Retinal Expression of Fgf2 in RCS Rats with Subretinal Microphotodiode Array

Vincent T. Ciavatta, Emory University
Moon Kim, Atlanta VA Medical Center
Paul Wong, Emory University
John Nickerson, Emory University
R. Keith Shuler, Emory University
George Y. McLean, Optobionics Inc
Machelle Pardue, Emory University

Journal Title: Investigative Ophthalmology & Visual Science
Volume: Volume 50, Number 10
Publisher: Association for Research in Vision and Ophthalmology (ARVO) | 2009-10, Pages 4523-4530
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1167/iovs.08-2072
Permanent URL: http://pid.emory.edu/ark:/25593/fhqtz

Final published version: http://www.iovs.org/content/50/10/4523

Copyright information:
© Association for Research in Vision and Ophthalmology

Accessed October 27, 2019 2:45 AM EDT
Retinal Expression of Fgf2 in RCS Rats with Subretinal Microphotodiode Array

Vincent T. Ciavatta,1,2 Moon Kim,1 Paul Wong,2 John M. Nickerson,2 R. Keith Shuler, Jr,2 George Y. McLean,5 and Machelle T. Pardue1,2

PURPOSE. To test the hypothesis that subretinal electrical stimulation from a microphotodiode array (MPA) exerts a neuroprotective effect in Royal College of Surgeons (RCS) rats through the induction of growth factors.

METHODS. At postnatal day 21, RCS rats were divided into four groups in which one eye per rat received treatment: (A) active MPA, (M) minimally active MPA, (S) sham surgery, or (C) no surgery and the opposite eye was unoperated. Dark- and light-adapted ERGs were recorded 1 week after surgery. A second set of A, M, and C-treated RCS rats had weekly ERG recordings for 4 weeks. Real-time RT-PCR was used to measure relative expression of mRNAs (Bdnf, Fgf2, Fgf1, Cntf, Gdnf, and Igf1) in retina samples collected 2 days after the final ERG.

RESULTS. One week after surgery, there was a slight difference in dark-adapted ERG b-wave at the brightest flash intensity. Mean retinal Fgf2 expression in the treated eye relative to the opposite eye was greater for the A group (4.67 ± 0.72) than for the M group (2.80 ± 0.45; P = 0.0501), S group (2.05 ± 0.45; P < 0.01), and C group (1.30 ± 0.22; P < 0.001). No significant change was detected for Bdnf, Cntf, Fgf1, Gdnf, and Igf1. Four weeks after surgery, the A group had significantly larger dark- and light-adapted ERG b-waves than for the M and C groups (P < 0.01). Simultaneously, mean relative Fgf2 expression was again greater for the A group (3.28 ± 0.61) than for the M (1.28 ± 0.32; P < 0.05) and C (1.05 ± 0.04; P < 0.05) groups.

CONCLUSIONS. The results show subretinal implantation of an MPA induces selective expression of Fgf2 above that expected from a retina-piercing injury. Preservation of ERG b-wave amplitude 4 weeks after implantation is accompanied by elevated Fgf2 expression. These results suggest that Fgf2 may play a role in the neuroprotection provided by subretinal electrical stimulation. (Invest Ophthalmol Vis Sci. 2009;50:4523–4530) DOI:10.1167/iovs.08-2072

From the 1Rehab R&D Center, Atlanta VA Medical Center, Decatur, Georgia; the 2Department of Ophthalmology, Emory School of Medicine, Atlanta, Georgia; and 3Optobionics Corp., Palo Alto, California.

Supported by the Department of Veterans Affairs, Foundation Fighting Blindness, Research to Prevent Blindness, and National Eye Institute Grants R01EY016470, R24EY017045, and P30EY06366.

Submitted for publication March 25, 2008; revised October 17, 2008, and January 8, 2009; accepted August 5, 2009.

Disclosure: V.T. Ciavatta, Optobionics Corp. (F); M. Kim, None; P. Wong, None; J.M. Nickerson, None; R.K. Shuler, Jr, None; G.Y. McLean, Optobionics Corp. (E, P); M.T. Pardue, Optobionics Corp. (F).

The publication costs of this article were defrayed in part by page charge payment. This article must therefore be marked ‘advertisement’ in accordance with 18 U.S.C. §1734 solely to indicate this fact.

