Use of troponin assay 99th percentile as the decision level for myocardial infarction diagnosis

Akshay Bagai, University of Toronto
Karen P. Alexander, Duke Clinical Research Institute
Jeffrey S. Berger, NYU
Roxy Senior, Imperial College
Chakkanalil Sajeev, Government Medical College Calicut Kozhikode, Kerala
Radoslaw Pracon, Institute of Cardiology
Kreton Mavromatis, Emory University
José Luis Lopez-Sendon, Hospital Universitario La Paz
Gilbert Gosselin, Institut de Cardiologie de Montréal
Ariel Diaz, University of Montreal

Only first 10 authors above; see publication for full author list.

Journal Title: American Heart Journal
Volume: Volume 190
Publisher: Elsevier: 12 months | 2017-08-01, Pages 135-139
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.ahj.2017.04.016
Permanent URL: https://pid.emory.edu/ark:/25593/t6hnd

Final published version: http://dx.doi.org/10.1016/j.ahj.2017.04.016

Copyright information:
© 2017 Elsevier Inc.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed January 30, 2019 10:02 PM EST
Use of Troponin Assay 99th Percentile as the Decision Level for Myocardial Infarction Diagnosis

Akshay Bagai, MD, MHS, Karen P. Alexander, MD, Jeffrey S. Berger, MD, MS, Roxy Senior, MD, DM, Chakkanalil Sajeev, MD, DM, PhD, Radoslaw Pracon, MD, PhD, Kreton Mavromatis, MD, Jose Luis Lopez-Sendón, MD, PhD, Gilbert Gosselin, MD, CM, Ariel Diaz, MSc, MD, Gian Perna, MD, Jarozlaw Drozdz, MD, Dennis Humen, MD, Birute Petrauskiene, PhD, Asim N. Cheema, MD, PhD, Denis Phaneuf, MD, Subhash}

Address of correspondence: Akshay Bagai, MD, MHS; Terrence Donnelly Heart Center, St. Michael’s Hospital, University of Toronto, Ontario, Canada; Phone: (416) 864-6060, ext. 5783; Fax: (416) 864-5989; bagaia@smh.ca.

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Clinical Trial Registration: NCT #01471522

Disclosures
Dr. Bagai reports no relevant disclosures.
Dr. Alexander reports no relevant disclosures.
Dr. Berger reports no relevant disclosures.
Dr. Senior reports speaker fees from Bracco, Milan, Italy; Phillips, Eindhoven, Holland; Lantheus Medical, Boston, USA.
Dr. Sajeev reports no relevant disclosures.
Dr. Pracon reports no relevant disclosures.
Dr. Mavromatis reports no relevant disclosures.
Dr. Lopez-Sendón reports no relevant disclosures.
Dr. Gosselin reports no relevant disclosures.
Dr. Diaz reports no relevant disclosures.
Dr. Perna reports no relevant disclosures.
Dr. Drozdz reports no relevant disclosures.
Dr. Humen reports no relevant disclosures.
Dr. Petrauskiene reports speaker fees from Astra Zeneca, Bayer AG, and Pfizer.
Dr. Cheema reports no relevant disclosures.
Dr. Phaneuf reports no relevant disclosures.
Dr. Banerjee reports honoraria received from Medtronic, CSI, Gore and grants received from Boston Scientific Corporation, Merck, Astra Zeneca.
Dr. Miller reports no relevant disclosures.
Dr. Kedev reports no relevant disclosures.
Dr. Schuchlenz reports no relevant disclosures.
Dr. Stone reports no relevant disclosures.
Dr. Goodman has received research grant support and speaker/consulting honoraria from Bayer and Roche.
Dr. Mahaffey reports no relevant disclosures.
Dr. Jaffe has or presently does consult for most of the major diagnostic companies including Beckman, Alere, Abbott, Roche, Siemens, ET Healthcare, NeurogenomeX, Sphingotec, and Novartis.
Dr. Rosenberg reports no relevant disclosure. The content of this manuscript is solely the responsibility of the authors and does not necessarily reflect the views of the National Institutes of Health or the Department of Health and Human Services
Dr. Bangalore reports grant support from the NHLBI for the ISCHEMIA (U01HL105907) and ISCHEMIA-CKD trials (U01HL117905).
Dr. Newby reports disclosures that are publicly available at: https://www.dcri.org/about-us/conflict-of-interest
Dr. Maron reports receiving NIH grant support for the ISCHEMIA trial (U01HL105907).
Dr. Hochman reports being the PI for the ISCHEMIA trial for which, in addition to support by National Heart, Lung, and Blood Institute grant, there are in-kind donations from Abbott Vascular; Medtronic, Inc.; St. Jude Medical, Inc.; Volcano Corporation; Arbor Pharmaceuticals, LLC; AstraZeneca Pharmaceuticals, LP; Merck Sharp & Dohme Corp.; Omron Healthcare, Inc.; and financial donations from Arbor Pharmaceuticals LLC and AstraZeneca Pharmaceuticals LP.
Dr. Chaitman reports no relevant disclosures.
Banerjee, MD16, Todd D. Miller, MD17, Sasko Kedev, MD, PhD18, Herwig Schuchlenz, MD19, Gregg W. Stone, MD20, Shaun G. Goodman, MD, MSc1,21, Kenneth W. Mahaffey, MD22, Allan S. Jaffe, MD17, Yves D. Rosenberg, MD, MPH23, Sripal Bangalore, MD, MHA3, L. Kristin Newby, MD, MHS2, David J. Maron, MD22, Judith S. Hochman, MD5, and Bernard R. Chaitman, MD24

