Use of an in Vivo Reporter Assay to Test for Transcriptional and Translational Fidelity in Yeast

Randal J. Shaw, Emory University
Nicholas D. Bonawitz, Emory University
Daniel Reines, Emory University

Journal Title: Journal of Biological Chemistry
Volume: Volume 277, Number 27
Publisher: American Society for Biochemistry and Molecular Biology |
2002-07-05, Pages 24420-24426
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1074/jbc.M202059200
Permanent URL: http://pid.emory.edu/ark:/25593/fjm67

Final published version: http://www.jbc.org/content/277/27/24420

Copyright information:
© 2002 by The American Society for Biochemistry and Molecular Biology, Inc.
Accessed March 2, 2019 11:39 PM EST
Use of an *in Vivo* Reporter Assay to Test for Transcriptional and Translational Fidelity in Yeast*

Randal J. Shaw, Nicholas D. Bonawitz, and Daniel Reines‡

From the Department of Biochemistry and Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Atlanta, Georgia 30322

Eukaryotic RNA polymerase II and *Escherichia coli* RNA polymerase possess an intrinsic ribonuclease activity that is stimulated by the polymerase-binding proteins SII and GreB, respectively. This factor-activated hydrolysis of nascent RNA has been postulated to be involved in transcription elongation as well as removal of incorrect bases misincorporated into RNA. Little is known about the frequency of misincorporation by RNA polymerases *in vivo* or about the mechanisms involved in improving RNA polymerase accuracy. Here we have developed a luciferase reporter system in an effort to assay for base misincorporation in living *Saccharomyces cerevisiae*. The assay employs a luciferase open reading frame that contains a premature stop codon. The inactive truncated enzyme would become active if misincorporation by RNA polymerase II took place at the stop triplet. Yeast lacking SII did not display a significant change in reporter activity when compared with wild-type cells. We estimate that under our assay conditions, mRNAs with a misincorporation at the test site could not exceed 1 transcript per 500 cells. The reporter assay was very effective in detecting the previously described process of nonsense suppression (*translational read-through*) by ribosomes, making it difficult to determine an absolute level of basal (SII-independent) misincorporation by RNA polymerase II. Although these data cannot exclude the possibility that SII is involved in proofreading, they make it unlikely that such a contribution is physiologically significant, especially relative to the high frequency of translational errors.

Many DNA polymerases contain a nuclease activity that allows them to excise, from newly replicated DNA, bases that are misincorporated with respect to Watson-Crick base pairing rules. With the recognition that many, if not all, multisubunit DNA-dependent RNA polymerases contain a nuclease activity that operates on nascent RNA came the suggestion that RNA polymerases proofread RNA misincorporation events using this activity (1–3). For bacterial RNA polymerase, this nuclease activity is stimulated by small RNA polymerase-binding proteins called GreA and GreB (4). A similar activity in eukaryotic RNA polymerases is stimulated by a small RNA polymerase II-binding protein called SII (also known as TFIIS) that has been found in all eukaryotes so far investigated. The *greA* and *greB* genes are not essential for *Escherichia coli*; nor is the SII-encoding gene essential for *Saccharomyces cerevisiae* (5, 6).

In vitro, these proteins can reactivite RNA polymerase enzymes that lapse into an elongation-incompetent form (7). They do so by activating cleavage of the nascent RNA chain by RNA polymerase. The vast majority of nascent RNA is assembled according to strict Watson-Crick base pairing rules. Hence, these proteins have been considered transcription elongation factors. *In vivo* evidence consistent with this role has been described (8–14).

In vitro, misincorporation of nucleotides into RNA by RNA polymerase can be detected by experimental manipulations such as providing a high level of a nucleotide other than that called for by the DNA template. For example, GTP can be incorporated into RNA at a low frequency when poly(dA-dT)*poly(dA-dT)* is used as a template for bacterial RNA polymerase (15, 16). *In vitro*, RNA polymerase II poised at a specific template thymine has been shown to incorporate a G residue in lieu of A when ATP is absent (2). Similarly, *E. coli* RNA polymerase will incorporate C instead of U when UTP is absent (17). Both polymerases have been shown to misincorporate a U instead of C on a synthetic template (18). GreA, GreB, and SII stimulate the cleavage of nascent RNA containing misincorporated bases (2, 17, 18). Thus, it has been suggested that these factors could assist in the fidelity of transcription by activating RNA polymerase to excise these misincorporated bases (2, 18).

