About this item:

542 Views | 131 Downloads

Author Notes:

E-mail: drainni@emory.edu

Conceived and designed the experiments: SR DE AJ DR.

Performed the experiments: AJ SR DE DR SD.

Analyzed the data: SR DE AJ TM.

Contributed reagents/materials/analysis tools: SR DE TM DR.

Wrote the paper: SR DE AJ TM DR.

The authors have declared that no competing interests exist.

Subject:

Research Funding:

NIH Grant MH 069852 to DGR was the primary source of funding for materials and salaries for those involved in the design and execution of all experiments, as well as data analysis and manuscript preparation.

NIH Base grant RR-00165 to the Yerkes National Primate Research center also provides some support to this research in the form of facilities.

The authors also received some support from the Atlanta Clinical and Translational Science Institute (ACTSI), in turn supported in part by PHS Grant UL1 RR025008 from the Clinical and Translational Science Award program, National Institutes of Health, National Center for Research Resources.

The funders had no role in study design, data collection, decision to publish, or preparation of the manuscript; the funders' only role in data analysis was ACTSI's consultation on techniques for statistical comparisons of data presented in figures 3 and ​and44.

Spike-Timing Precision and Neuronal Synchrony Are Enhanced by an Interaction between Synaptic Inhibition and Membrane Oscillations in the Amygdala

Tools:

Journal Title:

PLoS ONE

Volume:

Volume 7, Number 4

Publisher:

, Pages e35320-e35320

Type of Work:

Article | Final Publisher PDF

Abstract:

The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2–6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine.

Copyright information:

© Ryan et al.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote