Vitamin D Status Is Associated with Hepcidin and Hemoglobin Concentrations in Children with Inflammatory Bowel Disease

Sana Syed, Emory University
Ellen S. Michalski, Emory University
Vin Tangpricha, Emory University
Supavit Chesdachai, Emory University
Archana Kumar, Emory University
Jarod Prince, Emory University
Thomas R Ziegler, Emory University
Parminder S Suchdev, Emory University
Subra Kugathasan, Emory University

Journal Title: Inflammatory Bowel Diseases
Volume: Volume 23, Number 9
Publisher: Oxford University Press (OUP): Policy B - Oxford Open Option B - CC-BY | 2017-09-01, Pages 1650-1658
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1097/MIB.0000000000001178
Permanent URL: https://pid.emory.edu/ark:/25593/td92v

Final published version: http://dx.doi.org/10.1097/MIB.0000000000001178

Copyright information:
© 2017 Crohn's & Colitis Foundation.
Accessed March 27, 2019 11:43 AM EDT
Vitamin D status is Associated with Hepcidin and Hemoglobin concentrations in Children with Inflammatory Bowel Disease

Sana Syed MD MS1,2,*, Ellen S. Michalski, PhD3,†, Vin Tangpricha, MD,PhD3,4,5, Supavit Chesdachai, MD4, Archana Kumar, BA1, Jarod Prince, BS1, Thomas R. Ziegler, MD3,4, Parminder S. Suchdev, MD, MPH1,2, and Subra Kugathasan, MD1,2

1Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
2Children’s Healthcare of Atlanta, Atlanta, GA
3Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, GA
4Department of Medicine, Emory University School of Medicine
5Atlanta VA Medical Center, Atlanta, GA

Abstract

BACKGROUND—Anemia, iron deficiency and hypovitaminosis D are well-known comorbidities in inflammatory bowel disease (IBD). Epidemiologic studies have linked vitamin D deficiency with increased risk of anemia, and in vitro studies suggest that vitamin D may improve iron recycling through down-regulatory effects on hepcidin and pro-inflammatory cytokines.

DESIGN/METHODS—We aimed to investigate the association of vitamin D status with inflammation, iron biomarkers, and anemia in pediatric IBD. Cross-sectional data was obtained from N=69 IBD patients aged 5 to <19y. Iron biomarkers [ferritin, soluble transferrin receptor (sTfR)], 25-hydroxyvitamin D (25(OH)D), inflammatory biomarkers [C-reactive protein (CRP), α1-acid glycoprotein (AGP)], hepcidin, and hemoglobin were collected. Iron biomarkers were regression corrected for inflammation. Multivariable logistic/linear models were used to examine the associations of 25(OH)D with inflammation, iron status, hepcidin, and anemia.

RESULTS—~ 50% of subjects were inflamed (CRP>5 mg/L or AGP>1 g/L). Iron deficiency prevalence (inflammation-corrected ferritin < 15 μg/L or sTfR > 8.3mg/L) was 67%; anemia was 36%, vitamin D insufficiency (25(OH)D < 30 ng/mL) was 77%. In linear regression models,
vitamin D insufficiency was associated with increased hepcidin levels ($\beta(\text{SE})=0.6(0.2)$, $P=0.01$) and reduced hemoglobin ($\beta(\text{SE})=-0.9$ (0.5), $P=0.046$), controlling for age, sex, race, insurance status, body mass index-for-age, inflammation, disease diagnosis (ulcerative colitis vs. Crohn’s) and disease duration, compared to 25(OH)D \geq 30 ng/mL.

CONCLUSIONS—Our results suggest that concentrations of 25(OH)D \geq 30 ng/mL are associated with lower hepcidin and higher hemoglobin levels. Further research is needed to clarify the association of vitamin D with inflammation, iron status and anemia in pediatric IBD.

Keywords
iron deficiency; anemia; Inflammatory Bowel Disease; vitamin D; hepcidin

INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic intestinal condition consisting of Crohn’s disease (CD) or ulcerative colitis (UC), and is currently thought to develop as a result of an inappropriate immune response to an environmental stimulus in genetically susceptible individuals (1, 2). Patients with IBD may experience several nutrition-related complications affecting quality of life and overall health. These include growth failure, weight loss, and nutrient deficiencies resulting from inadequate dietary intake and malabsorption (2, 3). Another such complication of IBD is anemia. Recent studies have reported that the prevalence of anemia among children at IBD diagnosis is 55–72% (4–6). Major contributors to anemia in IBD include inflammation and nutrient deficiencies, namely iron deficiency (3, 6). More recently, vitamin D deficiency, which is common in IBD (7, 8) has also been linked to anemia (9–13).

