Targeted Gene Sequencing in Children with Crohn's Disease and Their Parents: Implications for Missing Heritability

Jiun-Sheng Chen, The University of Texas MD Anderson Cancer Center
Fulan Hu, The University of Texas MD Anderson Cancer Center
Subra Kugathasan, Emory University
Lynn B. Jorde, University of Utah
David Nix, University of Utah
Ann Rutherford, University of Utah
Lee Denson, Cincinnati Children’s Hospital Medical Center,
W. Scott Watkins, University of Utah
Sampath Prahalad, Emory University
Chad Huff, The University of Texas MD Anderson Cancer Center

Only first 10 authors above; see publication for full author list.

Journal Title: G3
Volume: Volume 8, Number 9
Publisher: Genetics Society of America: G3 | 2018-09-01, Pages 2881-2888
Type of Work: Article | Final Publisher PDF
Permanent URL: https://pid.emory.edu/ark:/25593/tdc6m

Final published version: http://www.g3journal.org/content/8/9/2881

Copyright information:
© 2018 Chen et al.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed November 22, 2018 1:19 PM EST
Targeted Gene Sequencing in Children with Crohn’s Disease and Their Parents: Implications for Missing Heritability

Jiun-Sheng Chen,*† Fulan Hu,*† Subra Kugathasan,‡ Lynn B. Jorde,** David Nix,†† Ann Rutherford,** Lee Denson,** W. Scott Watkins,** Sampath Prahalad,† Chad Huff,**† and Stephen L. Guthery‡‡,††

*Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, ‡Biostatistics, Bioinformatics and Systems Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston and MD Anderson Cancer Center, Houston, TX, §Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, China, ‡‡Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, **Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, ††Department of Population Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, and §§Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

ORCID IDs: 0000-0002-0708-6498 (J.-S.C.); 0000-0003-1484-301X (S.L.G.)

ABSTRACT Crohn’s disease is a complex genetic trait characterized by chronic relapsing intestinal inflammation. Genome wide association studies (GWAS) have identified more than 170 loci associated with the disease, accounting for ~14% of the disease variance. We hypothesized that rare genetic variation in GWAS positional candidates also contribute to disease pathogenesis. We performed targeted, massively-parallel sequencing of 101 genes in 205 children with Crohn’s disease, including 179 parent-child trios and 200 controls, both of European ancestry. We used the gene burden test implemented in VAAST and estimated effect sizes using logistic regression and meta-analyses. We identified three genes with nominally significant p-values: NOD2, RTKN2, and MGAT3. Only NOD2 was significant after correcting for multiple comparisons. We identified eight novel rare variants in NOD2 that are likely disease-associated. Incorporation of rare variation and compound heterozygosity nominally increased the proportion of variance explained from 0.074 to 0.089. We estimated the population attributable risk and total heritability of variation in NOD2 to be 32.9% and 3.4%, respectively, with 3.7% and 0.25% accounted for by rare putatively functional variants. Sequencing probands (as opposed to genotyping) to identify rare variants and incorporating phase by sequencing parents can recover a portion of the missing heritability of Crohn’s disease.

KEYWORDS Crohn’s disease, NOD2, rare variant, de novo mutation, case-control study

Corresponding author: Chad Huff, 1155 Pressler St, Houston, TX 77030, Phone: 713-563-4957, E-mail: CHuff1@mdanderson.org; Stephen L. Guthery, 81 N Mario Capecchi Drive, Salt Lake City, UT 84113, Phone: 801-213-3599, E-mail: Stephen.Guthery@hsc.utah.edu

Copyright © 2018 Chen et al.
doi: https://doi.org/10.1534/g3.118.200404
Manuscript received December 19, 2017; accepted for publication May 24, 2018
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Supplemental material available at Figshare: https://doi.org/10.25387/g3.6713156.

Crohn’s disease is an idiopathic inflammatory bowel disease (IBD) characterized by chronic and relapsing inflammation of the gastrointestinal tract. Crohn’s disease is believed to be caused by an abnormal immune response to intestinal microbiota in genetically susceptible individuals. Twin concordance and familial aggregation studies overwhelmingly support a significant genetic contribution to Crohn’s disease (Tysk et al. 1988; Monsén et al. 1991; Orholm et al. 1991; Meucci et al. 1992; Thompson et al. 1996; Russel et al. 1997; Orholm et al. 2000; Halfvarson et al. 2003; Reynisdottir et al. 2004; Guthery et al. 2011), and genome wide association studies (GWAS) have identified susceptibility loci in affected individuals of European (Duerr et al. 2006; Hampe et al. 2007; Parkes et al. 2007; Rioux et al. 2007; Wellcome Trust Case Control Consortium 2007; Barrett et al. 2008; Kugathasan et al. 2008; Imielinski et al. 2009; Franke et al. 2010; Liu et al. 2011; Jostins et al. 2012), Asian (Yamazaki et al. 2005; Umeno et al. 2011), and African (Brant et al. 2017) ancestry.