Corresponding author: Vincent T. Ciavatta, Research Service (151 Oph), 1670 Clairmont Road, Decatur, GA 30035; vciavat@emory.edu.

R etinal degenerations such as age-related macular degeneration (AMD) and retinitis pigmentosa are a significant health concern. Retinitis pigmentosa (RP) occurs in approximately 1 in 3500 persons.1 As of 2003, AMD affected an estimated 20 to 25 million persons worldwide, and the incidence of AMD is projected to triple in 30 to 40 years.2 A multitude of mutations and risk factors underlie the mechanisms of RP and AMD;2,3 however, all forms of these retinal degenerations result in irreversible photoreceptor cell death and thus visual impairment or blindness.4

For patients with RP and AMD, neuroprotective strategies aim to prevent or delay irreversible photoreceptor death and thereby prolong useful vision. A variety of neuroprotective approaches including growth factor administration,5 antioxidants,6 steroids,7 bile acids,8 and calcium-channel blockers9 have been shown to extend neuroprotection to photoreceptors in animal models of retinal degeneration. Administering growth factors to eyes of such animal models through direct injection,10 encapsulated, engineered ciliary neurotrophic growth factor (CNTF)-secreting cells,11 or transfection with a growth factor-encoding vector12 is well documented to protect the retina from some diseases or injury. Similarly, inducing the expression of endogenous growth factor genes through trauma to the eye13 also provides neuroprotection in the retinas of rodent models of retinal degeneration.

Electrical stimulation may also be capable of exerting a neuroprotective effect on retinal neurons. Patients with RP who, as part of a clinical trial, received a microphotodiode array implanted into the subretinal space of one eye displayed measurable increases in visual acuity and color vision.14 Eyes of Royal College of Surgeons (RCS) rats implanted with subretinal microphotodiode arrays (MPAs) similar to those used in human trials showed a delay in the loss of photoreceptor function as determined by electroretinogram (ERG) b-wave amplitude and higher photoreceptor counts near the implantation site compared with control eyes.15 RCS rats receiving transcorneal electrical stimulation also experienced a delay in photoreceptor death, preservation of retinal thickness, and preservation of retinal function.16 Lastly, in rats with a transected optic nerve, transcorneal electrical stimulation spared axotomized ganglion cells.17

In nonretinal neurons, electrical stimulation has been associated with neuroprotection. For example, electrical stimulation of spiral ganglion cells after a deafening stress23 and the cerebellar fastigial nucleus before midcerebral artery occlusion24 resulted in prolonged neuron survival. Electrical stimulation has been associated with neuroprotection of dopaminergic neurons in a rat model of Parkinson disease.25

Electrical stimulation has been shown to induce neuronal expression of neuroprotective growth factors in culture.26–28 and in vivo.29–31 Some of these studies also showed that growth factor induction in response to electrical stimulation was associated with neuroprotective effects.21,27–30 Further-
more, a causal relationship between electrical stimulation, Igf1
induction, and neuroprotection of axotomized ganglion cells
was established when ganglion cell rescue by transcorneal
electrical stimulation was abrogated by an IGF-1 receptor an-
tagonist.52 Thus, it seems plausible that the induction of a
neuroprotective growth factor is responsible, at least in part,
for the preservation of retinal function and photoreceptors in
RCS rats that received subretinal electrical stimulation.20

We hypothesized that neuroprotection of the RCS rat retina
in response to subretinal electrical stimulation35 results from
heightened activity of neuronal survival pathways that are
activated by growth factors. We therefore predicted that tran-
script levels of neuroprotective growth factors would be ele-
vated in RCS rats that received subretinal electrical stimulation
from MPAs. Here we report the expression of several growth
factors (brain-derived neurotrophic factor [Bdnf], ciliary neu-
rotrophic factor [Gntf], acidic fibroblast growth factor [Fgf1],
basic fibroblast growth factor [Fgf2], glial-derived neurotro-
phic factor [Gdnf], and insulin-like growth factor [Igf1]) in RCS
rats that received subretinal electrical stimulation from an
active MPA (A), minimally active MPA (M), sham surgery (S), or
no treatment control (C). One week after implantation surgery,
Fgf2 expression was selectively induced compared with the
other growth factors, with an increasing gradient of expression
from the C group, to the S group, to the M group, to the
highest expression in the A group. Four weeks after surgery,
Fgf2 expression was still greatest in the A group. Additionally,
at 4 weeks after surgery, ERG b-wave amplitudes were signifi-
cantly larger in the A group than in the other treatment groups.
These results suggest that Fgf2 induction may mediate neuro-
protective effects from subretinal electrical stimulation.

METHODS

Animals, Surgical Procedures, and
Experimental Design

The dystrophic RCS rat retinal degeneration model, originally obtained
from Matthew LaVail, PhD, of the University of California at San
Francisco, was used in this study. The mutation was bred onto the
Long Evans background; thus, pigmented animals were used through-
out this study. In the dystrophic RCS rat, both copies of the receptor
tyrosine kinase gene Mer tk are mutated, resulting in a premature stop
codon and improper protein synthesis.34 The lack of the MER TK
enzyme prohibits the phagocytosis of photoreceptor outer segments35
and is believed to be the cause of the photoreceptor degeneration that
begins at approximately postnatal day (P) 12 and is complete by
approximately P95.36 Animals were reared and maintained throughout
the study on a 12-hour light ([L]23-hr) and 12-hour dark schedule and
were provided food and water ad libitum.

Electrical stimulation was provided by a subretinally implanted
MPA that has been described previously.37,38 To control for potential
neuroprotective effects from injury19 or light exposure,39 animals were
divided into four treatment groups: nonsurgical control (C; n = 11),
sham surgery (S; n = 9), minimally active MPA implantation (M; n =
10), and active MPA implantation (A; n = 19). At P21, surgeries were
performed as described previously.40 For A and M treatments, implants
remained in the subretinal space for the duration of the study, whereas
the S treatment involved inserting the MPA into the subretinal space
and immediately removing it. One week (7 days) after implantation, 8,
9, 6, and 14 animals in the C, S, M, and A groups, respectively, were
subjected to ERG and then humanely killed 2 days later (9 days after
implantation). All other animals were monitored with weekly ERGs to
4 weeks (28 days) after implantation surgery and then humanely killed
2 days after the final ERG (30 days after implantation). Animal kill
was performed with an overdose of pentobarbital. All experiments involv-
ing animals were reviewed and approved by the Instrumental Animal
Care and Use Committee of the Atlanta Veterans Administration and
were in full compliance with the ARVO Statement for the Use of
Animals in Ophthalmic and Visual Research.

Electoretinographic Assessment
of Retinal Function

ERGs were recorded under dark- and light-adapted conditions, as
previously described.29 Briefly, rats were dark-adapted overnight and
prepared under dim red light. After sedation with ketamine (60 mg/kg)
and xylazine (7.5 mg/kg), the cornea was anesthetized (1.0% teta-
caine), and dilating drops (1.0% tropicamide, 1% cyclopentolate) were
instilled in both eyes. With body temperature maintained at 37°C on a
homeothermic heating pad, the electrical response of the retina was
recorded with a nylon fiber embedded with silver particles placed
across the surface of the cornea41 and wetted with 1% methylcellulose.
Responses were referenced and grounded by needle electrodes placed
in the cheek and tail, respectively. A series of full-field flash stimuli was
presented by a Ganzfeld dome under dark-adapted conditions (~5.4 to
2.1 log cd · s/m²). Interflash interval increased with flash intensity from
10 to 60 seconds. After 10 minutes of light adaptation (30 cd/m²), a
second series of flash stimuli (~0.82 to 1.88 log cd · s/m²) was
presented in the presence of the adapting light at 2.1 Hz to isolate cone
responses. Acquired responses were filtered (1-1500 Hz) and stored
on a commercial ERG system (UTAS 3000; LKC Technologies, Gaith-
ersburg, MD). ERG recordings performed 1 week after surgery con-
sisted of five dark-adapted and four light-adapted steps. Weekly ERG
recordings of rats followed to 4 weeks after surgery served to measure
retinal function and to provide increased electrical output from the
MPA,39 thus consisting of 10 dark-adapted and 7 light-adapted steps.