Epidemiologic studies in other chronic disease populations including chronic kidney disease and heart disease have shown vitamin D status to be positively associated with hemoglobin, and inversely associated with odds of anemia (10, 13, 14). Studies in generally healthy adults and the elderly have further characterized this association, suggesting that the association between vitamin D and anemia may be specific to anemia of inflammation (12, 15). Indeed, the mechanism underlying this association is likely related to the influence of vitamin D on pro-inflammatory cytokines and hepcidin, the major iron regulatory hormone (16). Pro-inflammatory cytokines that are often elevated in IBD (17, 18), stimulate hepatic hepcidin expression, and subsequent elevations in hepcidin may have deleterious effects on iron recycling due to decreased iron absorption from the small intestine, and iron sequestration within macrophages (18, 19). This may lead to reduced iron bioavailability to support hemoglobin synthesis and erythropoiesis; should the inflammatory stimulus persist, anemia may occur (19, 20).

In-vitro studies have shown vitamin D to decrease hepcidin-stimulatory pro-inflammatory cytokines and act directly on the hepcidin antimicrobial peptide (HAMP) gene to lower hepcidin mRNA expression (21, 22). Moreover, recent studies from our group also found that treatment with high-dose vitamin D reduced circulating hepcidin concentrations in healthy adults (23) and increased hemoglobin concentrations in critically ill adults (24). The anti-inflammatory and hepcidin-lowering effects of vitamin D may therefore increase iron...
bioavailability for erythropoiesis and hemoglobin synthesis, possibly improving anemia in individuals with vitamin D insufficiency.

While the association between vitamin D and anemia has been described in other disease populations (10, 13, 25), the association between vitamin D, iron status, inflammation, and anemia has not been well characterized in patients with IBD, a condition characterized by high rates of anemia and inflammation. Therefore, the aims of this paper were to: 1) Explore the associations of vitamin D with markers of inflammation and hepcidin; 2) Determine whether vitamin D status was associated with hemoglobin and anemia in children with IBD. We hypothesized that vitamin D status assessed by plasma 25(OH)D concentrations would be inversely associated with inflammation, hepcidin, odds of anemia and positively associated with hemoglobin concentrations.

MATERIALS AND METHODS

Study Population
Subjects included in this analysis were part of a cross-sectional study designed to investigate the association of inflammation with novel iron biomarkers in children with IBD (26). Briefly, children presenting to the pediatric IBD clinics, out-patient infusion clinics, emergency department and the in-patient gastroenterology service at Children’s Healthcare of Atlanta between May and November 2014 were screened for eligibility. Our inclusion criteria were as follows: (1) 5 to 18 years of age; (2) confirmed diagnosis of IBD (CD, UC or IBD-unclassified) by a pediatric gastroenterologist. Patients were excluded based on the following criteria: (1) any surgeries or infection requiring hospitalization within a one month period prior to entry; (2) inherited blood disorders (thalassemia, sickle anemia or trait); (3) receipt of packed red blood cell infusion within 120 days of study enrollment; (4) pregnancy; (5) MCV > 100 fL. Given that the parent study was designed to investigate the association of anemia and iron biomarkers with inflammation, we stratified our enrollment using clinical laboratory testing in the month prior to the study visit and enrolled subjects such that they would be categorized equally as follows: with/without inflammation (using CRP >5 mg/L) and with/without iron deficiency (using MCV<75 fL/cell or elevated RDW >14.5 % or presence of anemia). Of the children screened to be included in the study; n=2 had recent blood transfusion and 1 had an MCV>100. The remaining exclusions were because we had already enrolled healthy (not inflamed and not iron deficient) subjects and were screening per our stratified enrollment for subjects who were inflamed and/or iron deficient (Figure 1).

Sample collection and laboratory assays
Venous blood was collected from all subjects at the time of enrollment in a K2EDTA-coated tube (Beckman Dickinson). Whole blood samples of 3–5mLs each were immediately sent for the following laboratory tests per standard clinical protocol: Complete Blood Count (Siemens Advia 2120 and 120, Erlangen, Germany) and Comprehensive Metabolic panel (Siemens Vista 500, Erlangen, Germany). Plasma was obtained by centrifuging the tube according to the manufactures’ specifications and then aliquoted and stored at −80°C. Frozen samples were shipped to the VitMin laboratory (Willstatt, Germany) for
measurement of ferritin, CRP, α-1-acid glycoprotein (AGP), soluble transferrin receptor (sTfR) and retinol binding protein (RBP) using a novel sandwich ELISA technique (27). Plasma hepcidin concentrations were determined using the Human Hepcidin ELISA kit (TSZ Scientific) at Emory University according to the manufacturer’s instructions. The average coefficient of variation of hepcidin among 11 sub-samples was 18.8% (SD: 18.1, range: 1.1 –64.6%). An automated chemiluminescent technique (Automated IDS-iSYS System, Immunodiagnostic Systems, Fountain Hills, AZ) was used to measure plasma 25(OH)D concentrations in a lab which participates in the vitamin D external quality assessment scheme (DEQAS, site 606) and the NIST/NIH Vitamin D Metabolites Quality Assurance Program (VitDQAP).

