Connectomics Signatures of Prenatal Cocaine Exposure Affect Adolescent Brains

Kaiming Li1,2,* , Dajiang Zhu2,1,* , Lei Guo1, Zhihao Li3, Mary Ellen Lynch4, Claire Coles4, Xiaoping Hu3,2,**, and Tianming Liu2,2,**

1School of Automation, Northwestern Polytechnic University, Xi’an, China
2Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA
3Department of Biomedical Engineering, Emory University, Atlanta, GA
4Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA

Abstract

Recent in-vivo neuroimaging studies revealed that several brain networks are altered in prenatal cocaine exposure (PCE) affected adolescent brains. However, due to a lack of dense and corresponding cortical landmarks across individuals, the systematical alterations of functional connectivities in large-scale brain networks and the alteration of structural brain architecture in PCE affected brain are largely unknown. In this paper, we adopted a newly-developed data-driven strategy to build a large set of cortical landmarks that are consistent and corresponding across PCE adolescents and their matched controls. Based on these landmarks, we constructed large-scale functional connectomes, and applied the well-established approaches of deriving genomics signatures in genome-wide gene expression studies to discover functional connectomics signatures for the characterization of PCE adolescent brains. Results derived from experimental data demonstrated that 10 structurally disrupted landmarks were identified in PCE, and more importantly, the discovered informative functional connectomics signatures among consistent landmarks distinctively differentiate PCE brains from their matched controls.

1 Introduction

The epidemic of cocaine use (Elliot and Coker, 1991) has raised significant public attention to adolescents prenatally exposed to cocaine (Frank et al., 2001; Shankaran et al., 2007; Derauf et al., 2009; Lester and Padbury, 2009). Prenatal cocaine exposure (PCE) affected adolescents are associated with deficits in intelligence, language skills, executive functioning, impulse control and attention, and evidence of internalizing and externalizing behavioral traits (Frank et al., 2001; Shankaran et al., 2007; Derauf et al., 2009; Lester and Padbury, 2009). In general, PCE affected brains are characterized with widespread structural (Dixon et al., 1989; Heier et al., 1991; Cohen et al., 1994; Gieron-Korthals et al., 1994; Gomez-Anson et al., 1994; Kliegman et al., 1994; Dow-Edwards et al., 2006; Warner et al., 2006; Avants et al., 2007; Rivkin et al., 2008) and functional alterations (Volpe 1987; Emmalee et al., 2002; Miller-Loncar et al., 2005; Cortese et al., 2006; Dow-Edwards et al., 2006; Hurt et al., 2008; Li et al., 2009b; Rose-Jacobs et al., 2009; Sheinkopf et al., 2009), caused by decreased number of neurons (Lidow and Song, 2001a; Lidow and Song, 2001b), cocaine’s vasoconstrictive effects (Jensen et al., 1987; Volpe 1987; Woods et al., 1987;
Koegler et al., 1991; Bassett et al., 1998; Lipton et al., 2002), and/or alterations in the monoaminergic neurotransmitter systems (Meier and Schouboe et al., 1991; Levitt et al., 1997; Malanga et al., 1999; Lidow and Song, 2001a; Lidow and Song, 2001b). Recent in-vivo neuroimaging studies (Volpe 1987; Emmalee et al., 2002; Miller-Loncar et al., 2005; Cortese et al., 2006; Dow-Edwards et al., 2006; Li et al., 2009b; Rose-Jacobs et al., 2009; Lester et al., 2010; Li et al., 2011), have shown that several brain networks including arousal regulation (Li et al., 2009b), working memory (Hurt et al., 2008; Li et al., 2009b; Santhanam et al., 2009), language (Emmalee et al., 2002), executive function (Rose-Jacobs et al., 2009), motor (Miller-Loncar et al., 2005), attention (Dow-Edwards et al., 2006), default mode (Santhanam et al., 2011), and vision (Dow-Edwards et al., 2006; Li et al., 2008) systems, are altered in PCE affected brains. Despite significant findings in neuroimaging of PCE (Volpe 1987; Emmalee et al., 2002; Miller-Loncar et al., 2005; Cortese et al., 2006; Dow-Edwards et al., 2006; Li et al., 2009b; Rose-Jacobs et al., 2009; Li et al., 2011), alterations of functional connectivities in large-scale brain networks and the alteration of structural brain architecture in PCE affected adolescents are largely unknown.

