Distinct roles for medial temporal lobe structures in memory for objects and their locations

Elizabeth A. Buffalo,1,3 Patrick S.F. Bellgowan,2 and Alex Martin2

1Department of Neurology, Emory University School of Medicine, and the Yerkes National Primate Research Center, Atlanta, Georgia 30329, USA; 2Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892, USA

Long-term memory encoding and retrieval critically depend on a system of interconnected structures in the medial temporal lobe (MTL), including the hippocampus and the surrounding entorhinal, perirhinal, and parahippocampal cortices. Damage to these structures produces profound memory deficits; however, the unique contribution to memory of each of these structures remains unclear. Here we have used functional magnetic resonance imaging (fMRI) to determine whether the perirhinal and parahippocampal cortices show differential memory-related activity. Based on the distinct patterns of cortical input to these two areas, we reasoned that these structures might show differential activity for spatial and object recognition memory. In each of 11 subjects, we found that the perirhinal cortex was active during both spatial and object memory encoding, while the anterior parahippocampal cortex was active only during spatial encoding. These data support the idea that MTL structures make distinct contributions to recognition memory performance.

Behavioral studies of the effects of medial temporal lobe lesions in monkeys and humans have raised the possibility of such a dissociation between the perirhinal cortex and the parahippocampal cortex (Mahut 1971; Jones and Mishkin 1972; Bohbot et al. 1998; Murray et al. 1998; Malkova and Mishkin 2003). However, because the roles of these cortices have been investigated in separate experiments or with combined lesions including other MTL structures, it has been difficult to assess directly the relative importance of each structure's contribution to memory.

Functional neuroimaging techniques are particularly well suited for addressing this question because they allow for a within-subject comparison of cortical activations as well as an investigation of possible functional subdivisions within defined cytoarchitectonic regions. To date, very few functional imaging studies of recognition memory have examined possible distinctions between medial temporal lobe structures (Davachi et al. 2003; Duzel et al. 2003; Pihlajamaki et al. 2003, 2004; Kohler et al. 2005; Sommer et al. 2005), and no direct comparisons have been made between the anatomically defined perirhinal and parahippocampal cortices while subjects explicitly perform a memory task across modalities. Here, we compared the activation patterns of the perirhinal cortex and the parahippocampal cortex while subjects performed tasks of visual object and spatial recognition memory. The extent of the perirhinal and parahippocampal cortex was defined using anatomical landmarks, for each subject individually. The results demonstrate that these structures make distinct contributions to recognition memory. The perirhinal cortex was active during the encoding of both objects and locations. In contrast, at the border between the perirhinal and parahippocampal cortices, a region in the anterior parahippocampal cortex was active only during the encoding of locations. Finally, posterior parahippocampal cortex was active during the encoding of both tasks.

Results

Recognition memory performance

A description of the tasks is given in Figure 2. In alternating blocks of trials, subjects performed an object or spatial recognition memory task. Item recognition (percent correct) for the two tasks (F1,10 < 1; P > 0.10). The average performance was 77% correctly recognized items for the object task and 76% for the spatial task. Performance as measured by d-prime also did not differ for the two tasks (F1,10 < 1; P > 0.10). The average d-prime rate was 2.22 for the Object task and 2.16 for the Spatial task. Subjects' reaction time in the two tasks was also not significantly different...
Spatial and object memory in the medial temporal lobe

The results from the present experiment suggest that components of the MTL make distinct contributions to memory performance. We found differences in activity in the perirhinal and parahippocampal cortices for visual object and spatial recognition memory. A region in the anterior part of the parahippocampal cortex was active only when subjects were encoding stimuli in the Spatial memory task. In contrast, the perirhinal cortex was similarly active when subjects performed the Object and the Spatial memory tasks. The posterior parahippocampal cortex was active during both object and spatial encoding.

It has been previously suggested that the perirhinal and parahippocampal cortices may play distinct roles in spatial and object memory, respectively (Suzuki and Amaral 1994a). The data from the present experiment provide the first direct evidence that such a functional distinction exists. One unexpected finding of the present experiment was that the spatial activation in the parahippocampal cortex was restricted to the anterior portion. To our knowledge, there are no anatomical studies of the MTL that have analyzed tracer injections restricted to this anterior region that might suggest an anterior-posterior gradient in the input of spatial information to the parahippocampal cortex.

Discussion

fMRI task effects

Using anatomically defined regions of interest, we compared activity in the perirhinal and parahippocampal cortices during performance of the Object and Spatial recognition memory tasks. Figure 4 shows the location of significant task-specific fMRI activity during encoding across the group of 11 subjects. Activity during encoding that was stronger for the Object than the Spatial task was seen throughout the ventral visual stream. In contrast, a region in the anterior parahippocampal cortex bilaterally was selectively active when subjects were encoding locations. The perirhinal cortex was active during encoding of both objects and locations (see Fig. 5), and there was no task-specific encoding activity in the perirhinal cortex.