Assessment of nutrition and health status

Measures of anthropometrics included measurements of weight and height using standardized techniques by trained clinical nurses. World Health Organization (WHO) Child Growth Standards (WHO Anthro, Geneva, Switzerland) were used to calculate age and sex adjusted z-scores for anthropometric measurements. Further categorization of z-scores were as follows: stunting as a height-for-age z-score (HAZ) < −2, wasting as BMI for-age z-score (BAZ) < −2, overweight as a BAZ > 2 and obesity as a BAZ > 3. The following thresholds were used to define abnormal values for these biochemical indicators: 1) Iron deficiency: ferritin < 15mg/L (28), sTfR > 8.3 mg/L(29) 2) vitamin D insufficiency: 25(OH)D < 30 ng/mL (30); anemia was defined using the following thresholds as per World Health Organization (WHO) guidelines (31), Hb < 11.5g/mL for children aged 5–11.99 yrs, Hb < 12.0 g/mL for children aged 12–14.99 yrs, Hb < 12.0 g/mL for females aged ≥15.0 yrs and Hb < 13.0 g/mL for males aged ≥15.0 yrs. CRP and AGP are commonly measured acute phase proteins that assess the presence of inflammation. CRP concentrations increase quickly in response to an acute insult, peaking at approximately 48h and decreasing within a week with a half-life of 19h. In contrast, AGP concentrations increase more slowly and remain elevated for a longer period of time (32). Taken together, CRP and AGP measurements can be used to classify individuals who have inflammation spanning from incubation, early convalescence to late convalescence. Therefore, we explored the association of inflammation with growth by defining systemic inflammation as a composite variable of either CRP >5mg/L (33) or AGP>1.0 g/L (34). The following data on each participant were collected: demographics (age, sex, and self-reported race), socio-economic status (SES) as measured by insurance status (state-provided Medicaid or private insurance), and clinical disease information (disease type, duration of disease, disease location, history of prior surgeries, disease activity, prior and current medical therapy).

Statistical Methods

Descriptive statistics were evaluated for all variables and presented as means ± standard deviation (SD) or median (interquartile range) for continuous variables and as ‘n’ (percent) for categorical variables. Differences in study variables by vitamin D status (dichotomized as plasma 25(OH)D ≥30 ng/mL compared to plasma 25(OH)D < 30 ng/mL) were examined using two sample independent t-tests for normally distributed continuous variables, Wilcoxon-Mann-Whitney tests for non-normally distributed continuous variables, and χ² or Fisher’s exact tests for categorical variables. In the absence of the gold standard for iron
deficiency as defined by Prussian blue staining of bone marrow iron stores, we used regression modeling to adjust ferritin and sTfR for inflammation, the methods of which have been previously published (26, 35). Briefly, adjustment was performed using the following equation: Adjusted ferritin/sTfR = unadjusted ferritin/sTfR - \beta_1(CRP_{obs} - CRP_{ref}) - \beta_2(AGP_{obs} - AGP_{ref}), where a CRP and AGP reference value (e.g., maximum of lowest decile) was used so that ferritin/sTfR were not over-adjusted at the lower values for CRP and AGP.

Simple linear regression was used to examine the unadjusted association of vitamin D status with continuous outcomes, hepcidin and hemoglobin. Multivariable linear regression was used to further evaluate the association between vitamin D status (independent variable) with hepcidin and hemoglobin (dependent variables), with age, sex, race, Medicare status, BAZ, inflammation, disease diagnosis (CD, UC), and disease duration included as covariates. Hepcidin was the only non-normally distributed continuous variable used in our regression analysis and was log-transformed. Logistic regression was used to evaluate the association between vitamin D status (independent variable) and binary outcomes, inflammation and anemia (dependent variables), with similar adjustment for a priori covariates listed above. For the anemia models, we evaluated the interaction between vitamin D status and race, given literature suggesting differences in vitamin D status and anemia prevalence by race (12, 36–38). Statistical analyses were performed using SAS v. 9.4 (SAS Institute Inc., Cary, NC), with a 2-sided alpha of 0.05 used to define statistical significance.

Ethical Considerations and Institutional Oversight

This interventional clinical study was conducted in accordance with the principles of the Declaration of Helsinki and with appropriate approval and oversight by the Institutional Review Boards of Emory University and Children’s Healthcare of Atlanta.

Access to Study Data

All authors had access to the study data and have reviewed and approved this final manuscript.

RESULTS

Participant Characteristics

Demographic and clinical characteristics of the study population as a whole, and stratified by 25(OH)D status (25(OH)D ≥30 ng/mL vs. < 30 ng/mL) are summarized in Table 1. With the exception of stunting, the demographic, anthropometric and clinical characteristics of our study population did not differ significantly by vitamin D status.

Inflammation, Iron Deficiency, Anemia and Vitamin D status

Nutritional and inflammation status of the study population is summarized in Table 2 and Table S1. The prevalence of vitamin D deficiency [25(OH)D < 20 ng/mL] was approximately 38% (n=26), and vitamin D insufficiency [25(OH)D < 30 ng/mL] was approximately 77% (n=53) (Table S1). As would be expected with our stratified enrollment, nearly 50% of our subjects were inflamed (elevated CRP or AGP), and the prevalence of
anemia was 36% (n=25). Iron deficiency (using inflammation adjusted biomarkers) was common whether measured by low ferritin or elevated TfR or both, affecting approximately 67% (n=46) subjects; 19 patients (28%) had iron deficiency anemia. Among the 25 anemic patients, 76% had iron deficiency anemia, 80% were AA, 72% were inflamed (Table S2), and 60% had duration of disease ≥2 years. There was no significant difference in the prevalence of anemia by vitamin D insufficiency status (P=0.64).