When mapping structural and/or functional brain connectivity, network nodes, or regions of interests (ROIs), provide the structural underpinnings for measuring connectivities within individual brains and for comparing connectivities across populations (Liu 2011). Thus, identification of robust, reproducible and accurate ROIs that are consistent and correspondent across different brains is critically important for the success of connectivity mapping (Li et al., 2010; Liu 2011; Zhu et al., 2011a; Zhu et al., 2011b; Li et al., 2012; Zhu et al., 2012). However, from our perspective, determination of corresponding brain ROIs in different brains is perhaps one of the foremost challenges in human brain mapping (Liu 2011), due to four critical reasons. 1) The functional and/or cytoarchitectural boundaries between cortical regions are vague (Cabeza and Kingstone, 2006; Van Essen and Dierker, 2007; Liu 2011). 2) The individual variability of cortical structure and function is remarkable (Brett et al., 2002; Liu 2011). 3) The properties of ROIs are highly nonlinear (Li et al., 2010; Liu 2011; Zhu et al., 2011a; Zhu et al., 2011b; Li et al., 2012; Zhu et al., 2012). For instance, a slight change to the size or location of an ROI might dramatically alter its structural and/or functional connectivity profiles (Li et al., 2010; Zhu et al., 2011b; Li et al., 2012; Zhu et al., 2012). 4) It is very challenging to identify accurate ROIs in PCE affected brains since the brain architecture might have been altered during neurodevelopment (Li et al., 2008; Santhanam et al., 2009; Chen et al., 2011; Coles et al., 2011; Li et al., 2011; Santhanam et al., 2011).

Current methods for identifying ROIs in brain imaging can be broadly classified into four categories (Li et al., 2009a; Liu 2011). The first method is manual labeling by experts based on their domain knowledge (Biswal et al., 2010). Although it has been widely used, this method might be vulnerable to inter- and intra-subject variation, its reproducibility may be low (Amunts et al., 2000), and it is impractical to define a large set of ROIs in large datasets. The second method is to cluster ROIs from the brain image itself and is data-driven (Hyvärinen and Oja, 2000; Calhoun et al., 2004; Zang et al., 2004; Beckmann et al., 2005). However, data-driven approaches might be sensitive to the clustering parameters used, and their neuroscience interpretation might not be immediately clear. The third one is to predefine ROIs in a template brain and register them to the individual space using image registration algorithms (Jenkinson and Smith, 2001; Shen and Davatzikos, 2002; Liu et al., 2004; Andersson et al., 2008; Avants et al., 2008). The accuracy of these atlas-based registration methods is limited due to the variability of neuroanatomy across different brains. The fourth method uses task-based fMRI paradigms to identify activated brain regions as network ROIs (e.g., Faraco et al., 2011), which is regarded as the benchmark approach for ROI identification. However, task-based fMRI is demanding and time-consuming (Jack CR et al., 2010; Li et al., 2011) and it is impractical to acquire extensive fMRI data for large-
scale brain networks, e.g., for PCE affected adolescents. As such, the major barrier to the quantitative assessment of large-scale structural and functional connectivities in PCE adolescents and matched control brains is the lack of dense, consistent and correspondent brain landmarks across brains, based on which connectivity mapping is conducted.

Recently, we developed and validated 358 DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks, publicly available at http://dicccol.cs.uga.edu), each of which was optimized to possess maximal group-wise consistency of DTI-derived fiber shape patterns (Zhu et al., 2011a; Zhu et al., 2011b) as shown in Figure 1. The neuroscience basis is that the close relationship between structural connection pattern and brain function (Passingham et al., 2002; Li et al., 2010; Zhang et al., 2011; Zhu et al., 2011a; Zhu et al., 2011b; Li et al., 2012; Zhu et al., 2012). DICCCOL effectively and simultaneously deals with three afore-mentioned challenges (Liu 2011) in ROI identification in the following ways (Zhu et al., 2011a). 1) Individual structural and functional variability is effectively addressed by seeking the maximization of group-wise consistent fiber connection patterns. 2) Nonlinearity of cortical connection properties is appropriately addressed by a global optimization and search procedure, in which group-wise consistency is employed as an effective constraint. 3) The unclear boundaries of cortical regions are suitably addressed by the simultaneous optimization of cortical region locations and sizes, thus achieving reasonable boundaries defined by the optimized cortical regions. Extensive validations indicate the 358 DICCCOLs possess intrinsically-established structural and functional correspondences across individuals (Zhu et al., 2011a), providing natural structural substrates for the construction of structural and functional connectomes.

In this work, we investigated if our existing 358 DICCCOL ROIs discovered from healthy adult brains (Fig. 1) can be optimized and tailored for the construction and representation of connectomes in PCE affected brains. Given each PCE subject with DTI data, we predicted the DICCCOLs in the individual’s brain via our novel ROI prediction framework (Zhang et al., 2011). The predicted 358 DICCCOLs in the PCE and control brains were further optimized and tailored to maximize the consistency of each ROI’s emanating fiber connection patterns across a group of PCE/control subjects, resulting in the DICCCOL-PCE in this paper.