Implant Description and Characterization

Implants were fabricated essentially as described previously.38 Briefly,
active MPAs were made from p-type starting material and contained an
array of pixels consisting of n-type doped regions on the front (pixi-
lated) surface. In contrast, the minimally active MPAs were made
without the intentional introduction of any additional dopants, so the
minimally active MPAs were not expected to have any semiconductor
junctions or to exhibit photovoltaic behavior. The minimally active
MPAs were manufactured from p-type monocrystalline silicon wafers
with a resistivity of 50 Ω cm. The starting material was polished on
both sides and selectively thinned (by wet etching in KOH) to form
membranes 25 μm thick. A dielectric layer of silicon dioxide was
formed by dry thermal oxidation of the silicon. The resultant dielectric
layer was 1200 ± 50 Å thick and covered both sides of each MPA.
Implantable discs were cut from the thin portions of the wafer by
etching annuli completely through the 25-μm membranes using a
reactive ion etch process. No metal electrodes were applied to the
minimally active MPAs, so each face consisted of a smooth, continuous
layer of silicon dioxide.

The photovoltaic charge-injection characteristics (µA/cm²/W) of
active and minimally active MPAs were measured in a PBS electrolyte
under a wide range of illumination conditions using an infrared source
(870 nm). A pulse (1 ms) of light (10.5 mW/cm²) was shown on the
photoactive side of the active MPAs or either side of the minimally
active MPAs as current was monitored in the PBS electrolyte at one
measurement every 10⁻⁴ seconds.

Growth Factor Expression Analysis

Before enucleation, the superior portion of each eye was marked with
a pen to maintain orientation. Eyes were enucleated, cornea and lens
were removed, and four radial cuts were made to flatten the eyecup.
The 2.3-mm diameter trephine was used to dissect the portion of retina
overlying the implant (A and M groups), the incision site (S group), or
an equivalent position (C group).

For each tissue sample, reverse transcription (RT) followed by
real-time polymerase chain reaction (PCR) was performed. Samples
were homogenized in 100 µl reagent (TRizol; Invitrogen, Carlsbad,
CA) at 30,000 rpm for 2 × 15 seconds using a TH homogenizer.
equipped with a 5-mm stainless steel probe (Omnin International, Marietta, GA). Total RNA isolation was performed according to the manufacturer’s instructions. Resultant RNA was dissolved in 100 μl RNAse-free dH2O and further purified and concentrated to a final volume of 12 μl with a spin column (MiniElute RNeasy; Qiagen, Valencia, CA). RNA yields, as determined by measuring A260 nm, varied between approximately 0.5 and 2.0 μg per sample, and the ratios of A260 nm to A280 nm varied between 1.7 and 2.0.

Optimal RNA and cDNA dilutions were determined by RT and subsequent PCRs on a seven-step, twofold dilution series of RNA (12.5, 25, 50, 100, 200, 400, and 800 ng RNA/RT) and inspecting for single cycle shifts in cycle threshold (Ct) between dilutions. Using more than 200 ng RNA per RT decreased 18S Ct differences, implying incomplete RT at high RNA amounts, and using less than 50 ng RNA per RT increased Ct for genes of interest. For each RNA sample, 100 ng total RNA was reverse transcribed (QuantiTect Reverse Transcriptase; Qiagen) in a final 20-μl volume according to the manufacturer’s instructions. The resultant cDNA was diluted 20-fold, and 5 μl diluted cDNA (equivalent of 1.25 ng RNA/PCR) was used in a real-time PCR reaction with 100 nM (equivalent of 1.25 ng RNA/PCR) was used in a real-time PCR reaction (Fig1 and Gdnf) or 200 nM (18S, Bdnf, Cntf, Gf2, Igf1) each of a primer pair (18S forward, 5′-TTTGTGTTTTCGGAACCTAGGC-3′, 18S reverse, 5′-GTCGGCATGTATTGTCGG-3′; Bdnf forward, 5′-AACCCAGAAAAAACCATACAA-3′, Bdnf reverse, 5′-CTTGTGCTGAATGGACACAAA-3′; Cntf forward, 5′-GGACCTCCTGAGCCTTCA-3′, Cntf reverse, 5′-TCATCTCCTGCAAAGATCA-3′; Gf1 forward, 5′-AAGCCAAGTCTCAGTGC-3′, Gf1 reverse, 5′-GAGCCGTTAATAAGGCCTTC-3′; Gf2 forward, 5′-GCGGCTCATTGAAGAAG-3′, Gf2 reverse, 5′-CGTCATCCATTCTTCAATAGC-3′; Gdnf forward, 5′-CCATGTTTCTAGCCACTCTG-3′, Gdnf reverse, 5′-AGGCTGAAATTTGGTTCCCT-3′; Igf1 forward, 5′-TGAGACCTCCTGATGTCTGG-3′, Igf1 reverse, 5′-GTTTGTGCTGAACCTTCTTCAGTAC-3′, 12.5 μl of 2× reaction cocktail (iQ SYBR Green Spermix; Bio-Rad, Hercules, CA) and nuclease-free dH2O to 25 μl. Primers were designed with Primer3 (http://fokker.wi.mit.edu/primer3/). cDNA was amplified in 96-well plates on a thermal cyclers (iCycler; Bio-Rad). Conditions were 95°C, 3 minutes; 40 cycles of 94°C, 30 seconds denaturation; 55°C, 30 seconds annealing; 72°C, 30 seconds extension; 72°C, 7 minutes, with fluorescence recorded at the end of each 72°C extension. Melt analysis conditions were heating from 55°C to 95°C in 0.5°C increments, 15 seconds per increment, with fluorescence recorded at each increment. The Ct of each reaction was determined from a PCR baseline-subtracted and curve-fit option (iCycler; Bio-Rad). Three real-time PCRs were performed for each cDNA sample-primer pair combination, and the average Ct was calculated. Taking 18S as the endogenous control, growth factor transcript abundance (expression) relative to control eyes or the opposite eye was calculated from the average PCR cycle thresholds using the 2–ΔΔCt method of Livak and Schmittgen.42 The expression ratio was computed for each cDNA sample-primer pair combination, and the average Ct was calculated. Taking 18S as the endogenous control, growth factor transcript abundance (expression) relative to control eyes or the opposite eye was calculated from the average PCR cycle thresholds using the 2–ΔΔCt method of Livak and Schmittgen.42 The expression ratio was computed.