1Terrence Donnelly Heart Centre, St Michael’s Hospital, University of Toronto, Toronto, ON, Canada 2Duke Clinical Research Institute, Durham, NC, USA 3New York University School of Medicine, New York, NY, USA 4National Heart and Lung Institute, Imperial College, London, UK, Northwick Park Hospital, Harrow, UK, Royal Brompton Hospital, London, UK 5Government Medical College Calicut Kozhikode, Kerala, India 6Coronary and Structural Heart Diseases Department, Institute of Cardiology, Warsaw, Poland 7Atlanta VA Medical Center, Emory University School of Medicine, Decatur, GA, USA 8Cardiology department, Hospital Universitario La Paz, Idipaz, Madrid, Spain 9Institut de Cardiologie de Montréal, Montreal, QC, Canada 10University of Montreal, Campus Mauricie. Trois-Rivières, QC, Canada 11Cardiology and ICCU - Ospedali Riuniti Ancona, Italy 12Department Cardiology Medical University Lodz, Poland 13University Hospital, London, ON, Canada 14Vilnius University and Vilnius University Hospital “Santariskiu Clinic”, Lithuania 15Hôpital Pierre-Le Gardeur, Terrebonne, QC Canada 16Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, TX, USA 17Mayo Clinic, Rochester, MN, USA 18University Clinic of Cardiology, Vodnanska 17, 1000 Skopje, Macedonia 19Department of Cardiology and Intensive Care, LHK Graz – Sued/West, Standort West, Graz, Austria 20Columbia University Medical Center and The Cardiovascular Research Foundation, New York, NY, USA 21Canadian Heart Research Centre, Toronto, ON, Canada 22Stanford Center for Clinical Research, Department of Medicine, Stanford University, Stanford, CA, USA 23National Heart, Lung, and Blood Institute, Bethesda, MD, USA 24St Louis University School of Medicine St Louis, MO, USA

Abstract

Background—The Universal Definition of Myocardial Infarction recommends the 99th percentile concentration of cardiac troponin in a normal reference population as part of the decision threshold to diagnose type 1 spontaneous myocardial infarction. Adoption of this recommendation in contemporary worldwide practice is not well known.

Methods—We performed a cohort study of 276 hospital laboratories in 31 countries participating in the National Heart, Lung, and Blood Institute sponsored International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial. Each hospital laboratory’s troponin assay manufacturer and model, the recommended assay’s 99th percentile upper reference limit (URL) from the manufacturer’s package insert, and the troponin concentration used locally as the decision level to diagnose myocardial infarction was ascertained.