Based on the optimized DICCCOL-PCE, the structural and functional connectomes for each subject were constructed (Zhu et al., 2011a). In particular, the well-established approaches for genomics signatures discovery approaches (Alizadeh et al., 2000) in the bioinformatics and computational biology fields were borrowed here to identify functional connectomics signatures for characterization of PCE affected brains. One of the prominently similar features between connectomics attributes and genome-wide gene expressions is that the increased or decreased functional connectivity/interaction in connectomics is corresponding to the up-regulated or down-regulated gene expression. As a result, the effective clustering algorithms and tree-view visualization approaches (Alizadeh et al., 2000) that have been widely used and validated in genomics signature discovery studies were adopted in our connectomics signature discoveries in this paper. Our experimental results demonstrated that informative and robust connectomics signatures were discovered to distinctively characterize PCE brains from their healthy controls.

The major contributions of this paper include: 1) we built a large set of cortical landmarks that are consistent and correspondent across PCE adolescents and their normal controls. These DICCCOL-PCE landmarks possess intrinsic structural and functional correspondences, providing the substrates for large-scale connectome mapping of PCE adolescents. 2) We systematically investigated the discrepant brain regions of PCE affected adolescents on the whole cortex, and identified 10 DICCCOL-PCE ROIs that exhibit
significant differences between PCE brains and control brains. 3) We leveraged and adopted the well-established approaches of deriving genomics signatures in genome-wide gene expression studies to discover connectomics signatures for the characterization of PCE, and identified functional connectome signatures that were able to differentiate PCE brains from their matched controls.

2 Materials and Methods

2.1. Data acquisition and preprocessing

Participants were adolescents (12–18 Y.O.) recruited from cohorts identified originally as part of two longitudinal studies of PCE on infant development (Coles et al., 1992; Brown et al., 1998), led by the Dr. Coles. Both cohorts were drawn from a low income, predominantly African-American population with infants delivered at an urban hospital during 1987–1994. PCE was determined by maternal self-report and/or positive urine screen at recruitment post-partum (Coles et al., 1992; Brown et al., 1998). Positive maternal urine screens at labor and delivery and during pregnancy noted in the medical record were also accepted as evidence of use. We have imaging data collected from these adolescents at two time points with approximately 2 years in between. At time point 1, 78 adolescents were scanned, including 13 controls and 21 PCE subjects in the old (DOB: 1987–1990) and 17 controls and 27 PCE subjects in the young (DOB: 1992–1994) cohort. At time point 2, 55 adolescents were scanned, comprising of 7 controls and 13 PCE subjects in the old and 14 controls and 21 PCE subjects in the young cohort.

This dataset was collected during an NIH/NIDA funded R01 project awarded to the Drs. Hu and Coles. High resolution T1-weighted 3D anatomical images were acquired using an MPRAGE sequence (192 sagittal slices) on a 3T Siemens Trio scanner at Emory University. The anatomical scan protocol had a 3D FOV of 256×224×192 mm³ and a 3D matrix of 256×224×192 resulting in an isotropic resolution of 1 mm. For DTI scan, diffusion gradients were applied in 12 directions with b-value of 1000 sec/mm². Contiguous axial slices (34 with 2.5 mm thickness) were acquired. For resting state fMRI (R-fMRI), we scanned 210 volumes, matrix = 64×64, 20 axial slices without gap, thickness = 4 mm, and TR/TE = 2000 ms/30 ms. For task-based fMRI, we embedded task-irrelevant emotional distracters in a working memory task to examine the interaction of emotional arousal and memory in PCE and non-exposed adolescents (Li et al., 2009b). In the task-based fMRI, we used a verbal working memory task with two memory loads in the activation fMRI so that the signal difference between the memory loads could be used to identify default mode deactivations (Li et al., 2009b). More details of the imaging settings were described elsewhere (Li et al., 2009b; Li et al., 2011). Our existing analysis on this dataset was preliminary (Li et al., 2009b; Li et al., 2011), and we performed systematic and comprehensive analysis of large-scale connectivities in PCE brain using our recent novel approaches (Zhu et al., 2011a; Zhu et al., 2012, Zhang et al., 2011) in this paper.