Associations of Vitamin D Status with Inflammation and Hepcidin—In a multivariable logistic model, 25(OH)D concentrations < 30 ng/mL were not significantly associated with inflammation (defined as CRP>5 mg/L or AGP>1.0 g/L) (P=0.14). Those with 25(OH)D concentrations < 30 ng/mL had significantly higher plasma hepcidin concentrations (Table 3) controlling for age, sex, race, inflammation, insurance, BAZ score and disease duration (β(SE)=0.6 (0.2), P=0.01), compared to those with plasma 25(OH)D concentrations ≥30 ng/mL (Figure 2). Both models (hepcidin and inflammation as outcomes) were also dichotomized by plasma 25(OH)D cut-off points for vitamin D deficiency[25(OH)D < 20 ng/mL vs. ≥20 ng/mL] but no significant associations were observed (P=0.13 and P=0.39 respectively).

Associations of vitamin D status with hemoglobin and anemia—Those with plasma 25(OH)D concentrations < 30 ng/mL had significantly lower hemoglobin concentrations compared to those with 25(OH)D ≥30 ng/mL, (Table 3) controlling for age, sex, race, insurance, BAZ score and disease duration (β(SE)= −0.9(0.5), P=0.046. In multivariable logistic models, 25(OH)D concentrations < 30 ng/mL were associated with increased odds of anemia compared to 25(OH)D concentrations ≥30 ng/mL [OR 3.2 (95 % CI 0.5, 22.7)] but this was not statistically significant (P=0.24). The interaction between race and 25(OH)D status in the fully adjusted model with anemia as the outcome was not statistically significant (P=0.63). Both models (hemoglobin and anemia as outcomes) were dichotomized by plasma 25(OH)D cut-off points for vitamin D deficiency [25(OH)D < 20 ng/mL vs. ≥20 ng/mL] but no significant associations were observed (P=0.17 and P=0.95 respectively).

DISCUSSION

The present study investigated the potential associations of vitamin D status with inflammation, hepcidin, hemoglobin, and anemia in a chronically inflamed population of children with IBD. Notable findings included: (1) plasma 25(OH)D concentrations < 30 ng/mL were associated with elevations in hepcidin, compared to 25(OH)D concentrations ≥ 30 ng/mL; (2) plasma 25(OH)D concentrations < 30 ng/mL were associated with decreased hemoglobin, compared to those with 25(OH)D concentrations ≥30 ng/mL; (3) No significant associations were observed between 25(OH)D concentrations and either inflammation or anemia.

The hepcidin results presented are consistent with *in vitro*, and clinical studies in humans. In a series of *in vitro* studies, our group demonstrated that treatment with 1,25(OH)2D, the active form of vitamin D can down-regulate hepcidin mRNA expression and up-regulate ferroportin, the cellular iron exporter, in cultured human monocytes (22). Bacchetta et al.
have also shown that treatment of hepatocytes and monocytes with both 25(OH)D and 1,25(OH)_2D resulted in decreased expression of hepcidin mRNA. This group subsequently identified a vitamin D response element on the HAMP gene, lending strong biological plausibility the association between vitamin D and hepcidin. Furthermore, treatment with high-dose vitamin D has been found to significantly reduced circulating hepcidin concentrations among healthy adults (23). The results from the current study suggest that an inverse association between vitamin D status and hepcidin may exist in the pediatric IBD population as well.

Plasma 25(OH)D concentrations < 30 ng/mL were also associated with reduced hemoglobin concentrations, compared to 25(OH)D concentrations ≥30 ng/mL, in the current study. This is consistent with several studies in chronic kidney disease, cardiovascular disease, and the general population, which have described a positive association between vitamin D status and hemoglobin and/or an inverse association between vitamin D status and anemia (9–13, 15, 39, 40). Data from clinical trials have been mixed (39–42), but recent studies in CKD and critically ill adult patient populations found that treatment with vitamin D or its analogues resulted in significant increases in hemoglobin concentrations (24, 43). This association has not been previously studied in IBD animal models or clinical studies. Our finding that vitamin D insufficiency was associated with increased hepcidin concentrations and reduced hemoglobin concentrations support the hepcidin-lowering role of vitamin D in improving iron recycling in a pediatric IBD population.