Results—Twenty-one unique troponin assays from 9 manufacturers were used by the surveyed hospital laboratories. The ratio of the troponin concentration used locally to diagnose myocardial infarction to the assay manufacturer-determined 99th percentile URL was <1 at 19 (6.6\%) laboratories, equal to 1 at 91 (31.6\%) laboratories, >1 to ≤5 at 101 (35.1\%) laboratories, >5 to ≤10 at 34 (11.8\%) laboratories and >10 at 43 (14.9\%) laboratories. The variability in troponin decision
level for myocardial infarction relative to the assay 99th percentile URL was present for laboratories in and outside of the United States, as well as for high- and standard-sensitivity assays.

Conclusions—There is substantial hospital level variation in the troponin threshold used to diagnose myocardial infarction; only one-third of hospital laboratories currently follow the Universal Definition of Myocardial Infarction consensus recommendation for use of troponin concentration at the 99th percentile of a normal reference population as the decision level to diagnose myocardial infarction. This variability across laboratories has important implications both for the diagnosis of myocardial infarction in clinical practice as well as adjudication of myocardial infarction in clinical trials.

Introduction

Myocardial infarction (MI) is recognized by clinical symptoms and signs, electrocardiographic findings, and by elevated levels of biochemical markers of myocardial necrosis. In 2000, the European Society of Cardiology/American College of Cardiology provided recommendations for the use of biomarkers and their concentration thresholds for the diagnosis of MI. Cardiac troponin (cTn) was recommended as the preferred biomarker, and a diagnosis of type 1 spontaneous MI required a rise and/or fall in cTn concentration with at least one cTn concentration exceeding the 99th percentile of a normal reference population (when baseline cTn concentration is less than the 99th percentile). This was done to establish consistency with regard to definition of MI among clinicians, laboratories, investigators and regulatory authorities. Currently, there is a paucity of data on implementation of this recommendation, with prior literature demonstrating adoption far from universal Therefore, we sought to evaluate the extent to which the cTn 99th percentile upper reference limit (URL) has been adopted worldwide as the decision level to diagnose MI.

Methods

A questionnaire was administered to 314 activated sites participating in the ongoing National Heart, Lung, and Blood Institute sponsored International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial (NCT #01471522) between 01/2013 and 07/2015. Sites were asked to identify the cTn assay used at their laboratory, and the cTn concentration threshold used locally to diagnose MI. Email reminders were sent and telephone calls were scheduled as needed. The assay manufacturer-determined 99th percentile was recorded from the package insert for each assay. The ratio of the site laboratory cTn decision level for MI to the manufacturer-determined assay 99th percentile was calculated for each laboratory. A histogram was used to plot the variability across laboratories in this relationship. We also determined whether this relationship differed by region, and by cTn assay sensitivity. No extramural funding was used to support the research and creation of the paper. The authors are solely responsible for the design and conduct of this study, all study analyses and drafting and editing of the paper.
Results

Study data were submitted by 276 participating sites [101 from the United States (US), and 175 from outside of the US] from 31 countries. Sites reported employing 21 unique cTn assays from 9 manufacturers (Table 1). Twenty (7.2%) sites used 2 different assays. cTnI assays were employed in 181 (65.6%) sites, cTnT assays in 88 (31.9%) sites, and 7 (2.5%) sites used both a cTnI and cTnT assay. High-sensitivity assays were used by 71 (25.7%) sites; all from outside of the US. Non-quantitative point-of-care assays were used in 8 (2.9%) sites. Two cTn thresholds, a lower threshold suggestive for myocardial injury and a higher threshold for MI diagnosis were used in 49 (17.8%) sites. Sex-specific MI decision levels were used in 8 (2.9%) sites.

Overall, there was significant variability in the cTn MI decision level relative to the manufacturer-determined 99th percentile, with the cTn MI decision level equal to the 99th percentile in 91 (31.6%) laboratories (Figure 1). This variability in cTn decision level for MI relative to the manufacturer-determined 99th percentile was present for laboratories in and outside of the US, as well as for high- and standard-sensitivity cTn assays (Figure 2). High-sensitivity cTn assays were more likely to have the manufacturer-determined 99th percentile used as the MI decision level compared with standard-sensitivity cTn assays (49.3% vs. 25.8%, p<0.001). For some cTn assays, there was a >20-fold variation in MI decision level between sites, e.g. the cTn MI decision limit ranged from 0.012ng/mL to 0.50ng/mL among laboratories using the Abbott Architect cTnI assay (manufacturer’s recommended 99th percentile, 0.028ng/mL) (Table 1).