Learning & Memory 639

www.learnmem.org

Figure 1. Cortical input to the medial temporal lobe. A schematic diagram showing the percentage of cortical input from unimodal and polymodal areas to the perirhinal and parahippocampal cortices in the medial temporal lobe (black boxes). The percentages of cortical input shown on this schematic are from Suzuki and Amaral (1994a). These data suggest that the parahippocampal cortex might be more important for spatial memory (red lines and boxes), while the perirhinal cortex might be more important for object memory (blue lines and boxes). Additionally, these data raise the possibility that the perirhinal cortex is involved in both spatial and object memory because of the large amount of spatial information it receives via the parahippocampal cortex. The thickness of the lines approximately represents the relative percentages of cortical input.

(P<1.00 = 2.13; P > 0.05). The median reaction time across subjects was 1211 msec for the Object task and 1096 msec for the Spatial task. Accordingly, any task-dependent activation differences across brain regions could not be attributed to differences in task difficulty. With whole-brain scanning, in a pilot subject, clear differences were seen in ventral and dorsal stream visual regions, suggesting that subjects used differential processes to solve the two tasks (Fig. 3).

Figure 2. Task design. While being scanned, subjects were shown a series of six colored stimuli and were instructed to memorize the object (Object task) or memorize the location (Spatial task). During a delay, subjects viewed a scrambled image presented six times at the center of the screen. During the recognition phase, subjects were shown three old objects and three new objects (Object task) or objects in three old locations and three new locations (Spatial task). For each stimulus, subjects made an Old/New judgment by pressing buttons on a button box.
The data from the present study raise this possibility, which would be an interesting topic for a future anatomical study.

Behavioral studies in monkeys and humans have reported spatial impairments resulting from lesions of the parahippocampal cortex (Jones and Mishkin 1972; Bohbot et al. 1998; Ploner et al. 2000; Malkova and Mishkin 2003). It is interesting to note, however, that in a recent study (Malkova and Mishkin 2003), one animal with a parahippocampal cortex lesion was unimpaired on a spatial memory task (object-place association), while the rest of the animals in this lesion group were impaired. Postmortem analysis of the lesion in the unimpaired animal revealed tissue sparing in the anterior parahippocampal cortex. Although this is just one animal, this finding is consistent with the present study and suggests that the anterior parahippocampal cortex might be critical for certain kinds of spatial memory.

In a recent study, Sommer et al. (2005) reported an area of activation in the right anterior medial temporal lobe that was correlated with memory for the location associated with an object. Using an event-related design, these authors correlated activity during encoding of an object-location association with retrieval success when presented with either an object cue or a location cue. They found that activity in a small region in the right anterior MTL during encoding correlated exclusively with spatial encoding processes. That is, greater activity in this region during encoding predicted greater retrieval success with a location cue. The results in the present study support and extend this finding. Their anterior MTL activation overlaps exactly with the anterior parahippocampal cortex. Pihlajamaki et al. (2004) asked subjects to look carefully at stimuli but did not ask them to remember the stimuli for later testing. It is possible that these task differences led to differential activation of these regions.

The present findings suggest that the perirhinal cortex is equally involved during the encoding of objects and locations. This is somewhat surprising, given that the perirhinal cortex receives the majority of its cortical input from higher-order visual object association areas (see Fig. 1). However, the perirhinal cortex receives strong input from the parahippocampal cortex, which could be the source of spatial information to this area. The perirhinal cortex has been shown to be critical for both visual and tactile recognition memory performance (Buffalo et al. 1999). The present data suggest that the perirhinal cortex is similarly involved in spatial recognition memory.

An alternative possibility is that because spatial locations were repeated, the activity seen in the perirhinal cortex during spatial encoding actually reflected the retrieval of objects previously associated with a given location. Although this is important to consider, we believe that the previous interpretation better fits our data for several reasons. First, as shown in Figure 3, in a pilot subject, we found a clear dissociation in activity between ventral occipitotemporal and parietal areas for the Object and
Location tasks, respectively. Moreover, across all 11 subjects, we found activity in the ventral occipitotemporal cortex that was specific for the Object task (see Fig. 4). If subjects were encoding object–location associations, one would expect to see similar activity in these areas for both tasks. Second, because of the type of stimuli used and the number and spacing of possible locations, these tasks were difficult for the subjects. The average performance was only 77% and 76% correct on the Object and Spatial tasks. This level of performance suggests that it is unlikely that subjects were encoding not just the critical task feature, but an additional association. Finally, from our post-session interviews with each subject, it was clear that the subjects did not appreciate the structure of the spatial layout. Not one subject was aware that the stimuli were presented on a 4 × 4 grid of 16 possible locations. Together, these data suggest that subjects were not encoding object–location associations, but were selectively encoding the stimulus domain cued in each task.