We report a difference of approximately 1 unit in hemoglobin (1 g/dL) between those with plasma 25(OH)D concentrations < 30 ng/mL versus those with ≥30 ng/mL. While this magnitude is small, literature would suggest that it is clinically meaningful, especially in a population where improvements in hemoglobin are hard to achieve. In patients with IBD, Ananthakrishnan et al. (44) have reported hemoglobin below 9g/dL (HR 2.51, 95% CI 1.23 – 5.15) as a predictor of severe Clostridium difficile infection. In pregnant women, combining risk estimates from individual studies, Stoltzfus et al. (45) reported a 1g/dL increase in pregnancy hemoglobin being associated with a 25% reduction in maternal mortality (OR=0.75, 95%CI 0.62–0.89). Similarly, Scott et al. (46) estimate 1.8 million deaths in children aged 28 days to five years could be avoided each year by increasing Hb in these children by 1 g/dL.

While we found an association between vitamin D insufficiency and hemoglobin levels, there was no association between vitamin D insufficiency and anemia. Epidemiologic studies in chronic kidney disease patients receiving hemodialysis have had varying results. In a cross-sectional study analyzing the relationship between 25(OH)D and inflammatory markers in hemodialysis patients, Mohiuddin et al. reported no significant association between 25(OH)D levels and hemoglobin levels(47). However, Bednarek-Skublewska et al reported a significant positive correlation between 25(OH)D and hemoglobin in a similar cohort of hemodialysis patients (48). Several additional studies in chronic kidney disease, cardiovascular disease, and the general population, have also described a positive association between vitamin D status and hemoglobin and/or an inverse association between vitamin D status and anemia (9–13, 15, 49, 50). We hypothesize our findings of a significant association of vitamin D status with hemoglobin but not with anemia may be reflective of a
threshold effect in the relationship between 25(OH)D status and hemoglobin such that the likelihood of having anemia plateaus once hemoglobin levels reach a particular value.

Additionally, our small sample size precluded assessment of associations of vitamin D status with different subtypes of anemia including iron deficiency anemia and anemia of inflammation. Previous studies have suggested that the association between vitamin D status and anemia may be specific to anemia of inflammation (12, 15), which is consistent with the mechanism of action of vitamin D in iron recycling described above. However, iron deficiency anemia has been described as more prevalent in pediatric IBD populations than anemia of inflammation (6). Thus, a low prevalence of anemia of inflammation relative to iron deficiency anemia may explain the lack of association between vitamin D status and anemia in the present study. Indeed, despite the significant association between vitamin D insufficiency and hepcidin concentrations, we did not observe a significant association between vitamin D status and markers of inflammation measured in this study (CRP and AGP). Further research in the pediatric IBD population is needed to clarify the relationship between vitamin D, inflammation, hepcidin, and anemia.

Strengths of our study were inclusion of study participants from across the IBD severity spectrum, measurement of hepcidin as a key intermediary of the effect of inflammation on iron stores and subsequent anemia, use of inflammation-adjusted estimates of iron deficiency and our novel research question to investigate the association of vitamin D levels and iron status in the pediatric IBD population. However, there were several important limitations. First, the cross-sectional study design precludes us from establishing temporality between our biomarkers and making causal conclusions regarding our observed associations. One potential limitation of this analysis is that data on vitamin D supplementation among study participants was unavailable, preventing us from assessing whether our outcomes differed by supplementation status or dose. Further limitations include our lack of measurements of ‘gold standard’ iron status by bone marrow biopsy and measures of enteric inflammation such as fecal calprotectin. Additionally, of the 360 patients screened, even though our eligibility criteria were broad with many more subjects eligible for enrollment, due to stratified enrollment only 77 patients were included in our study. Our results may therefore lack generalizability to pediatric IBD patients with characteristics different that those included in our study.

In conclusion, we found that plasma 25(OH)D concentrations < 30 ng/mL were associated with increased hepcidin concentrations and reduced hemoglobin concentrations, compared to plasma 25(OH)D concentrations ≥ 30 ng/mL, in this population of pediatric IBD patients. Our findings suggest that achieving vitamin D sufficiency may result in improved hemoglobin concentrations in this pediatric IBD population, possibly through vitamin D-mediated reductions in hepcidin. Further research is warranted to assess the therapeutic effect of vitamin D in increasing hemoglobin concentrations, and to clarify the association of vitamin D with inflammation, iron status and anemia in the pediatric IBD population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

This work could not have been completed without the invaluable input of the Kugathasan Lab IBD Dream Team: Kari Aldridge, Corinthian Bryant, Bernadette Martineau, David T. Okou, and Mahadev Prasad. We would also like to thank our clinical team whose help in patient recruitment was critical in the success of this project: Cary G. Sauer, Barbara O. McElhanon, Gail Tenjarla, Walter Ifeadike, Christine Spainhour, Brit Eyster and Lisa Mitchell.

All sources of financial support:

This work was supported, in part, by grants from the National Institutes of Health: UL1TR000454 (Atlanta Clinical & Translational Research Institute, SS, VT); T32 DK007734 (ESM); K24 RR023356 (TRZ) and the Emory Marcus Professorship (SK). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in the design, analysis or writing of this article.