Discussion

There is substantial variability across hospital laboratories in the cTn concentration threshold used for diagnosis of MI in relation to the assay 99th percentile URL. Overall, only one-third of the hospital laboratories participating in this international clinical trial are in alignment with the Universal Definition of MI consensus recommendation to use the cTn assay 99th percentile URL as the decision level to diagnose MI. Adoption of this recommendation is greater for high- versus standard-sensitivity assays.

Given the use of different antibodies against troponin epitopes by different manufacturers, performance characteristics vary considerably between assays. The manufacturer determined 99th percentile for different assays are not biologically equivalent, and in one study, there was a 32-fold variation in 99th percentile value among contemporary cTnI assays. This poor correlation in performance does not allow for a correction factor that would adequately standardize results between different assays. Notwithstanding this limitation, it is felt that as long as absolute concentrations are not compared among different assays, and the 99th percentile URL is consistently applied as the decision level for diagnosis of MI, that clinical interpretation should be acceptable for all assays. In 2008, the CARDiac MArker Uptake of Guidelines in Europe (CARMAGUE) study showed that only 35% of the 220 laboratories in 8 European countries used the assay 99th percentile URL as the decision level for MI. Although site reported use of the 99th percentile value for MI diagnosis was higher in 2013 (52.3% in European and 45.2% in North American laboratories), the
investigators reported that only a minority of sites claiming to use the 99th percentile used the appropriate value.\(^8\)

Our study highlights a more concerning observation that for the same cTn assay, there was >20-fold variability across laboratories in the cTn threshold used for diagnosis of MI. Therefore, a patient with a cTn concentration 10-times the 99th percentile URL may be classified as MI by one hospital, but chest pain with “normal” cTn level or unstable angina by another hospital. This has considerable implications for patient management in clinical practice, as well as over and under-reporting of MI events in clinical trials.\(^6, 9\) Prior studies have demonstrated that even small elevations in troponin levels are associated with increased risk,\(^10, 11\) and the 99th percentile URL threshold stratifies well patients that may derive benefit from an early invasive strategy and more intensive antiplatelet therapy.\(^12, 13\) Lack of standardization of cTn threshold used for diagnosis of MI also has implications for rapid rule out protocols, with cost implications of over-testing, longer stays in the emergency department and delayed diagnosis.\(^14\) In a meta-analysis of 93 cardiovascular trials conducted between 2000 and 2012 that provided a definition for MI, only 7 specified 99th percentile as the MI decision limit.\(^3\) Standardized implementation of 99th percentile value as the threshold to adjudicate MI in cardiovascular trials is a key recommendation by the 2014 American College of Cardiology/American Heart Association Task Force on Clinical Data Standards.\(^15\) Implementation of this recommendation requires resolving how best to account for the wide variety of available cTn assays and their varying performance characteristics.\(^3\)

Incomplete incorporation of 99th percentile URL as decision limit for MI diagnosis may reflect concerns about the precision of some assays at the 99th percentile. Current guidelines recommend assay imprecision [% coefficient of variation (CV)] of ≤10% at the 99th percentile URL, facilitating certainty that 2 values are unique.\(^16\) Since the diagnosis of MI requires a rise and/or fall in cTn value, assays without high precision make determination of a significant change more difficult. High-sensitivity assays lessen this concern because by definition these assays have a CV <10% at the 99th percentile value. In this context, we did observe greater, but far from universal adoption of 99th percentile URL as decision limit for MI with high- versus standard-sensitivity assays. In our study, the process by which each laboratory decided on their MI decision level was not ascertained. Some reasons hospital laboratories do not use the manufacturer-determined 99th percentile include (i) arbitrary adjustment of the manufacturer’s assay URL to be consistent with prior local experience, (ii) derivation of the cTn concentration at the 99th percentile from a local reference population, (iii) adoption of the URL from other cited publications. At the current time, there is not unanimous expert opinion or consensus about specific criteria for how the 99th percentile URL should be defined. For local hospitals, it is laborious, costly, and time intensive to study a sufficiently large and diverse age and gender normal population to derive the 99th percentile specific for a cTn assay. One approach to reduce heterogeneity in the cTn decision threshold for MI in clinical trials is to use the manufacturer’s recommended 99th percentile for the assay, an approach we have taken in the ISCHEMIA trial. This approach negates the issue of two hospitals using the same assay and platform with a 20-fold difference in the decision threshold for MI. With the recent approval of high-sensitivity assays in the US, many US laboratories are likely to switch troponin assays in the very near future. As more laboratories make this change, further efforts are required to encourage the adoption of 99th
percentile URL as the cTn threshold to diagnose MI, and for clinical societies/regulators to establish a recommendation for the best and universally accepted methodology to establish the 99th percentile for cTn assays.