We adopted well-established approaches and algorithmic pipelines (Jenkinson and Smith, 2001; Fillard and Gerig, 2003; Liu et al., 2007; Liu et al., 2008; Li et al., 2010) for preprocessing of the above multimodal DTI and fMRI datasets in this paper. Specifically, we used DTI image space to define landmark ROIs, and fMRI data were mapped to the DTI space via an affine registration algorithm (Jenkinson and Smith, 2001). Our rationale is that both fMRI and DTI use EPI sequences, and their distortions tend to be similar (Li et al., 2010). As a result, the misalignment between DTI and R-fMRI images is much less than that between T1 and R-fMRI images (Li et al., 2010). By performing brain tissue segmentation on DTI data (Liu et al., 2007), we derived a DTI image segmented into three compartments corresponding to gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Our cortical surface reconstruction algorithm (Liu et al., 2008) was applied directly to the DTI-
derived tissue maps, and then the cortical surface was reconstructed. Fiber tracts were tracked via MEDINRIA (Fillard and Gerig, 2003) and mapped onto the cortical surface via our approaches in Li et al., 2010. Based on the cortical surface reconstructed from DTI data, we pre-processed fMRI signals (Li et al., 2010) and then mapped them onto the cortical surface. To ensure robustness, we applied anatomical and connectional constraints (Li et al., 2010) to the mapping process. Other fMRI preprocessing steps included brain skull removal, motion correction, spatial smoothing, temporal prewhitening, slice time correction, global drift removal, and band pass filtering (Li et al., 2010; Lv et al., 2010).

2.2. Prediction of DICCCOLs in PCE/control brains

As mentioned before, we discovered a set of 358 DICCCOL ROIs (Zhu et al., 2011a; DICCCOLs are public available at http://dicccol.cs.uga.edu; Screenshots for DICCCOL-PCE are available at http://dicccol.cs.uga.edu/pce.tar.gz) that possess intrinsic and accurate structural and functional correspondence across individuals. These 358 DICCCOL ROIs have been replicated in 6 independent datasets on over 240 human brains of different age groups, and have been extensively validated using large-scale functional MRI data including 121 functional regions derived from 9 functional networks (i.e., attention, auditory, default mode network, emotion, empathy, fear, semantic decision making, working memory, and visual network) (Zhu et al., 2011a; Zhu et al., 2011b). One particular feature of DICCCOLs is that they can be accurately and efficiently predicted in a new, single brain with DTI data. The prediction of DICCCOLs in PCE/control brains was similar to our recently published algorithm (Zhang et al., 2011). For details about the DICCCOL, please refer to Zhang et al., 2011, Zhu et al., 2011a and the supplementary method.

In consideration of the possible greater variability expected in PCE affected brains, a larger candidate region was used during the DICCCOL prediction procedure. The candidate region of a certain DICCCOL landmark is about 50% larger for PCE group than that of normal brains. The reason is that there are both normal and discrepant ROIs for PCE group, and even the localization of normal ROIs might be affected by the discrepant ones. Thus, a larger candidate region during prediction helps locate these normal ROIs.

2.3. Optimization of DICCCOL-PCE after DICCCOL prediction

The predicted DICCCOLs in the above section reflect the common architecture of normal human brain, and have been precisely replicated on over 240 human brains (Zhu et al., 2011a; Zhu et al., 2011b). However, since PCE affected brains may have altered structural architectures compared to normal controls (Dixon et al., 1989; Heier et al., 1991; Cohen et al., 1994; Gieron-Korthals et al., 1994; Gomez-Anson et al., 1994; Kliegman et al., 1994; Dow-Edwards et al., 2006; Warner et al., 2006; Avants et al., 2007; Rivkin et al., 2008), the above collection of 358 predicted DICCCOLs in PCE need to be further optimized to maximize the consistency of each ROI’s emanating fiber connection patterns across a group of PCE/control subjects. This optimization procedure was formulated and solved as an energy minimization problem in a similar way as we previously described (Zhu et al., 2011a; see supplementary method for details).

This optimization procedure together with the prediction procedure in section 2.2 plays important roles in adaption of DICCCOLs from normal brains to PCE affected ones. First, a larger candidate region in prediction procedure helps deal with the possible larger variability in DICCCOL location for PCE brains. Second, with the prediction as initialization, the following optimization procedure tackles the possible larger variability in structural connectivity pattern. This two-step strategy tailored the DICCCOLs discovered from healthy adult brains to PCE and control brains specifically, resulting in the DICCCOL-PCE in this paper. Our extensive examinations demonstrated that the above optimization procedure
significantly improved some individual subjects' DICCCOL prediction accuracy, though this optimization would not alter the group-wise fiber connection patterns. As an example, Figs. 2a and 2b show the fiber connection patterns of two randomly selected DICCCOL ROIs for PCE affected brains before and after the optimization procedure.