None: SC, AK, JP, PSS

Author Contributions

Syed:

Substantial contributions to the conception or design of the work; and the acquisition, analysis AND Drafting the work or revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.*Equal contributions

Michalski:

Substantial contributions to the conception or design of the work; and the acquisition, analysis, and interpretation of data for the work; AND drafting the work and revising it critically for important intellectual content; AND Final approval of the version to be published; AND

Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. *Equal contributions

Tangpricha:

Substantial contributions to the acquisition, analysis, or interpretation of data for the work; AND revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Chesdachai:

Substantial contributions to the acquisition, analysis, or interpretation of data for the work; AND revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Kumar:

Substantial contributions to the acquisition, analysis, or interpretation of data for the work; AND revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Prince:

Substantial contributions to the conception or design of the work AND Revising the work critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Ziegler:

Substantial contributions to the conception or design of the work AND Revising the work critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Suchdev:

Substantial contributions to the conception or design of the work AND Revising the work critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Kugathasan:

Substantial contributions to the conception or design of the work and acquisition, analysis, or interpretation of data for the work; AND revising it critically for important intellectual content; AND Final approval of the version to be published; AND Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>ID</td>
<td>Iron Deficiency</td>
</tr>
</tbody>
</table>

Inflamm Bowel Dis. Author manuscript; available in PMC 2018 September 01.
APP Acute-phase proteins
sTFR soluble transferrin receptor
CRP C-reactive protein
AGP α-1-acid glycoprotein
25(OH)D 25-hydroxyvitamin D
IRB Institutional review board
AA African American
IBD Inflammatory Bowel Disease
UC Ulcerative Colitis
CD Crohn’s Disease
BMI Body Mass Index
IU International Units
kg Kilograms

References

29. Organization WH. Serum transferrin receptor levels for the assessment of iron status and iron deficiency in populations. WHO reference number: WHO/NMH/NHD/EPG/146. 2014

33. Organization WH. C-reactive protein concentrations as a marker of inflammation or infection for interpreting biomarkers of micronutrient status. WHO reference number: WHO/NMH/NHD/EPG/. 2014;147.

Figure 1.
Flow of Study Participants during six month enrollment period from May 2014 to November 2014

Patients identified through pediatric inflammatory bowel disease clinics, out-patient infusion clinics, emergency department and the in-patient gastroenterology service at the Children’s Healthcare of Atlanta & Emory University

360 Patients screened

77 patients approached for enrollment

7 patients/guardians refused consent

70 patients enrolled in study

1 patient excluded due to being enrolled twice

N = 69

Final dataset for Analysis
Figure 2. Hemoglobin (A) and hepcidin (B) concentrations with corresponding 95% confidence intervals, by 25(OH)D concentration
Panel A shows least squares mean hemoglobin concentration controlling for age, sex, race, Medicaid status, BAZ, inflammation, and disease duration, by 25(OH)D concentration. Those with 25(OH)D concentrations < 30 ng/mL had significantly lower hemoglobin concentrations compared to those with 25(OH)D concentrations ≥ 30 ng/mL (P=0.03). Panel B show the geometric mean hepcidin concentrations controlling for age, sex, race, Medicaid status, BAZ, inflammation, and disease duration, by 25(OH)D concentration. Those with 25(OH)D concentrations < 30 ng/mL had significantly higher serum hepcidin concentrations compared to those with 25(OH)D concentrations ≥ 30 ng/mL (P=0.01). *P<0.05
Table 1

Demographic, anthropometric and clinical characteristics of the study population, n=69