Statistical Analysis

For replicate analyses of treatment groups, the mean and SEM were calculated. Preliminary growth factor expression data were analyzed for significance with Student’s t test. One-way (Fig2 expression) and two-way (ERG a- and b-wave amplitudes) analysis of variance tests were performed to determine whether there were significant differences within all treatment groups, and the Holm-Sidak post hoc test was applied to examine significant differences between two treatment groups at α = 0.05 with the use of statistical analysis software (SigmaStat 3.5; Systat Software, Inc., Point Richmond, CA).

Results

Implant Characterization

Minimally active MPAs exhibited a photovoltaic effect, suggesting that a photoactive junction was inadvertently formed during their manufacture. At all illumination levels, however, the active MPAs delivered more charge than the minimally active MPAs. Figure 1 shows that the active MPA delivered greater than 100 times more stimulus current than the minimally active MPA in response to illumination of approximately 10 mW/cm² from near infrared (870 nm) light. At this wavelength, the MPA had a responsivity of 0.345 A/W (see Fig. 1 in DeMarco et al.44) and responded in a linear fashion to increasing light intensity. Thus, the difference was less pronounced at lower illumination levels and more pronounced at greater illumination levels because the charge capacity of the iridium oxide electrodes on the active MPAs far exceeded the small capacitive coupling available to the minimally active MPAs. Because lighting conditions used during the study ranged from darkness to the brightest ERG flash (2.1 log cd·s/m²) with the large fluctuations between these extremes, it is estimated that retinas in the A group experienced more than 100 times more current than retinas in the M group.

Electroretinographic Assessment of Retinal Function

Dark-Adapted Responses. Representative dark-adapted ERGs from animals at 1 and 4 weeks after surgery are shown in Figure 2. Figure 2A shows the typical ERG waveform to a bright flash (2.1 log cd·s/m²) from a representative RCS rat in each treatment group at 28 days of age. To this flash intensity, all treatment groups had prominent a- and b-waves with oscillatory potentials present on the leading edge of the b-wave. The negative spike at 0.05 ms was attributed to the electrical activity of the MPA or M-device at light onset and can be seen in each waveform from the A or M group. Figure 2C shows the average intensity response functions for the a- and b-wave at 1 week after implantation from each treatment group. There were no significant differences in the a-wave amplitude. However, the b-wave amplitude was significantly larger in the A and S groups than in the M and C groups at the brightest flash intensity (two-way repeated ANOVA; P = 0.02).