In addition to visual examination, quantitative comparisons of fiber connection patterns in the optimized DICCCOL landmarks in PCE/control datasets with those in template DICCCOLs (Zhu et al., 2011a; Zhu et al., 2011b) were conducted based on their trace-map distances. For a specific landmark, distance between the corresponding trace-maps in PCE subjects and template subjects were statistically compared with that between control subjects and templates. If the distance is significantly different, the landmark was declared as a discrepant one. Otherwise, it was considered as a common landmark. Both of our qualitative and quantitative assessments demonstrated that a majority of DICCCOL ROIs (348 out of 358) successfully found their correspondences in the PCE affected brains and their controls. In the following connectomics signature discovery procedure, only those common DICCCOL ROIs were used for connectome construction and those 10 discrepant ROIs were discarded.

2.4. Discovering connectomics signatures of PCE

We leveraged and adopted the well-established approaches of deriving genomics signatures in genome-wide gene expression studies (Alizadeh et al., 2000) to discover connectomics signatures for the characterization of PCE. Specifically, a hierarchical clustering algorithm (Alizadeh et al., 2000) was used to group connectivities (equivalent to genes in genome-wide microarray data) on the basis of similarity in the pattern, where their connection strength (equivalent to gene expression) varied over all brains (equivalent to samples). One of the prominently similar features between connectomics attributes and genome-wide gene expressions is that the increased or decreased functional connectivity in connectomics is equivalent to the up-regulated or down-regulated gene expression. As a result, the effective clustering algorithms that have been widely used in genomics signature discovery studies were readily adopted in our connectomics signature discoveries in this paper. The same clustering procedure can be used to group brain conditions and control brains on the basis of similarities in the strengths of these connectivities. Before the actual clustering procedure, we applied a preprocessing step of statistical t-test to remove those connectivities that do not exhibit significance difference between brain conditions and controls. Thus, the clustering procedure can not only be significantly speeded up, but also be less prone to the possible noises in the connectivities.

For visual examination and interpretation, the connectomics signatures are shown in a matrix format, with each column representing the strengths from all brains for a single connection element of the connectome (equivalent to expression levels for all genes in a single sample), and each row representing the measured strengths for all connections in a single brain (equivalent to the whole array in microarray data). To visualize the results, the connection strength are represented by a color ranging from 0 to 1, with red representing higher strength, and green representing lower strength. The examples of visualizations are shown in Section 3.4. The steps we used for the connectomics signature discovery are summarized as below.

1. The 358 DICCCOL ROIs were predicted in each individual brain of the PCE and control subjects based on DTI data.

2. The predicted DICCCOLs were tailored to fit the PCE dataset via optimization. Discrepant DICCCOL-PCEs are removed from the following analysis.
3. The structural and functional connectomes were constructed using the DICCCOL-PCEs as network nodes from the multimodal DTI and R-fMRI.

4. Preprocessing of t-tests was performed to remove those functional connectivities that do not show significant differences between PCE affected brains and normal controls.

5. The remaining functional connectivities for each subject was composed into a row connectomics attribute vector. All these row vectors were arranged into a connectomics attribute matrix, where PCE brains were at the upper part of the matrix; while the normal controls were at the lower part.

6. A hierarchical clustering algorithm or other clustering algorithms such as k-means clustering algorithms (Alizadeh et al., 2000) were applied to cluster the columns of connectomics attributes into informative connectomics signatures.

7. The clustered columns were compared with the functional annotations of DICCCOL ROIs, and the connectivities in each connectomics signature were mapped into the brain networks for results interpretation.

3 Results

3.1. DICCCOL-PCE prediction and optimization

In addition to the two examples of DICCCOL-PCE prediction and optimization in Fig. 2, we provided an additional example of DICCCOL-PCE (yellow sphere in Fig. 3a) and the corresponding trace-maps in Fig. 3b. As can be seen from the figure, the prediction (middle row in Fig. 3a) has a decent performance in terms of fiber shape consistency with the models (top row in Fig. 3a); furthermore, the optimization procedure (bottom row in Fig. 3a) further improved the consistency of emanating fiber bundles of predicted DICCCOL-PCE ROIs, as highlighted by the green and yellow arrows. This is further demonstrated and confirmed by the corresponding trace-maps in Fig. 3b. It is apparent that after optimization, the trace-maps (bottom row in Fig. 3b) have better group-wise consistency (top row in Fig. 3b) than the prediction (middle row in Fig. 3b). For additional comparisons, screenshots for fiber bundles of 358 DICCCOLs are released online at: http://dicccol.cs.uga.edu/pce.tar.gz.