Pan-ancestry GWAS have thus far identified more than 170 loci associated with Crohn’s disease (Liu et al. 2015). These loci are enriched...
for genes involved in important pathways of Crohn’s disease, including innate immunity, autophagy, and the IL-23-TG17 pathway (Ramjeet et al. 2010; Corridoni et al. 2014). For most of the >170 common variant associations implicated in Crohn’s disease, the causal variants responsible for disease association are unknown. Moreover, currently identified variants account for only ~14% of the variance explained for Crohn’s disease (Barrett et al. 2008; Franke et al. 2010; Jostins et al. 2012).

Rare variants are potentially more deleterious than common variation due to the effects of natural selection (Eyre-Walker and Keightley 2007). Although they are individually rare, they may in aggregate contribute to Crohn’s disease and other complex genetic diseases (Eicher et al. 2010; Veltman and Brunner 2012). Indeed, multiple exome sequencing studies have identified rare and highly penetrant mutations in multiple genes that cause chronic intestinal inflammation (Glocker et al. 2009; Rivas et al. 2011; Worthey et al. 2011; Alangari et al. 2012; Christodoulou et al. 2013; Dinwiddie et al. 2013; Avitzur et al. 2014; Dhillon et al. 2014; Hu et al. 2014; Okou et al. 2014; Kelsen et al. 2015; Hong et al. 2016). Moreover, the contribution of de novo variation to Crohn’s disease susceptibility is currently unknown.

To further explore the contribution of rare variants and de novo mutations to Crohn’s disease susceptibility, we conducted targeted sequencing of 101 genes identified by GWAS in 205 childhood onset patient-offspring trios and 200 unaffected controls. To test for rare variant association in each gene, we conducted gene-based burden tests using VAAST and de novo mutation association tests using VARPRISM (Kong et al. 2012; Hu et al. 2016). Both tests incorporate functional variant prediction information to improve statistical power. Collectively, this study not only reaffirms the role of common variation in NOD2 as the primary genetic risk for Crohn’s disease but also defines the role of rare variation in NOD2 in the causation of Crohn’s disease.

MATERIALS AND METHODS

The purpose of this study was to identify highly penetrant, rare deleterious variants, to estimate the effect size of those variants in combination with common variants, and to estimate the impact of phase on effect size. Measures of effect size included relative risk estimates, percent of variance of disease explained, population attributable risk, and total heritability. Our approach included the identification of Crohn’s-affected children, their parents and a cohort of healthy controls. Prior to sequencing, we used genotyping arrays and principal components analysis to assure that cases and controls were of similar genetic ancestry. We then performed rare variant association tests and single marker association tests. We used rare variant association tests and single marker association tests to estimate the effect size of those variants in combination with common variants, and to estimate the impact of phase on effect size. Measures of effect size included relative risk estimates, percent of variance of disease explained, population attributable risk, and total heritability.

Subjects

The study included 205 Crohn’s disease cases with disease onset 18 years or younger. For 179 of these cases, trio sets were obtained by collecting samples from both parents. All subjects were phenotyped by one of three pediatric gastroenterologists with expertise in Crohn’s disease (SLK, LD, SLG). 60.1% of the subjects were male, and the median age of diagnosis was 11 years (see supplementary Figure S1). Controls were selected from healthy adult volunteers who had neither personal nor family history of autoimmune disease and no chronic diarrhea. The control group had a median age at enrollment of 23 years and 59.5% were male. The healthy adult controls have a greater time at risk than affected children, and therefore are less likely to carry disease-causing alleles. Additionally, phlebotomy in healthy children—especially under the age of 12 years—is difficult to justify ethically. Therefore, we deemed healthy adult controls as more appropriate controls. DNA was obtained from whole blood using standard procedures.