Conclusions

There is large variability across hospital laboratories in the cTn threshold to diagnose MI relative to the assay manufacturer determined 99th percentile. Our findings underscore the pressing need to harmonize the clinical decision limit for MI across hospital laboratories to reduce inconsistency in practice, improve accuracy of clinical decision making, and standardize determination and reporting of MI endpoints in clinical trials.

Acknowledgments

Sources of Funding:

The ISCHEMIA trial, which is discussed in this article, is supported by National Heart, Lung, and Blood Institute grant U01HL105907, in-kind donations from Abbott Vascular; Medtronic, Inc., St. Jude Medical, Inc., Volcano Corporation, Arbor Pharmaceuticals, LLC, AstraZeneca Pharmaceuticals LP, Merck Sharp & Dohme Corp., and Omron Healthcare, Inc.; and by financial donations from Arbor Pharmaceuticals LLC and AstraZeneca Pharmaceuticals LP. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or the National Institutes of Health. Drs. Hochman and Maron have received NIH grant support for the ISCHEMIA trial.

References

Figure 1.
Distribution of Ratios of Local Laboratory cTn Decision Level for Diagnosis of Myocardial Infarction to Manufacturer-determined Assay 99th Percentile Among Laboratories
Figure 2.
Distribution of Ratios of Local Laboratory cTn Decision Level for Diagnosis of Myocardial Infarction to Manufacturer-determined Assay 99th Percentile
a. by Location
b. by Assay Sensitivity
Table 1

Troponin Assay, Manufacturer-Determined 99th Percentile and Myocardial Infarction Decision Level