Also, we quantitatively measured the trace-map distance of DICCCOL-PCE ROIs before and after optimization. It turned out that the optimization step substantially improved the consistency of fiber connection patterns of DICCCOL-PCE ROIs. Fig. 4 shows the quantitative results for both PCE affected brains and their healthy controls. In general, the average trace-map distance dropped by 31.8% after optimization and the standard deviation dropped by 30.1% for PCE affected brains; and for the controls, the average trace-map distance dropped by 29.8% after optimization and the standard deviation drops by 27.7%. This further demonstrates that the optimization procedure generated ROIs with accurate structural correspondence for PCE affected brains.

3.2. Discrepant DICCCOL-PCE ROIs

In this section, we describe the results of the identification of structurally disrupted DICCCOL-PCE ROIs by measuring the similarities between their fiber connectivity patterns and those in the template brains. A null hypothesis assuming equal similarity of fiber connectivity pattern to that in the template brains and equal variance between PCE affected brains and their normal controls was introduced and tested by a student t statistics in a two-tailed manner. In total, we identified 10 discrepant DICCCOL-PCE ROIs (p-value <0.003). The locations of these 10 ROIs were indicated by red spheres in Fig. 5. Their specific anatomic locations and possible functional roles in the atlas space were assessed via meta-
analysis using BrainMap database (Laird et al., 2009), and the results are summarized in Table 1. It is interesting to see that most of the 10 ROIs are involved in brain networks reported to exhibit different patterns in PCE affected brains from their normal controls in a variety of literature papers, including working memory (Hurt et al., 2008; Li et al., 2009b; Santhanam et al., 2009), language (Emmalee et al., 2002), executive function (Rose-Jacobs et al., 2009), motor (Miller-Loncar et al., 2005), attention (Dow-Edwards et al., 2006; Li et al., 2009b), and vision (Dow-Edwards et al., 2006; Li et al., 2008) network. This consistency demonstrated that our new method is capable of systematically exploring the structural disruptions of PCE affected brains in a large scale.

As an example, we depicted the discrepant DICCCOL-PCE ROI (ID #352 in Table 1) at the superior frontal gyrus in Fig. 6. This DICCCOL-PCE ROI was highlighted by yellow spheres. The top row shows the fiber bundles emanating from this ROI for five model subjects (Zhu et al., 2011), the middle row shows the fiber bundles emanating from the predicted ROIs for five PCE affected brains, and the bottom row depicts the fiber bundles emanating from the optimized ROIs for the same five PCE affected brains. The disrupted fiber tracts emanating from this ROI were highlighted by the colored arrows. As can be seen from the figure, it is apparent that the PCE affected brains have disrupted fiber connections from the superior frontal gyrus to the visual cortex in occipital lobes, suggesting that our analysis method is able to discover and differentiate the discrepant DICCCOL-PCE ROIs in PCE brains from their normal controls.

3.3. Consistent DICCCOL-PCE ROIs

Although there are 10 discrepant ROIs in PCE affected brains differentiated from normal controls, most ROIs (348 out of 358) still exhibited quite consistent fiber connection patterns as matched controls and the templates (Zhu et al., 2011a). In Fig. 7, we randomly chose three consistent DICCCOL-PCE ROIs, and visualized them and their fiber bundles on the cortical surface as examples. These ROIs corresponded to DICCCOL #80, #90 and #95 respectively. The rest of DICCCOL-PCE ROIs are available online at http://dicccol.cs.uga.edu/pce.tar.gz.

As can be seen from Fig. 7 and other online screenshots (http://dicccol.cs.uga.edu/pce.tar.gz), these ROIs possessed accurate structural correspondences across individuals, indicating that the DICCCOL-PCE ROIs tend to represent the common brain architecture in PCE/control brains. As such, these DICCCOL-PCE ROIs will be used as structural substrates to construct large connectomes (Zhu et al., 2011a) and explore functional connectome signatures of PCE brains in the following section.