After 4 weeks of treatment by the MPA device, there was a significant difference in the overall waveform amplitude of the A group compared with the C and M groups, as shown in Figure 2B. The representative waveforms in Figure 2B show smaller waveforms compared with the 1-week recordings (Fig. 2A), reflecting the progressing photoreceptor degeneration in the RCS rats. Figure 2D shows the average a- and b-wave amplitude (expressed as a negative spike at 0.05 ms) between these extremes, it is estimated that retinas in the A group experienced more than 100 times more current than retinas in the M group.
amplitudes across intensity. The A group had a significantly larger b-wave amplitudes in response to intensities greater than −0.6 log cd · s/m² (two-way ANOVA; P = 0.003). No significant differences in a-wave amplitude were found between treatment groups.

Light-Adapted Responses. Figure 3 shows cone-isolating, light-adapted responses recorded 1 and 4 weeks after implantation. Note that the loss of cone function in the progressive photoreceptor degeneration can be clearly seen by the decreasing amplitude responses between 1 and 4 weeks (28 and 49 days of age, respectively). Figures 3A and 3C illustrate no significant differences in the light-adapted waveform or average b-wave amplitude, respectively, between treatment groups at 1 week after treatment. However, by 4 weeks after treatment, the A group had significantly larger responses, as shown by the representative waveforms in Figure 3B. The b-wave amplitude in the A group was significantly larger than the C and M groups at intensities greater than 0.39 log cd · s/m² (two-way ANOVA, P = 0.003; Fig. 3D).

Growth Factor Expression Analyses by RT-PCR

Nine days after surgery, expression analyses by RT-PCR of Gnf, Fgf1, Fgf2, Gdnf, Igf1, and Bdnf (not shown) showed a consistent, large, and significant elevation of Fgf2 expression in the A group compared with all other treatment groups, whereas little to no change across treatment groups was observed for the other genes (Fig. 4). Additional surgeries and 9-day analyses of the Fgf2 expression ratio again showed significantly elevated Fgf2 expression in the A group (Fig. 5A) but also revealed an increase as treatment progressed from control to sham to minimally active implantation to active implantation (C, 1.30 ± 0.22; S, 2.03 ± 0.45; M, 2.80 ± 0.45; and A, 4.67 ± 0.72, F_3,36 = 6.67; P = 0.001). Post hoc Holm-Sidak analysis revealed significant differences between the A and S groups (P < 0.01) and the A and C groups (P < 0.001), whereas P = 0.0501 for the A to M group comparison.

Thirty days after surgery, Fgf2 expression was still elevated in the A group (3.24 ± 0.61) compared with the other treatment groups: M, 1.28 ± 0.32; C, 1.05 ± 0.04 (P < 0.05, post hoc Holm-Sidak) (Fig. 5B). Over time, Fgf2 expression in the A group trended lower by 30 days after surgery but was not significantly different from the 9-day level (P = 0.076).

Discussion

Based on known neuroprotective effects of growth factors in various rodent models of retinal degenerative diseases, the induction of growth factors in applications of neuronal electrical stimulation, and previous results that indicated some degree of neuroprotection in the retina was provided by retinal electrical stimulation, we hypothesized that electrical stimulation affects neuroprotective pathways by the induction of known neuroprotective growth factors. The present results indeed show an increased expression of Fgf2 with MPA implantation. As shown previously, MPA implantation in the RCS rat had a positive effect on retinal function 4 weeks after implantation (ERG). Because the active MPA is known to produce approximately 100 times more electric current than the minimally active implant in response to light, it is inferred that the amount of subretinal current was the only difference between rats implanted with the active MPA and rats implanted with the minimally active device. Consequently, the present data imply that subretinal electrical stimulation from the MPA provides neuroprotection to the RCS rat retina concomitant to Fgf2 induction.