To identify population structure in cases and controls prior to sequencing, we generated 185,337 raw genotypes obtained for each study subject using the Immunochip genotyping array (Cortes and Brown 2011). To examine stratification in the data, the Immunochip data were merged with unrelated HapMap samples (60 CEU, 60 YRI, and 90 CHB/JPT). The overlap between data sets consisted of 17,119 SNPs. To eliminate platform-specific differences, A/T and G/C SNPs were removed. Additionally, SNPs with a minor allele frequency (MAF) less than 0.05 were removed. There were 13,549 SNPs remaining after all filtering. To select a genetically matched subset of samples for sequencing, we selected samples falling within three standard deviations of the centroid for the CEU HapMap cluster in a principal components analysis (PCA), as indicated by the red circle in Figure S2. The 200 control samples, who had no family nor personal history of autoimmunity, were randomly selected from 500 individuals for whom Immunochip data were available. Figure S2 displays the PCA with the final control set of 200 European Immunochip samples and the HapMap samples.

Targeted capture and sequencing

We selected the coding regions of 97 genes for targeted sequencing based on their proximity to well-established GWAS associations. We also selected STAT1 and STAT4 because of our identification of STAT1 as a cause of IPEX-like enteropathy and as positional candidates in a GWAS (Hu et al. 2014), and similarly, STAT3 and JAK2 because of their apparent involvement in Crohn’s disease pathophysiology (Willson et al. 2012). The full list of 101 genes is presented in Table S1. We used Agilent SureDesign to design probes for targeted enrichment using the HaloPlex Target Enrichment System. The targeted regions constituted 1,076 targets and 17,912 amplicons for a total of 497.3 kb of coding sequence.

Genomic DNA was diluted and digested using restriction enzymes. DNA fragments were hybridized to HaloPlex probes and sample indexes, captured using streptavidin beads, and ligated into circulated fragments per the manufacturer’s protocol. Target libraries were amplified and purified, and indexed samples were pooled for multiplexed sequencing. Sequencing libraries (25 pM) were chemically denatured and applied to an Illumina HiSeq v4 paired end flow cell using an Illumina cBot. Hybridized molecules were clonally amplified and annealed to sequencing primers with reagents from an Illumina HiSeq PE Cluster Kit v4-cBot (PE-401-4001). Following transfer of the flow-cell to an Illumina HiSeq 2500 instrument (HCS v2.2.38 and RTA v1.18.61), a 125-cycle paired-end sequence run was performed using HiSeq SBS Kit v4 sequencing reagents (FC-401-4003).

Bioinformatics and statistical analysis

Variant calling and quality control: We processed targeted sequencing data from both case and control groups using GATK, which is a toolkit for SNV and insertion/deletion calling (McKenna et al. 2010). In brief, we used GATK HaploTypeCaller 3.2 to first obtain individual genotype calls, generating one gvcf file for each individual. We then used HaploTypeCaller to combine the gvcf files and jointly recall genotypes for all individuals. We filtered the joint-called variants to the targeted region and recalibrated according to the variants’ quality score (VQSR). We used 99.9 as the VQSR score cutoff for SNVs. We did not apply VQSR filtering to insertions and deletions (Indels) due to their limited number. We excluded all sites with missing genotype rates of 10% or greater in either the cases or controls. In total, 6,323 SNVs, 217 insertions, and 335 deletions were carried forward for subsequent analyses.

We tested for cryptic relationships using the relationship inference software KING (Manichaikul et al. 2010) and identified no first-through third-degree relationships among individuals in the study.
Association test and single-marker tests: To evaluate evidence for rare variant association, we performed gene-based tests using the Variant Annotation, Analysis and Search Tool (VAAST), version 2.1 (Hu et al. 2013). VAAST incorporates phylogenetic conservation and amino acid substitution information together with allele frequency differences between cases and controls to identify the set of variants in a given gene that are most likely to directly influence disease risk. A positive VAAST score indicates that the combined allele frequency and functional prediction evidence for the variant is sufficient to infer causality based on the Akaike Information Criterion. We constrained the population MAF of each variant in the likelihood model to 0.05 or lower (parameter \(r < 0.05 \)). We restricted the VAAST analysis to the subset of 63 genes with five or more allele copies among cases and controls, which is the minimum number of allele copies needed to potentially achieve a p value of less than 0.05. For rare variants with MAF less than 1% in the controls, we conducted single-marker tests and estimated variant-specific odds ratios using non-Finnish European controls from the Exome Aggregation Consortium (ExAC) database (Lek et al. 2016).