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total population mean ± SD or n (%)</th>
<th>25(OH)D ≥ 30 ng/mL (n=16) mean ± SD or n (%)</th>
<th>25(OH)D < 30 ng/mL (n=53) mean ± SD or n (%)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age – years</td>
<td>15 ± 3</td>
<td>14 ± 4</td>
<td>15 ± 3</td>
<td>0.34</td>
</tr>
<tr>
<td>Age</td>
<td>5 to < 10y</td>
<td>7 (10%)</td>
<td>4 (6%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td></td>
<td>10–18y</td>
<td>62 (90%)</td>
<td>12 (17%)</td>
<td>50 (72%)</td>
</tr>
<tr>
<td>Sex</td>
<td>Females</td>
<td>31 (45%)</td>
<td>7 (44%)</td>
<td>24 (45%)</td>
</tr>
<tr>
<td>Race</td>
<td>African American</td>
<td>38 (55%)</td>
<td>7 (10%)</td>
<td>31 (45%)</td>
</tr>
<tr>
<td></td>
<td>Asian</td>
<td>3 (4%)</td>
<td>1 (1%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td></td>
<td>Caucasian</td>
<td>27 (39%)</td>
<td>7 (10%)</td>
<td>20 (29%)</td>
</tr>
<tr>
<td></td>
<td>Hispanic</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Insurance</td>
<td>Medicaid</td>
<td>17 (25%)</td>
<td>4 (6%)</td>
<td>13 (19%)</td>
</tr>
<tr>
<td></td>
<td>Private Insurance</td>
<td>52 (75%)</td>
<td>12 (17%)</td>
<td>40 (58%)</td>
</tr>
<tr>
<td>Anthropometrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stunting</td>
<td>(HAZ <-2)</td>
<td>4 (6%)</td>
<td>3 (19%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Wasting</td>
<td>(BAZ < -2)</td>
<td>3 (4%)</td>
<td>1 (6%)</td>
<td>2 (4%)</td>
</tr>
<tr>
<td>Overweight</td>
<td>(BAZ >2)</td>
<td>7 (10%)</td>
<td>0 (0%)</td>
<td>7 (13%)</td>
</tr>
<tr>
<td>Clinical Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease Type</td>
<td>Crohn’s Disease</td>
<td>49 (71%)</td>
<td>9 (13%)</td>
<td>40 (58%)</td>
</tr>
<tr>
<td></td>
<td>Ulcerative Colitis</td>
<td>20 (29%)</td>
<td>7 (10%)</td>
<td>13 (19%)</td>
</tr>
<tr>
<td>Disease Location</td>
<td>Ileo colon</td>
<td>32 (46%)</td>
<td>6 (9%)</td>
<td>26 (38%)</td>
</tr>
<tr>
<td></td>
<td>Colon</td>
<td>4 (6%)</td>
<td>1 (1%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td></td>
<td>Colon & upper GI</td>
<td>7 (10%)</td>
<td>2 (3%)</td>
<td>5 (7%)</td>
</tr>
<tr>
<td></td>
<td>pancolitis (UC)</td>
<td>15 (22%)</td>
<td>5 (7%)</td>
<td>10 (14%)</td>
</tr>
<tr>
<td></td>
<td>TI</td>
<td>5 (7%)</td>
<td>0 (0%)</td>
<td>5 (7%)</td>
</tr>
<tr>
<td></td>
<td>TI & upper GI</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
</tr>
<tr>
<td></td>
<td>left sided (UC)</td>
<td>5 (7%)</td>
<td>2 (3%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Current Medication(s)</td>
<td>Anti-TNF</td>
<td>42 (61%)</td>
<td>9 (13%)</td>
<td>33 (48%)</td>
</tr>
<tr>
<td></td>
<td>Anti-TNF + 5-ASA</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td></td>
<td>Anti-TNF + MTX</td>
<td>3 (4%)</td>
<td>1 (1%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Total population mean ± SD or n (%): 25(OH)D ≥ 30 ng/mL (n=16)</td>
<td>25(OH)D < 30 ng/mL (n=53) mean ± SD or n (%)</td>
<td>P-value*</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Anti-TNF + Thiopurine</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>CST</td>
<td>3 (4%)</td>
<td>0 (0%)</td>
<td>3 (4%)</td>
<td></td>
</tr>
<tr>
<td>CST + 5-ASA</td>
<td>2 (3%)</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td></td>
</tr>
<tr>
<td>CST + Anti-TNF</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
<td></td>
</tr>
<tr>
<td>CST + Thiopurine + 5-ASA</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td>1 (1%)</td>
<td></td>
</tr>
<tr>
<td>Thiopurine</td>
<td>6 (9%)</td>
<td>1 (1%)</td>
<td>5 (7%)</td>
<td></td>
</tr>
<tr>
<td>Thiopurine + 5-ASA</td>
<td>2 (3%)</td>
<td>0 (0%)</td>
<td>2 (3%)</td>
<td></td>
</tr>
<tr>
<td>5-ASA</td>
<td>3 (4%)</td>
<td>1 (1%)</td>
<td>2 (3%)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>4 (6%)</td>
<td>1 (1%)</td>
<td>3 (4%)</td>
<td></td>
</tr>
<tr>
<td>Prior Surgery</td>
<td></td>
<td></td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>No surgery</td>
<td>49 (71%)</td>
<td>13 (19%)</td>
<td>36 (52%)</td>
<td></td>
</tr>
<tr>
<td>Anal Surgery</td>
<td>4 (6%)</td>
<td>1 (1%)</td>
<td>3 (4%)</td>
<td></td>
</tr>
<tr>
<td>Colonic resection</td>
<td>3 (4%)</td>
<td>0 (0%)</td>
<td>3 (4%)</td>
<td></td>
</tr>
<tr>
<td>Ileocolonic resection</td>
<td>12 (17%)</td>
<td>1 (1%)</td>
<td>11 (16%)</td>
<td></td>
</tr>
<tr>
<td>Ileocolonic resection + anal surgery</td>
<td>1 (1%)</td>
<td>1 (1%)</td>
<td>0 (0%)</td>
<td></td>
</tr>
<tr>
<td>Duration of disease - years</td>
<td>3 ± 3</td>
<td>3 ± 2</td>
<td>3 ± 2.6</td>
<td>0.71</td>
</tr>
</tbody>
</table>

Abbreviations: HAZ: Height for age Z score; BAZ: Body Mass Index for age Z score; CD: Crohn’s disease; UC: Ulcerative Colitis; TNF: Tumor Necrosis Factor; ASA=Amino Salicylic acid; MTX=Methotrexate; TI= Terminal ileum; GI= gastrointestinal;