In sum, the present findings add to a growing body of literature indicating that the structures of the medial temporal lobe make distinct contributions to memory. Moreover, the unique activations of the medial temporal lobe cortical regions we observed were consistent with differential anatomical input to this region. Future studies combining careful anatomical segregation of the medial temporal lobe with hi-resolution scanning (e.g., Beauchamp et al. 2004) should provide further insight into the contribution of different medial temporal lobe structures to learning and remembering.

Materials and Methods

Subjects and experimental tasks

Eleven healthy subjects (seven male and four female) were recruited for functional imaging according to approved NIH protocols. All subjects gave informed consent.

During functional scanning, all subjects performed randomly interleaved blocks of the visual object and spatial recognition memory tasks (Fig. 2). For both tasks, the stimuli were trial–unique, relatively nonverbalizable, colorful patterns (Miyashita et al. 1991). These stimuli were chosen because amnesic patients with MTL damage are impaired at recognizing these stimuli with delays of 6 sec and longer, suggesting that these tasks rely on intact long-term memory systems (Buffalo et al. 1998). In the present study, the delays ranged from 18 to 33 sec. Using a button box, subjects performed an Old/New recognition judgment on either the stimulus (Object task) or the location of the stimulus on the screen (Spatial task).

Through several pilot behavioral experiments, the Object and Spatial recognition memory tasks were equated for difficulty.

In the encoding phase of both tasks, the subjects were presented a series of six stimuli in varying locations on a computer screen. There were 16 possible stimulus locations. Each stimulus was presented for 2500 msec with a 500-msec interstimulus interval (ISI). Immediately preceding this phase, subjects were instructed either to “Memorize the Object” (visual Object task) or to “Memorize the Location” (Spatial task). Then, during a delay period, a scrambled image of a test stimulus was presented six times at the center of the screen at the same rate as the test stimuli (2500 msec, 500 msec ISI). During this delay phase, subjects were instructed to “Watch the Picture.” The same scrambled image was used throughout the experiment. Finally, during the recognition phase, six stimuli were again presented at the same rate (2500 msec, 500 msec ISI). During the recognition phase of the visual Object task, three of the stimuli were repeated from the encoding phase, and three were new stimuli. Subjects were cued to “Recall the Object” and used a button box to make an Old/New recognition judgment. In the Object task, none of the six stimuli in the recognition phase was presented in a location that was used during the encoding phase of this block. During the recognition phase of the Spatial task, three of the stimuli were presented in the same location as a stimulus was presented during the encoding phase, and three were presented in new locations for this block. Subjects were cued to “Recall the Location” and used a button box to indicate recognition. All of the stimuli used in this phase were new.
post-recognition phase, subjects were instructed to press the center button according to the method described by Insausti et al. (1998). The next mask was a whole-brain mask that eliminated voxels with an MR intensity less than the median image MR intensity value (see AFNI-3dAutomask). This mask was used to reduce the probability of including noisy voxels by eliminating non-brain voxels and voxels with insufficient signal to noise to detect small percent signal changes. The third mask was derived from the group ANOVA analysis by thresholding the Full Model F statistic ($F = 5.42; P < 0.00001$) and the a priori comparison of means t-statistic ($P < 0.05$), that is, voxels that were significantly differentially active during the two tasks. The intersection of these three masks provided the data for the individual contrasts shown in Figures 5 and 6. For Figure 7, using the same masks, the average activity during encoding was calculated for each subject across each of the three regions.

Group analysis

For the group contrast data shown in Figures 4, 5, and 6, we combined the anatomically defined masks across subjects. We aligned the anatomical masks using AFNI’s Talairach alignment, added the masks from all 11 subjects, and then created a combined mask for each anatomical region that included all voxels that were present in at least nine of the 11 subjects. This procedure was used to exclude effects due to extreme anatomical variability.

Acknowledgments

We are grateful to Ricardo Insausti for consultation on the identification of the borders of the perirhinal and parahippocampal cortices in MR images; to Monica Munoz-Lopez for helpful anatomical discussions; and to Robert Desmone, Mortimer Mishkin, and Leslie Ungerleider for comments on this manuscript.

References

Figure 7. Average task activity. Averaged across all 11 subjects, the perirhinal cortex was active during the encoding phase of both the Object task (blue bar) and the Spatial task (red bar). The posterior parahippocampal cortex was active during both object and spatial encoding.

Received March 14, 2006; accepted in revised form June 29, 2006.
Distinct roles for medial temporal lobe structures in memory for objects and their locations

Elizabeth A. Buffalo, Patrick S.F. Bellgowan and Alex Martin

Access the most recent version at doi:10.1101/lm.251906

References
This article cites 32 articles, 11 of which can be accessed free at:
http://learnmem.cshlp.org/content/13/5/638.full.html#ref-list-1

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.