In this study, we began growth factor expression analyses 9 days after MPA implantation even though significant neuroprotection (preservation of maximum ERG b-wave responses and
photoreceptor nuclei) was first noted 4 and 6 weeks after implantation for the A group compared with all other groups. This was based on the expectation that the effects on gene expression would be detectable soon after implantation, in advance of any detectable neuroprotection. For gene expression analysis, we chose to use RT-PCR for its sensitivity and simplicity. We sampled a 2.3-mm diameter piece of retinal tissue centered on the 1-mm diameter implant (or an equivalent location in the nonimplanted eyes) as opposed to sampling the entire retina to optimize detecting any changes in gene expression in retina overlying the implant. Expression analyses at 1 week showed that mean \(\text{Fgf2} \) transcript abundance increased as treatments progressed from no injury (C), to injury (S), to injury plus chronic foreign body plus low level electrical stimulation (M), to injury plus chronic foreign body plus higher level electrical stimulation (A; Fig. 4), whereas little change in mean expression was noted for \(\text{Fgf1}, \text{Cntf}, \text{Gdnf}, \text{Igf1}, \) and \(\text{Bdnf} \). In addition, \(\text{Fgf2} \) expression at 4 weeks remained elevated in the A group. These data suggest that subretinal electrical stimulation specifically initiated and sustained increased \(\text{Fgf2} \) gene expression.

\textbf{Fgf2 Induction from Acute Injury and Chronic Electrical Stimulation}

As a response to injury alone, \(\text{Fgf2} \) induction was expected and observed. The present results show a twofold increase in mean \(\text{Fgf2} \) expression in the A group compared with all other groups. This was based on the expectation that the effects on gene expression would be detectable soon after implantation, in advance of any detectable neuroprotection. For gene expression analysis, we chose to use RT-PCR for its sensitivity and simplicity. We sampled a 2.3-mm diameter piece of retinal tissue centered on the 1-mm diameter implant (or an equivalent location in the nonimplanted eyes) as opposed to sampling the entire retina to optimize detecting any changes in gene expression in retina overlying the implant. Expression analyses at 1 week showed that mean \(\text{Fgf2} \) transcript abundance increased as treatments progressed from no injury (C), to injury (S), to injury plus chronic foreign body plus low level electrical stimulation (M), to injury plus chronic foreign body plus higher level electrical stimulation (A; Fig. 4), whereas little change in mean expression was noted for \(\text{Fgf1}, \text{Cntf}, \text{Gdnf}, \text{Igf1}, \) and \(\text{Bdnf} \). In addition, \(\text{Fgf2} \) expression at 4 weeks remained elevated in the A group. These data suggest that subretinal electrical stimulation specifically initiated and sustained increased \(\text{Fgf2} \) gene expression.

\textbf{Fgf2 Induction by Subretinal Microphotodiode Array 4527}
Similarly, it is not surprising that Cntf and Igif1 induction were not observed with injury at this early age given the small amount of induction (Cntf) and decreased expression (Igif1) of these genes seen in the injury response studies.\(^{46,47}\)

Fgf2 expression was induced in electrically stimulated retinas beyond injury-induced levels 1 week after implantation. The A group showed a significant increase in mean Fgf2 expression (4.7 ± 0.72) compared with the S and C groups (2.03 ± 0.45 and 1.3 ± 0.22) and a noticeable increase in Fgf2 levels compared with the M group (2.80 ± 0.45; \(P = 0.0501\)). These data may reflect that chronic implantation of a foreign body into the subretinal space, electrical stimulation, or both, induced Fgf2 beyond sham surgery. If electrical stimulation contributes to Fgf2 induction in a dose-dependent manner, it might be expected that Fgf2 expression in the M group would be intermediate between that in the S and A groups because the M group experienced some degree of electrical stimulation, albeit much less than did the A group. Indeed, the 9-day data could be interpreted as showing a dose-response relationship between the charge delivered to the retina and Fgf2 induction. Data from 30 days after surgery, however, suggest that electrical stimulation is more important for Fgf2 induction than chronic implantation of the MPA because Fgf2 remains elevated in the A group, whereas the M group is nearly indistinguishable from the C group. Thus, it appears there is an initial burst of Fgf2 induction immediately on implantation that could be related to implantation and electrical stimulation, and continued electrical stimulation from the active MPA maintains the induction to at least 30 days after implantation.

The source and mechanism of Fgf2 induction in response to subretinal electrical stimulation are unknown. However, rat Müller cells are known to be a source of FGF2 in response to trauma.\(^{28}\) Thus, the Müller cell seems a likely site of Fgf2 induction in response to electrical stimulation.