3.4. Functional connectome signatures

We reconstructed functional connectomes using the resting state fMRI data based on the 348 DICCCOL-PCE ROIs for 29 PCE subjects and 22 matched controls described in Section 2.1. From a total of 60378 functional connections, a simple t-test (p-value = 0.005) was first used to identify those with significant differences between PCE and healthy controls, resulting in 845 altered connections as shown in Fig. 8a. Subsequently, a hierarchical clustering algorithm (Alizadeh et al., 2000) was used to group functional connectivities on the basis of similarity in the pattern with which their connection strength varied over all PCE/control brains. Totally, we identified 362 consistently decreased and 330 consistently increased functional connections in PCE subjects, as shown in Figs. 8b and 8c. As the hypo- or hyper-functional connectivity patterns in 29 PCE subjects, in comparison with 22 healthy controls, are quite consistent across individuals, we named the two patterns as functional connectomics signatures of PCE.
To interpret the connectomics signatures of PCE, Figs. 8d and 8e illustrate the hypo- or hyper-connectivities in PCE on a cerebral cortical surface. It is evident that both decreased and increased functional connectivities in PCE are widespread across the entire cortex, suggesting that PCE causes large-scale functional connection alterations. Quantitatively, the percentages of increase/decreased connectivities connected to the left frontal, left parietal, left temporal, left occipital, right frontal, right parietal, right temporal, and right occipital lobes are 28.3%/27.2%, 13.5%/11.7%, 7.0%/8.9%, 2.2%/3.7%, 24.8%/25.7%, 7.0%/4.7%, 10.0%/13.6%, and 7.4%/5.6%, respectively. It can be clearly seen that the frontal lobes exhibit substantially more functional connectivity alterations than other lobes, e.g., the occipital lobes. Furthermore, we annotated the 358 DICCCOLs into 55 functional networks via task-based fMRI and/or via meta-analysis in the BrainMap (http://brainmap.org/) database that integrated the activations of 2114 fMRI papers and 9994 fMRI experiments (Laird et al., 2009). We visualized the top 22 functional networks that are most frequently involved in the two connectomics signatures of PCE brains in this paper in Figs. 9a and 9b. The names and colors of these 22 networks are presented in Fig. 9c. Quantitatively, the top five functional networks that exhibit increased functional connectivity alterations are attention, executive function, language speech, language semantic, and language emotion, and their relative contributions to the total altered connections are 21.7%, 10.0%, 9.1%, 7.8%, 7.4%, respectively. At the same time, the top five networks that exhibit decreased connectivities are attention, emotion, executive function, language speech, and inhibition, and their alterations represent 21.5%, 7.9%, 7.5%, 6.5%, 6.1%, respectively, of the total alterations. Apparently, the attention network is the most affected in terms of altered connectivities. In addition, it is interesting that the attention, executive function, language speech, and emotion networks are among the top five networks with both decreased and increased connectivities. These results are in the line with literature reports (Emmalee et al., 2002; Rose-Jacobs et al., 2009; Dow-Edwards et al., 2006; Li et al., 2009b), and systematically and comprehensively elucidated the widespread functional connectivity alterations via connectomics signatures.

4 Discussion and Conclusion

In this paper, we described a novel framework to identify a large set of cortical landmarks in PCE affected adolescents and their matched controls, named DICCCOL-PCEs that possess accurate structural correspondences across individuals. This computational framework mainly consisted of a DICCCOL ROI prediction step and a following ROI optimization step. With these 358 DICCCOL-PCEs, we systematically assessed the structural disruption on the cortex for PCE brains and identified 10 discrepant DICCCOL-PCE landmarks. Interestingly, meta-analysis demonstrates that most of these 10 discrepant landmarks are involved in brain networks reported in the literature to be involved responsible for working memory, language, executive function, motor, attention, and vision networks. Also, we determined 348 consistent DICCCOL ROIs that are corresponding in both PCE affected brains and matched controls, which provided the structural substrates for connectome construction and extraction of functional connectomics signatures in PCE. Then, we borrowed the well-established approaches of deriving genomics signatures in genome-wide gene expression studies to discover connectomics signatures for the characterization of PCE, and identified functional connectome signatures that are able to distinctively differentiate PCE brains from their matched controls. Our results demonstrated that there are widespread functional connectivity alterations, either increasing or decreasing, in the PCE affected adolescents brains in comparison with their healthy controls.

In the future, the work in this paper could be extended and enhanced in the following directions. First, the discovered connectomics signatures in Fig. 9 should be replicated and cross-validated in separate datasets by different research labs. In that scenario, our...
DICCCOL-PCE identification and optimization framework in Section 2 can be applied in such independent multimodal DTI/R-fMRI datasets for the purpose of result replication. Second, the predicted and optimized DICCCOL-ROIs should be further validated via benchmark task-based fMRI datasets that consistently activate corresponding functional brain areas in both PCE and control brains. Such independent validations can further support the findings in Sections 3.1 and 3.3. Third, the discovered functional connectomics signatures in Section 3.4 can be correlated with the PCE clinical and behavior parameters, e.g., verbal IQ and performance IQ, and analyzed at both individual and group levels. Such studies could possibly generate a collection of connectomics-based markers that are predictive of PCE clinical and behavior measurements.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

T Liu and D Zhu were supported by the NIH Career Award EB 006878, NIH R01 HL087923-03S2, and The University of Georgia start-up research funding. Z Li, M Lynch, C Coles and X Hu were supported by NIH R01 DA17795. K Li was supported by the China Government Scholarship. The authors would like to thank the anonymous reviewers for their valuable comments that have helped to significantly improve the paper.