* two sample independent t-tests for normally distributed continuous variables, Wilcoxon-Mann-Whitney tests for non-normally distributed continuous variables, and χ² or Fisher’s exact tests for categorical variables, comparing 25(OH)D ≥30 ng/mL to 25(OH)D < 30 ng/mL.
Table 2
Nutrient status in the study population, n=69

<table>
<thead>
<tr>
<th>Biomarkers as categorical variables</th>
<th>Total population n (%)</th>
<th>25(OH)D ≥ 30 ng/mL (n=16) n (%)</th>
<th>25(OH)D < 30 ng/mL (n=53) n (%)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Deficiency (biomarkers not corrected for inflammation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ferritin < 15 μg/L</td>
<td>22 (32%)</td>
<td>7 (44%)</td>
<td>15 (28%)</td>
<td>0.25</td>
</tr>
<tr>
<td>Elevated TIR > 8.3 mg/L</td>
<td>28 (41%)</td>
<td>8 (50%)</td>
<td>20 (38%)</td>
<td>0.38</td>
</tr>
<tr>
<td>Low ferritin or Elevated TIR</td>
<td>36 (52%)</td>
<td>10 (63%)</td>
<td>26 (49%)</td>
<td>0.35</td>
</tr>
<tr>
<td>Iron Deficiency (biomarkers regression-correction for inflammation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low ferritin < 15 μg/L</td>
<td>31 (50%)</td>
<td>11 (16%)</td>
<td>22 (32%)</td>
<td>0.06</td>
</tr>
<tr>
<td>Elevated TIR > 8.3 mg/L</td>
<td>28 (45%)</td>
<td>9 (13%)</td>
<td>22 (32%)</td>
<td>0.29</td>
</tr>
<tr>
<td>Low ferritin or Elevated TIR</td>
<td>46 (67%)</td>
<td>13 (19%)</td>
<td>33 (48%)</td>
<td>0.16</td>
</tr>
<tr>
<td>Inflammation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated CRP > 5 mg/L</td>
<td>28 (41%)</td>
<td>9 (56%)</td>
<td>19 (36%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Elevated AGP > 1.0 g/L</td>
<td>30 (44%)</td>
<td>10 (63%)</td>
<td>20 (38%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Elevated CRP or AGP</td>
<td>34 (49%)</td>
<td>11 (69%)</td>
<td>23 (43%)</td>
<td>0.08</td>
</tr>
<tr>
<td>Hepcidin, ng/mL, median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>608 (491)</td>
<td>414 (412)</td>
<td>661.6 (423)</td>
<td>0.09</td>
</tr>
<tr>
<td>Anemia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>25 (36%)</td>
<td>5 (31%)</td>
<td>20 (38%)</td>
<td>0.64</td>
</tr>
<tr>
<td>Iron Deficiency Anemia</td>
<td>19 (28%)</td>
<td>4 (25%)</td>
<td>15 (28%)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Abbreviations: transferrin receptor=TIR; C-Reactive Protein=CRP; alpha1-acid glycoprotein=AGP.

*Wilcoxon-Mann-Whitney tests for non-normally distributed continuous variables, and \(\chi^2 \) or Fisher’s exact tests for categorical variables, comparing 25(OH)D ≥ 30 ng/mL to 25(OH)D < 30 ng/mL.
Table 3

Association of 25(OH)D < 30 ng/mL with Inflammation, Anemia, Hepcidin, & Hemoglobin

<table>
<thead>
<tr>
<th>Logistic regression, outcome variable</th>
<th>Serum 25(OH)D < 30 ng/mL (Y v. N)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P-value</td>
<td>adjOR (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Inflammation</td>
<td>0.3 (0.1–1.1)</td>
<td>0.08</td>
<td>0.4 (0.1–1.4)</td>
<td>0.14</td>
</tr>
<tr>
<td>Anemia</td>
<td>1.3 (0.4–4.4)</td>
<td>0.64</td>
<td>3.2 (0.5–22.7)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear regression, outcome variable</th>
<th>Beta (SE)</th>
<th>P-value</th>
<th>Adj Beta (SE)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepcidin</td>
<td>0.3 (0.2)</td>
<td>0.14</td>
<td>0.6 (0.2)</td>
<td>0.01</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>−0.2 (0.6)</td>
<td>0.63</td>
<td>−0.9 (0.5)</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Abbreviations: 25-hydroxy vitamin D=25(OH)D, C-Reactive Protein=CRP, alpha-glyco protein=AGP, African American=AA; n=69.

1. Multivariable regression models for inflammation, anemia, hepcidin, and hemoglobin outcomes with parameter estimates comparing 25(OH)D concentrations < 30 ng/mL vs. ≥30ng/mL, adjusted for the following covariates – age, sex, race (AA vs all others), inflammation, insurance (Medicaid vs. all others), BMI for age Z-score, disease duration, diagnosis (Ulcerative colitis vs. Crohn’s disease);

2. CRP>5mg/L or AGP>1.0g/L, inflammation not included as covariate in model;

3. Variable log transformed