Estimating effect size: Using pre-specified covariates, we modeled the association between variants in NOD2 and Crohn’s disease using logistic regression. We used two models to quantitatively investigate the variance of disease explained by common variants only, and common variants with additional rare variants and parental information. In the first model, we included the following covariates: heterozygosity for each of the L1007fs, R702W, and G908R alleles, and homozygosity for any one of these alleles. These data would be similar to the data obtained from a genotyping study without parental information. In the second model, we included the following covariates: heterozygosity for each of the L1007fs, R702W, and G908R alleles, homozygosity for any one of these alleles, any compound heterozygote (common and rare), and heterozygosity for any of the rare variants we deemed putatively disease-associated. This second model takes advantage of more information obtained by sequencing parents and rare variants obtained by sequencing. For both models, we included R702W because of its widely reported association with Crohn’s disease, although the variant was marginally significant in this study. Because of the quasi-separation noted for rare variants in cases, we used the method of Firth to estimate the maximum likelihood (Firth 1993). We approximated the variance explained from each model by calculating R² using the method of Tjur (Tjur 2009).

For the meta-analysis of R702W, L1007fs and G908R, we included data from 89, 90 and 96 published articles (for R702W, G908 and L1007fs, respectively) with a combined total of 23,703 cases and 22,873 controls, which were published before December 31st, 2016 (D’Addabbo et al. 2009; Schoultz et al. 2009; Yazdanyar et al. 2009; Csöngel et al. 2010; Dassopoulos et al. 2010; Gazouli et al. 2010; Glas et al. 2010; Hoffmann et al. 2010; Lacher et al. 2011; Sventoraityte et al. 2010; Yazdanyar et al. 2010; Naderi et al. 2011; Adeyanjuy et al. 2012; Azzam et al. 2012; Hama et al. 2012; Kanaan et al. 2012; Akyuz et al. 2013; Meddour et al. 2014; Boukercha et al. 2015; Salkic et al. 2015), and conducted the analysis in R using the ‘meta’ package. We calculated the odds ratios for the three variants in the meta-analysis using DerSimonian-Laird statistics as a random-effects model.

Population Attributed Risk and total heritability estimate: We calculated the population attribute risk (PAR) for every potential risk variant using its odds ratio (OR) and allele frequency as the proportion of exposed subjects (Pe) from ExAC using the following formulas to account for the contribution from heterozygotes and homozygotes. (Witte et al. 2014). We converted the odds ratio to the relative risk (RR) using the Crohn’s disease prevalence (P0) of 34.7 cases per 100,000 children (Kappelman et al. 2013):

\[
RR = \frac{OR}{(1 - P0 + (P0 \times OR))}
\]

\[
PAR = \frac{2Pe(1 - Pe)(RR_{bb} - 1) + Pe^2(RR_{bb} - 1)}{1 + 2Pe(1 - Pe)(RR_{bb} - 1) + Pe^2(RR_{bb} - 1)}
\]

In this equation, RR_{bb} and RR_{bb} are relative risk of heterozygotes and homozygotes for putative risk variant B. We calculated RR_{bb} under the assumption of a multiplicative model (Witte et al. 2014). We calculated the locus-wide PAR and its confidence interval using a multiplicative model rather than sum of individual PARs to obtain a conserved PAR (Natarajan et al. 2007; Goyal 2013). Finally, we also computed total heritability for putative variants using a web application, INDI-V (http://cnsgenomics.com/shiny/INDI-V/) (Witte et al. 2014).

De novo mutation analysis: In addition to the variant-calling procedures outlined above, we also applied filtering criteria for de novo mutation calls (Kong et al. 2012). We also applied another de novo mutation filters, excluding all variants reported in ExAC with MAF greater than 0.5% in any population and all variants present in two or more individuals among our cases and controls. We conducted de novo mutation association analysis using VARPRISM, which integrates functional variant prioritization information to identify de novo mutations influencing disease risk (Hu et al. 2016) with the mutation rates in SNVs and indels of 1.2x10^{-8} and 4x10^{-10} per generation, respectively (Lynch 2010; Segurel et al. 2014). Default settings were used for all other VARPRISM parameters.

Data Availability
All sequences are available from the NCBI dbGap under BioProject accession phaXXXXXX. Supplemental material available at Figshare: https://doi.org/10.25387/g3.6713156.

RESULTS

Replication of established risk variants and identification of putative novel risk variants
Our gene-based rare variant case-control analysis identified three genes with nominally significant p-values: NOD2, RTKN2, and MGAT3 (Table 1 and Supplementary Table S3). Only NOD2 was significant after Bonferroni correction (\(P = 1.53x10^{-5} \times 63 = 0.00096 \)). We identified 14 potential risk variants with positive VAAST scores in NOD2, including three well-established risk variants with MAFs of 1% or greater and 11 novel rare variants with MAFs less than 0.5% (Table 2). In addition to the 11 rare variants in NOD2, we also identified two variants with positive VAATT scores in RTKN2, and three in MGAT3 (Table 2).