References

Mayes LC. Neurobiology of prenatal cocaine exposure effect on developing monoamine systems. Inf Mental Health J. 1994; 15:121–133.

Fig. 1.
(a): Left precuneus (by the red sphere) in three subjects. (b) Fiber connection profiles of the precuneus in three subjects. (c): The 358 DICCCOL landmarks (Zhu et al., 2011a). (d)-(h): Similar fibers connected to the 5 landmarks, represented by enlarged bubbles in (c), in 2 separate groups of 5 subjects (in 2 rows) respectively.
Fig. 2.
Two examples of fiber connection patterns of DICCCOL ROIs before and after optimization. (a) The first case; (b) The second case. For each case, the 5 visualizations in the top row are from template brains, the 5 visualizations in the middle row are the predicted DICCCOL ROIs in PCE brains, and the 5 visualizations in the bottom row are the results after optimization. The within-group tracemap distances for the two examples are: (a) 2.30/1.67 (prediction/optimization), and (b) 3.86/1.92 (prediction/optimization). The orange arrows highlight the cases that exhibited significantly improved DICCCOL optimization results.
Fig. 3.
An example of DICCCOL-PCE prediction and optimization. (a) The fiber bundles of the DICCCOL (represented by yellow sphere). The top row are five models from UGA dataset (Zhu et al., 2011a); the middle row are the predicted DICCCOLs in five PCE affected brains; the bottom are optimized DICCCOLs for the same five PCE affected brains after prediction. (b) The corresponding trace-maps in Fig. 3a. The within-group tracemap distances for this DICCCOL is 1.60/1.40 (prediction/optimization).
Fig. 4.
Group-wise consistency comparison for DICCCOL-PCE ROIs. (a) PCE subjects. The average trace-map distance drops by 31.8% after optimization and the standard deviation drops by 30.1%. (b) Control subjects. The average trace-map distance drops by 29.8% after optimization and the standard deviation drops by 27.7%.
Fig. 5.
Discrepant DICCCOL-PCE ROIs (represented by red spheres) in three different views. (a): Dorsal view. (b): Left lateral view. (c): Right lateral view.
Fig. 6.
One example of discrepant DICCCOL-PCE ROI at the superior frontal gyrus (represented by yellow spheres). Top row: five model subjects (Zhu et al., 2011a); Middle row: five PCE affected subjects with predicted ROIs; Bottom row: the same five PCE brains with optimized ROIs.
b
Fig. 7.
Three examples of consistent DICCCOL-PCE ROIs. (a) DICCCOL-PCE #80; (b) DICCCOL-PCE #90; (c) DICCCOL-PCE #95. Screenshots for the rest of DICCCOL-PCE ROIs are available at http://dicccol.cs.uga.edu/pce.tar.gz.
Fig. 8.
Connectomics signatures for characterization of PCE. (a) Each connectome is represented by a row of 845 connections (selected from 60378 connections via t-test, p-value = 0.005) and each column stands for 29 PCE and 22 control subjects. Red and green stand for hyper- and hypo-connectivities. Two connectomics signatures were discovered, as shown in more details in (b) and (c). The spatial distributions of these connectomics signatures on the cortical surfaces are provided in (d) and (e).
Fig. 9.
Result interpretation of connectomics signatures of PCE. For the visualization scheme in (a) and (b), 358 DICCCOL-PCE ROIs are represented by an inner ring of color-coded nodes, connections (corresponding to those in Figs. 8d and Figs. 8e) are represented by lines, and 22 functional networks are represented by 22 outer rings of colored nodes. All of the colored nodes in each ring of 358 nodes stand for a functional network. The names and colors for 22 networks and their corresponding rings are shown in (c). (a) Increased functional connectivities in PCE in comparison with controls. (b) Decreased functional connectivities in PCE in comparison with controls. (c) Names and colors of top 22 functional networks that are most frequently involved in the hypo- or hyper-functional connectivities in this paper.
Table 1

Meta-analysis of the ten discrepant DICCCOL-PCE ROIs using BrainMap dataset.

<table>
<thead>
<tr>
<th>ID</th>
<th>Paper ID and behavioral domain</th>
<th>Coordinates and atlas labels</th>
</tr>
</thead>
</table>