAD</td>
<td>intronic</td>
<td>0.95</td>
<td>32.3</td>
<td>0.206</td>
</tr>
<tr>
<td>rs242357</td>
<td>17</td>
<td>44019712</td>
<td>G/A</td>
<td>61.3</td>
<td>1.04</td>
<td>1.03–1.06</td>
<td>4.35×10<sup>-09</sup></td>
<td>MAPT</td>
<td>intronic</td>
<td>0.94</td>
<td>62.1</td>
<td>0.032</td>
</tr>
<tr>
<td>rs7219869</td>
<td>17</td>
<td>68337185</td>
<td>G/C</td>
<td>43.9</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>1.49×10<sup>-10</sup></td>
<td>KCNJ2, CASC17</td>
<td>intergenic</td>
<td>0.99</td>
<td>16.1</td>
<td>0.312</td>
</tr>
<tr>
<td>rs9953366</td>
<td>18</td>
<td>4647192</td>
<td>C/T</td>
<td>65.5</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>9.03×10<sup>-11</sup></td>
<td>SMAD7</td>
<td>intronic</td>
<td>0.93</td>
<td>0.0</td>
<td>0.565</td>
</tr>
<tr>
<td>rs2145274</td>
<td>20</td>
<td>6572014</td>
<td>A/C</td>
<td>91.3</td>
<td>1.11</td>
<td>1.08–1.14</td>
<td>6.97×10<sup>-13</sup></td>
<td>CASC20, BMP2</td>
<td>regulatory reg.</td>
<td>0.96</td>
<td>19.0</td>
<td>0.295</td>
</tr>
<tr>
<td>rs7269123</td>
<td>20</td>
<td>6157939</td>
<td>C/T</td>
<td>58.5</td>
<td>1.05</td>
<td>1.03–1.06</td>
<td>5.59×10<sup>-09</sup></td>
<td>C20orf166</td>
<td>intronic</td>
<td>0.85</td>
<td>68.7</td>
<td>0.012</td>
</tr>
<tr>
<td>rs2834618</td>
<td>21</td>
<td>36119111</td>
<td>T/G</td>
<td>89.8</td>
<td>1.12</td>
<td>1.09–1.14</td>
<td>2.93×10<sup>-18</sup></td>
<td>LOC100506385</td>
<td>intronic</td>
<td>0.93</td>
<td>21.6</td>
<td>0.277</td>
</tr>
<tr>
<td>rs465276</td>
<td>22</td>
<td>18600583</td>
<td>G/A</td>
<td>61.5</td>
<td>1.05</td>
<td>1.04–1.07</td>
<td>1.84×10<sup>-11</sup></td>
<td>TUBA8</td>
<td>intronic</td>
<td>0.90</td>
<td>0.0</td>
<td>0.654</td>
</tr>
</tbody>
</table>

Sentinel variants at novel genetic loci associated with AF at a significance level of \(P < 1 \times 10^{-8} \), for the combined-ancestry meta-analysis (n=588,190). The significance level accounts for multiple testing of independent variants with MAF > 0.1% using a Bonferroni correction. \(P_{\text{META}} \) (two-sided) was derived from a meta-analysis using a fixed effects model with an inverse-variance weighted approach. \(P_{\text{HET}} \) was derived from a Cochran’s Q-test (two-sided) for heterogeneity. Abbreviations, Chr, chromosome, Cl, confidence interval, Func, functional consequence (most severe consequence by variant effect predictor), HET, heterogeneity, \(I^2 \), I-square, impQual, average imputation quality, META, metaanalysis, P, P-value, RAF, risk allele frequency, reg, region, Ref, reference, RR, relative risk.

*Reported is either the gene that overlaps with the sentinel variant, or the nearest gene(s) up- and downstream of the sentinel variant (separated by comma).