Given the rarity of these variants, we did not have sufficient power to evaluate each variant individually among our cases and controls. Therefore, we incorporated allele counts from the non-Finnish European sample (NFE) in the ExAC data together with our controls to conduct single marker association tests (Fisher’s Exact Test). The individual variant results should be interpreted with caution given the potential for systematic bias between cases and controls resulting from both population stratification and heterogeneous sequencing technologies.
We identified 11 additional rare variants in NOD2 (S47L, E54K, D291G, R393C, R420H, P668fs, R791Q, R830L, C842R and C973R) with positive VAAST scores suggesting that these rare variants occur in evolutionarily conserved regions of NOD2 and result in more severe amino acid substitutions. These variants are novel potential Crohn’s disease risk variants, although S431L and R791Q were previously reported as likely benign variants in ClinVar with limited evidence of pathogenicity. Eight of the 11 variants were significant when we performed the single variant test using the allele counts in cases, and controls combined with ExAC data ($P < 0.05$): E54K, D291G, R393C, R420H, P668fs, R830L, C842R and C973R (Table 2). Although S431L was not significant, its odds ratio (OR:1.97; CI: 0.05-11.4) was comparable with a previous report (OR:1.45; CI:1.1-2.0) (Rivas et al. 2011). Six of the eight variants were identified as potentially damaging or deleterious by one or more functional prediction tools (Table 2) (Ng and Henikoff 2003; Adzhubei et al. 2010; Kircher et al. 2014). The scaled CADD score for each of these six variants was greater than 20, which represents the top 1% of predicted deleterious variants in the human genome. Nine of the 12 NOD2 missense variants identified by VAAST were located within the boundaries of three NOD2 domains: caspase recruitment domain (CARD), neuronal apoptosis inhibitor protein (NA CHT) and leucine-rich-repeat (LRR) domain (Figure 1).

We observed two protein-coding de novo mutations among the 179 affected offspring, in NOD2 and C11orf30. We tested for enrichment of de novo mutations using VARPRISM (Kong et al. 2012); both NOD2 and C11orf30 were nominally significant, with p-values of 0.0157 and 0.0175, respectively (Table 3).

Replication of the common disease risk variant ATG16L1 T300A

Our single-marker tests replicated the association with the common susceptibility variant T300A (rs2241880) in ATG16L1 ($P = 0.0085$). We also identified a rare coding variant in ATG16L1 with an OR of 2.0, R258Q, although the variant was not statistically significant in the single marker test (Table 2). R258Q is a potential rare risk variant in Crohn’s disease because it was predicted to be a probably damaging variant in PolyPhen2 and had a high CADD score of 27. However, given the limited observations in our cases, further studies are required to understand the role of rare variants in ATG16L1 in Crohn’s disease.

Effect size estimated for R702W, G908R and L1007fs in NOD2

Logistic regression models are shown in Table 4. In the first model, heterozygosity for G908R and L1007fs was associated with a 7.2- and 3.1-fold increased risk of Crohn’s disease, respectively. R702W heterozygosity was nominally associated with Crohn’s disease, and homozygosity for this allele was associated with a 6.5-fold increased risk of Crohn’s disease. The second model incorporated haplotype phase and rare variants. Heterozygosity for L1007fs, G908R and homozygosity for common variants remained statistically associated with Crohn’s disease. Compound heterozygosity was associated with a 6.2-fold increased risk of Crohn’s disease. The coefficient of discrimination (an approximation of R^2 for rare events) for model one was 0.074 and for model two was 0.089, suggesting the ability to improve explained variances.

Table 1 VAAST results for genes with nominal p-value less than 0.05

<table>
<thead>
<tr>
<th>Gene</th>
<th>VAAST p-value</th>
<th>VAAST p-value after Bonferroni correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOD2</td>
<td>1.53x10^{-5}</td>
<td>0.0009639</td>
</tr>
<tr>
<td>RTKN2</td>
<td>0.00165</td>
<td>0.10395</td>
</tr>
<tr>
<td>MGAT3</td>
<td>0.0147</td>
<td>0.9261</td>
</tr>
</tbody>
</table>