The mechanism of induction is less clear. Pharmacologically blocking L-type voltage-dependent calcium channels (VDCCs) has been shown to induce Fgf2 expression\(^{14}\) and to delay photoreceptor apoptosis\(^{28}\) in RCS rats. However, it is not clear whether or how electrical stimulation from the MPA blocks L-type VDCCs. In fact, in vitro induction of Igif1\(^{27}\) and Bdnf\(^{26}\) by electrical stimulation of cultured rat Müller cells was dependent on functional L-type VDCCs. Thus, induction of Fgf2 by identical treatment of cultured rat Müller cells\(^{28}\) could not have been caused by a block of L-type VDCCs. Nevertheless, this does not rule out the possibility that treatment with the MPA does inactivate L-type VDCCs. Alternatively, given that trauma to the retina is known to induce Fgf2, another possible mechanism is recurring trauma from the MPA sufficient to prolong Fgf2 induction. Future experiments will be directed toward investigating these possibilities.

Relationship between Fgf2 and Retinal Function

As expected from our previous studies, the ERG response did not show a difference 1 week after implantation,\(^{26}\) whereas Fgf2 expression was increased. It is not apparent whether the increases in b-wave amplitude at the highest flash intensity for the A and S groups were relevant to neuroprotection because this had not been observed before. By 4 weeks of implantation, the A group showed significantly larger dark-adapted b-wave amplitudes than the other treatment groups, as previously reported.\(^{19}\) Additionally, the preservation of light-adapted response was also found in the A group at 4 weeks after implantation, suggesting preservation of cone function. Preservation of retinal function at this time point may be a direct result of the selective increase in Fgf2 expression that promotes a neuroprotective environment. Thus, the current working hypothesis is that electrical stimulation in the A group was capable of achieving a threshold of Fgf2 induction necessary to elicit neuroprotective effects such as preserved retinal function in degenerating retina. This neuroprotective effect is capable of anatomic preservation of photoreceptors, as evidenced by a previous study of RCS rats after 8 weeks of implantation with MPAs.\(^{35}\) Additional studies, including quantitative analysis of FGFR2 protein in response to subretinal electrical stimulation and inhibition of FGF2 signaling, will be required to determine whether the Fgf2 induction reported here plays a primary or ancillary role in neuroprotection in this model system.

Electrical Stimulation as a Neuroprotective Treatment for Retinal Disease

Neuroprotection in general is a phenomenon with potential clinical applications to treat neurodegenerative diseases. In the eye, growth factors appear to be the most potent of well-tolerated molecules for the neuroprotection of photoreceptors. Specifically, CNTF has been shown to prolong the life of photoreceptors in several different retinal degeneration (RD) animal models, and clinical trials have begun to assess its safety and efficacy to delay the progression of photoreceptor and vision loss in patients with AMD and RP.\(^{49,50}\) Here we began to explore the mechanism behind neuroprotection provided from a subretinally implanted microphotodiode array. Results suggest that the electrical stimulation induced endogenous Fgf2, another growth factor known to exert neuroprotective effects in RD animal models.

Electrical stimulation as a treatment for retinal degeneration could be applied externally or internally. Morimoto et al.\(^{11}\) also
showed that transcorneal electrical stimulation of RCS rats exerted a neuroprotective effect on photoreceptors. This transcorneal approach requires current to be periodically applied through a contact lens electrode, and it presumably must traverse portions of the cornea and anterior chamber to elicit effects in the retina. Alternatively, a subretinal MPA, though more invasive, has the potential benefits of continuous and precise current delivery to the targeted neurons. The induction of Igf1 with transcorneal electrical stimulation\(^ {21} \) and Fgf2 with subretinal electrical stimulation, as shown here, may indicate that growth factor expression may be induced by different stimulation parameters. Irrespective of the mode of delivery, determining whether retinal neuroprotection provided by electrical stimulation can be extended to other RD animal models and determining whether the effects are responsive to stimulation parameters are questions that bear further examination if this approach is to be used as a therapy for human retinal degenerative diseases.

References

RETRAC TION

“Effect of Superposed Electromagnetic Noise on DNA Damage of Lens Epithelial Cells Induced by Microwave Radiation,”
DOI: 10.1167/iovs.07-1333. PMID: 18436834.

An investigation by the Editor-in-Chief, Paul L Kaufman, IOVS, found that this paper was previously published.

It is against the policy of the Association for Research in Vision and Ophthalmology (ARVO) to consider any paper or component of a paper that has been published or is under consideration for publication elsewhere.

The paper is therefore being retracted by ARVO from the IOVS journal.