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Assay Model</th>
<th>Assay Type (I or T)</th>
<th>Assay Sensitivity</th>
<th>Number of sites</th>
<th>Manufacturer-determined 99th percentile</th>
<th>Lowest MI decision level</th>
<th>Highest MI decision level</th>
<th>Lowest MI decision level/99th percentile ratio</th>
<th>Highest MI decision level/99th percentile ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott</td>
<td>Architect</td>
<td>I</td>
<td>Standard</td>
<td>39</td>
<td>0.028 ng/mL</td>
<td>0.012 ng/mL</td>
<td>0.5 ng/mL</td>
<td>0.4</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>AxSYM ADV</td>
<td>I</td>
<td>Standard</td>
<td>1</td>
<td>0.04 ng/mL</td>
<td>0.04 ng/mL</td>
<td>0.04 ng/mL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>I-STAT</td>
<td>I</td>
<td>Standard</td>
<td>6</td>
<td>0.08 ng/mL</td>
<td>0.04 ng/mL</td>
<td>0.1 ng/mL</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Architect</td>
<td>I</td>
<td>High</td>
<td>10</td>
<td>26 ng/L; (15.6 ng/L for women; 34.2 ng/L for men)</td>
<td>28 ng/L</td>
<td>300 ng/L</td>
<td>1.1</td>
<td>11.5</td>
</tr>
<tr>
<td>Alere</td>
<td>Triage Cardio 3</td>
<td>I</td>
<td>Standard</td>
<td>4</td>
<td>0.022 ng/mL</td>
<td>0.02 ng/mL</td>
<td>0.1 ng/mL</td>
<td>0.9</td>
<td>4.5</td>
</tr>
<tr>
<td>Beckman-Coulter</td>
<td>Accu TnI</td>
<td>I</td>
<td>Standard</td>
<td>24</td>
<td>0.04 ng/mL</td>
<td>0.014 ng/mL</td>
<td>0.5 ng/mL</td>
<td>0.4</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>AccuTnl+3 Access</td>
<td>I</td>
<td>Standard</td>
<td>8</td>
<td>0.02 ng/mL</td>
<td>0.04 ng/mL</td>
<td>0.5 ng/mL</td>
<td>2.0</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>AccuTnl+3 Dxi</td>
<td>I</td>
<td>Standard</td>
<td>3</td>
<td>0.03 ng/mL</td>
<td>0.03 ng/mL</td>
<td>0.24 ng/mL</td>
<td>1.0</td>
<td>8.0</td>
</tr>
<tr>
<td>bioMerieux</td>
<td>VIDAS</td>
<td>I</td>
<td>Standard</td>
<td>4</td>
<td>0.01 ng/mL</td>
<td>0.01 ng/mL</td>
<td>0.16 ng/mL</td>
<td>1.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Ortho Clinical Diagnostics</td>
<td>Vitros</td>
<td>I</td>
<td>Standard</td>
<td>17</td>
<td>0.034 ng/mL</td>
<td>0.12 ng/mL</td>
<td>0.034 ng/mL</td>
<td>0.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Radiometer</td>
<td>AQT90</td>
<td>T</td>
<td>Standard</td>
<td>1</td>
<td>0.017 ng/mL</td>
<td>0.03 ng/mL</td>
<td>0.03 ng/mL</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Roche</td>
<td>Cobas Elecsys</td>
<td>T</td>
<td>Standard</td>
<td>27</td>
<td>0.01 ng/mL</td>
<td>0.01 ng/mL</td>
<td>0.01 ng/mL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Cobas h232</td>
<td>T</td>
<td>Standard</td>
<td>8</td>
<td>Not applicable; Qualitative assay*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Cobas 600</td>
<td>T</td>
<td>High</td>
<td>61</td>
<td>14 ng/L</td>
<td>14 ng/L</td>
<td>140 ng/L</td>
<td>1.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Siemens</td>
<td>Advia Centaur</td>
<td>I</td>
<td>Standard</td>
<td>39</td>
<td>0.04 ng/mL</td>
<td>0.04 ng/mL</td>
<td>0.9 ng/mL</td>
<td>0.4</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td>Dimension Vista</td>
<td>I</td>
<td>Standard</td>
<td>30</td>
<td>0.045 ng/mL</td>
<td>0.021 ng/mL</td>
<td>0.135 ng/mL</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Dimension EXL</td>
<td>I</td>
<td>Standard</td>
<td>7</td>
<td>0.056 ng/mL</td>
<td>0.056 ng/mL</td>
<td>0.056 ng/mL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Dimension RXL</td>
<td>I</td>
<td>Standard</td>
<td>4</td>
<td>0.070 ng/mL</td>
<td>0.070 ng/mL</td>
<td>0.1 ng/mL</td>
<td>1.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Immulite 1000</td>
<td>I</td>
<td>Standard</td>
<td>1</td>
<td>0.3 ng/mL</td>
<td>1.0 ng/mL</td>
<td>1.0 ng/mL</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>Immulite 2000</td>
<td>I</td>
<td>Standard</td>
<td>1</td>
<td>0.29 ng/mL</td>
<td>0.29 ng/mL</td>
<td>0.29 ng/mL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Tosoh</td>
<td>AlIA360</td>
<td>I</td>
<td>Standard</td>
<td>1</td>
<td>0.060 ng/mL</td>
<td>0.060 ng/mL</td>
<td>0.060 ng/mL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Lowest and highest MI decision levels refer to lowest and highest cardiac troponin concentrations used as the decision limit to diagnose myocardial infarction among all laboratories using that particular assay.
For 8 laboratories that use sex-specific troponin concentration thresholds for decision limit for myocardial infarction, the troponin concentration threshold used for men was used to determine the ratio of cardiac troponin decision limit to manufacturer-determined 99th percentile. For 20 sites that use 2 Tn assays, both assays are included in the table.