Table 2 Rare coding variants identified in NOD2, RTKN2, and MGAT3

<table>
<thead>
<tr>
<th>NOD2 Variants</th>
<th>PolyPhen2 annotation</th>
<th>PolyPhen2 value</th>
<th>SIFT annotation</th>
<th>SIFT value</th>
<th>CADD</th>
<th>Allele frequency in cases</th>
<th>Allele frequency in ExAC and controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R702W</td>
<td>benign</td>
<td>0.008</td>
<td>deleterious</td>
<td>0</td>
<td>24.1</td>
<td>10.05%</td>
<td>3.502%</td>
<td>2.99E-09***</td>
</tr>
<tr>
<td>G908R</td>
<td>Probably damaging</td>
<td>1</td>
<td>deleterious</td>
<td>0</td>
<td>31</td>
<td>4.90%</td>
<td>1.407%</td>
<td>2.40E-06***</td>
</tr>
<tr>
<td>L1007fs</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>35</td>
<td>9.07%</td>
<td>2.020%</td>
<td>9.27E-14***</td>
</tr>
<tr>
<td>S47L</td>
<td>benign</td>
<td>0.98</td>
<td>deleterious</td>
<td>0.1</td>
<td>21.3</td>
<td>0.24%</td>
<td>0.12%</td>
<td>0.0886</td>
</tr>
<tr>
<td>E54K</td>
<td>probably damaging</td>
<td>0.995</td>
<td>deleterious</td>
<td>0.01</td>
<td>33</td>
<td>0.24%</td>
<td>0.003%</td>
<td>0.01825 ***</td>
</tr>
<tr>
<td>D291G</td>
<td>probably damaging</td>
<td>0.873</td>
<td>deleterious</td>
<td>0.01</td>
<td>23</td>
<td>0.25%</td>
<td>0.004%</td>
<td>0.02418</td>
</tr>
<tr>
<td>R393C</td>
<td>probably damaging</td>
<td>0.996</td>
<td>deleterious</td>
<td>0</td>
<td>23.7</td>
<td>0.25%</td>
<td>0.004%</td>
<td>0.02396</td>
</tr>
<tr>
<td>R420H</td>
<td>benign</td>
<td>0.082</td>
<td>tolerated</td>
<td>0.21</td>
<td>13.99</td>
<td>0.25%</td>
<td>0.001%</td>
<td>0.01209</td>
</tr>
<tr>
<td>S431L</td>
<td>probably damaging</td>
<td>0.166</td>
<td>deleterious</td>
<td>0.03</td>
<td>21.4</td>
<td>0.24%</td>
<td>0.002%</td>
<td>0.401</td>
</tr>
<tr>
<td>P668fs</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>22.8</td>
<td>0.25%</td>
<td>0.002%</td>
<td>0.01220</td>
</tr>
<tr>
<td>R791Q</td>
<td>benign</td>
<td>0.006</td>
<td>tolerated</td>
<td>0.22</td>
<td>0.074</td>
<td>0.49%</td>
<td>0.004%</td>
<td>0.2586</td>
</tr>
<tr>
<td>R830L</td>
<td>benign</td>
<td>0.006</td>
<td>tolerated</td>
<td>0.13</td>
<td>23.3</td>
<td>0.25%</td>
<td>0.001%</td>
<td>0.01212</td>
</tr>
<tr>
<td>C842R</td>
<td>probably damaging</td>
<td>0.646</td>
<td>deleterious</td>
<td>0</td>
<td>23.4</td>
<td>0.25%</td>
<td>0.004%</td>
<td>0.02406</td>
</tr>
<tr>
<td>C973R</td>
<td>benign</td>
<td>0.086</td>
<td>tolerated</td>
<td>0.36</td>
<td>16.96</td>
<td>0.25%</td>
<td>0.000%</td>
<td>0.00616***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RTKN2 Variants</th>
<th>PolyPhen2 annotation</th>
<th>PolyPhen2 value</th>
<th>SIFT annotation</th>
<th>SIFT value</th>
<th>CADD</th>
<th>Allele frequency in cases</th>
<th>Allele frequency in ExAC and controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A328fs</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>22.5</td>
<td>12.01%</td>
<td>16.399%</td>
<td>0.01561*</td>
</tr>
<tr>
<td>G573S</td>
<td>benign</td>
<td>0.001</td>
<td>tolerated</td>
<td>1</td>
<td>0.002</td>
<td>0.49%</td>
<td>0.106%</td>
<td>0.07243</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MGAT3 Variants</th>
<th>PolyPhen2 annotation</th>
<th>PolyPhen2 value</th>
<th>SIFT annotation</th>
<th>SIFT value</th>
<th>CADD</th>
<th>Allele frequency in cases</th>
<th>Allele frequency in ExAC and controls</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D499H</td>
<td>benign</td>
<td>0.409</td>
<td>tolerated</td>
<td>0.15</td>
<td>18.52</td>
<td>0.73%</td>
<td>0.670%</td>
<td>0.7559</td>
</tr>
<tr>
<td>R525W</td>
<td>benign</td>
<td>0.116</td>
<td>deleterious</td>
<td>0.01</td>
<td>22.4</td>
<td>0.25%</td>
<td>0.051%</td>
<td>0.194</td>
</tr>
<tr>
<td>R162Q</td>
<td>benign</td>
<td>0.004</td>
<td>tolerated</td>
<td>0.54</td>
<td>9.76</td>
<td>0.25%</td>
<td>0.024%</td>
<td>0.1319</td>
</tr>
</tbody>
</table>

* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$; *The p-value was estimated using the total NFE sample number at the nearby variant (chr16:5079433).
We further refined the effect size estimates of R702W, G908R, and L1007fs by conducting a meta-analysis of our results together with prior studies (Yazdanyar et al. 2009) (see Supplemental Table S4-S6 for lists of studies). The per-allele odds ratios relative to healthy controls for R702W, G908R, and L1007fs were 2.23, 2.58, and 3.83, respectively. The odds ratio for compound heterozygotes and homozygotes of the three variants was 7.31.

Population attributable risk and total heritability for NOD2

We evaluated the population attributable risk (PAR) for the 14 coding variants in NOD2 with MAF less than 5% (Table 2). We estimated that the three variants with MAF of 1% or greater (R702W, G908R, and L1007fs) collectively confer 30.3% PAR (CI: 17.0–45.2%) and 3.1% total heritability to Crohn’s disease. This PAR estimate was comparable with previous estimates from prior studies ranging from 26.7 to 33.2% (Hugot et al. 2001; Abreu et al. 2002; Ahmad et al. 2002; Brant et al. 2007). For rare variants with MAF less than 0.5%, we restricted our analysis to the eight variants listed in Table 2 with significantly elevated allele frequencies in our cases relative to ExAC based on Fisher’s Exact Test. Together, these rare variants confer approximately 3.7% additional PAR (CI: 1.18–9.8%) and 0.25% total heritability explained. The total estimated PAR and total heritability for NOD2 variants identified in our study were thus 32.9% and 3.4%, respectively.

DISCUSSION

We performed a sequence-based case-control study in 205 European children with Crohn’s disease incorporating 101 genes. Our study has three major findings. First, we again demonstrate that common and rare variation in NOD2 represents the most important genetic risk factor for Crohn’s disease. Second, by sequencing trios, we identified compound heterozygosity and de novo mutations as potentially important sources for missing heritability. Third, we demonstrate the utility of applying gene burden tests such as VAAST to assess both common and rare variation in a complex genetic trait. Collectively, these data support the concept that the use of gene burden tests for complex traits and methods to incorporate phase such as sequencing parents and probands (as opposed to genotyping) can recover a portion of the “missing heritability” for Crohn’s disease.

The mechanistic relationship between gene variants in NOD2 and Crohn’s disease pathogenesis is unclear, but could involve defective epithelial defenses, disruption of Paneth cell function, alterations in the gut microbial community, and/or defects in autophagy (reviewed in (Al Nabhani et al. 2017; Feerrick and McKernan 2017)). VAAST scored 11 variants in three key domains of NOD2: six in the LRR domain, two in the CARD domain, and three in the NACHT domain, including one de novo mutation. The NACHT domain is the same domain that harbors disease-causing mutations found in the majority of patients with Blau syndrome (Sriso et al. 2012), a Mendelian disorder characterized by granulomatous arthritis, iritis and dermatitis. We speculate that patients with Crohn’s disease and mutations in the NACHT domain may represent an important, albeit uncommon, subgroup of patients potentially with phenotypic variability, variation in penetrance estimates for mutations in this region, variation in response to therapy, and/or intestinal disease distribution. Functional studies incorporating biological samples from subjects with NACHT domain variants, as well as a large cohort of such patients, are needed to test these hypotheses.

Our data suggest that at least some of the “missing heritability” for Crohn’s disease is explained by rare variants and haplotype phase. Unphased genotyping of the canonical variants in NOD2 were assessed in our first logistic regression model, while we incorporated the phased data obtained from both parents and ascertainment of rare variants by sequencing in our second model, increasing the proportion of explained variance from 0.074 to 0.089. Similarly, PAR and total heritability estimates are increased from 30.3 to 32.9% and from 3.1 to 3.4%, respectively, when incorporating rare variants.

We acknowledge that our sample size is too small to fully characterize the contribution of extremely rare genetic variation in Crohn’s disease. However, we show the feasibility of using gene burden tests for Crohn’s disease sequencing studies by demonstrating that VAAST has the ability to uncover statistical association in NOD2 among 63 genes and only 205 cases. We demonstrate the utility of using gene-based association tests rather than variant-based association tests as the field moves toward large-scale exome and whole genome approaches.

<table>
<thead>
<tr>
<th>Transcript ID</th>
<th>Gene name</th>
<th>p-value</th>
<th>Number mutations</th>
<th>Genome Coordinate</th>
<th>Reference base</th>
<th>Alternative base</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM_022162</td>
<td>NOD2</td>
<td>0.015682657</td>
<td>1</td>
<td>chr16:50744999</td>
<td>C</td>
<td>T</td>
</tr>
<tr>
<td>NM_020193</td>
<td>C11orf30</td>
<td>0.017465753</td>
<td>1</td>
<td>chr11:76248871</td>
<td>C</td>
<td>G</td>
</tr>
</tbody>
</table>
Table 4 Logistic regression for three NOD2 established variants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Case</th>
<th>Control</th>
<th>OR</th>
<th>Adjusted OR*</th>
<th>Adjusted p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: R² = 0.074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1007fs (heterozygous)</td>
<td>29 (14.2%)</td>
<td>10 (5%)</td>
<td>3.1 (1.5-6.6)</td>
<td>3.1 (1.4-6.5)</td>
<td>0.004**</td>
</tr>
<tr>
<td>R702W (heterozygous)</td>
<td>29 (14.2%)</td>
<td>19 (9.5%)</td>
<td>1.6 (0.8-2.9)</td>
<td>1.6 (0.9-3.0)</td>
<td>0.14</td>
</tr>
<tr>
<td>G908R (heterozygous)</td>
<td>16 (7.8%)</td>
<td>2 (1.0%)</td>
<td>8.4 (1.9-36.9)</td>
<td>7.2 (1.8-28.7)</td>
<td>0.006**</td>
</tr>
<tr>
<td>Any homozygote</td>
<td>12 (5.9%)</td>
<td>2 (1.0%)</td>
<td>6.2 (1.4-27.9)</td>
<td>6.5 (1.6-27.1)</td>
<td>0.01*</td>
</tr>
<tr>
<td>Model 2: R² = 0.089</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1007fs (heterozygous)</td>
<td>21 (10.2%)</td>
<td>8 (4%)</td>
<td>2.7 (1.2-6.3)</td>
<td>3.4 (1.5-8.0)</td>
<td>0.004**</td>
</tr>
<tr>
<td>G908R (heterozygous)</td>
<td>11 (5.4%)</td>
<td>4 (1%)</td>
<td>5.6 (1.2-25.7)</td>
<td>6.3 (1.5-26.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Common homozygote</td>
<td>20 (9.8%)</td>
<td>17 (8.5%)</td>
<td>1.2 (0.6-2.3)</td>
<td>1.6 (0.8-3.2)</td>
<td>0.18</td>
</tr>
<tr>
<td>Compound heterozygote</td>
<td>12 (5.9%)</td>
<td>2 (1.0%)</td>
<td>6.2 (1.4-27.9)</td>
<td>6.8 (1.6-28.3)</td>
<td>0.008**</td>
</tr>
<tr>
<td>Rare heterozygote</td>
<td>5 (2.4%)</td>
<td>0 (0%)</td>
<td>11 (0.46-264)*</td>
<td>14.9 (0.6-360.5)</td>
<td>0.095</td>
</tr>
</tbody>
</table>

* P < 0.05, ** P < 0.01, *** P < 0.001; * unadjusted OR for rare heterozygote and adjusted OR for all covariates are using the method of Firth (Firth 1993)

ACKNOWLEDGMENTS

The authors wish to thank the families that participated in this study. This work was funded by DK091374, GM104390, and GM118335 from the National Institutes of Health. The research reported in this publication was supported (in part or in full) by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR001067. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

LITERATURE CITED

Kugathasan, S., R. N. Baldassano, J. P. Bradfield, P. M. Sleiman, M. Imielinski et al., 2008 Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 40: 1211–1215. https://doi.org/10.1038/ng.203