However, there is no direct evidence that RNA polymerases employ this factor-activated nuclease activity *in vivo*. The misincorporation rate of RNA polymerase *in vivo* has not been accurately measured in eukaryotic cells. A frequency of 10^{-5} has been estimated for misincorporation in *E. coli*; however, the rate varies as a function of the nucleotide substituted, the divalent cation, and presumably, sequence context around the substitution (15, 16, 19). Neither the biological sequelae of misincorporation nor the extent to which nucleoide-stimulating factors participate in proofreading are well understood, particularly in eukaryotes.

Errors in protein synthesis have been described and estimated previously in bacteria and yeast using reporter systems (19–22). Parameters that influence translational fidelity include genetic background, antibiotics, and epigenetic states. Typically, the fidelity of translation has been considered less stringent than that of transcription (19, 23–25).

In an effort to examine the contribution of transcriptional and translational errors and SII's potential role in proofreading, we have designed a reporter system to detect misincorporation events mediated by RNA polymerase II at an artificial stop codon engineered into a plasmid introduced into yeast. Using yeast strains with a deletion or a disruption of the *SII* gene (*DST1*); nor is the *DST1*-encoding gene (5, 6).

Received for publication, March 1, 2002, and in revised form, April 29, 2002

Published, JBC Papers in Press, May 2, 2002, DOI 10.1074/jbc.M202059200

*This work was supported by National Institutes of Health Grant GM46331. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1794 solely to indicate this fact.

‡ To whom correspondence should be addressed. Tel.: 404-727-3361; Fax: 404-727-3452; E-mail: dreines@emory.edu.
and could be readily measured. Rates of SII-independent misincorporation by RNA polymerase appear to be small relative to the higher rates of translational errors such as stop codon bypass.

MATERIALS AND METHODS

Plasmids and Strains—The plasmid pGAL-LUC has been described previously (26) and was obtained from A. Caplan (Mt. Sinai School of Medicine, New York). The sequence (... TCC TAG GGA...) , encoding the reporter, which has been used for similar purposes in bacteria, may be atypical with respect to transcription and particularly reporter, which has been used for similar purposes in bacteria, may be atypical with respect to transcription and particularly

Transcription/Translation Fidelity in Yeast

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY766</td>
<td>MATα hisΔ1 leu2-3,112 met1530 ura3-30 [pLuc-Stop (CEN URA3)]</td>
</tr>
<tr>
<td>DY770</td>
<td>MATα hisΔ1 leu2-3,112 met1530 ura3-30 dst1-1 kasMX4 [pLuc-Stop (CEN URA3)]</td>
</tr>
<tr>
<td>DY771</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY773</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY775</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY777</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY779</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY969</td>
<td>MATα hisΔ1 leu2-3,112 met1530 ura3-30 [pLuc-Δ (CEN URA3)]</td>
</tr>
<tr>
<td>DY971</td>
<td>MATα adel-14 ura3-52 lys2 yrp1Δ ura3Δ200 pΔΔ200 φ + [pLuc-Stop (CEN URA3)]</td>
</tr>
<tr>
<td>DY973</td>
<td>MATα adel-14 ura3-52 lys2 yrp1Δ ura3Δ200 pΔΔ200 φ + pin [pLuc-Stop (CEN URA3)]</td>
</tr>
<tr>
<td>DY975</td>
<td>MATα hisΔ1 leu2-3,112 met1530 ura3Δ200 [pLuc-Stop (CEN URA3)]</td>
</tr>
<tr>
<td>DY978</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY979</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY2010</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY2014</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
<tr>
<td>DY2016</td>
<td>MATα ura3-52 leu2-3,112 his3Δ200 rpb2Δ2997·HIS3 dst1·hisG [pRP214 (LEU2 RPB2 CEN)]</td>
</tr>
</tbody>
</table>

RESULTS

Rationale—We sought to establish an in vivo assay that would provide a positive readout of a transcriptional misincorporation event. S. cerevisiae was selected because of a relatively well developed understanding of RNA polymerase II elongation from genetic, biochemical, and molecular biological analyses. Using transformation, we introduced a reporter plasmid into wild-type cells and cells deleted or disrupted for DST1, the gene that encodes transcription elongation factor SII. Yeast is also advantageous, since a large number of cells can be analyzed, and under inducing conditions the GAL1 promoter can be used to generate numerous reporter transcripts per cell, thereby optimizing the ability to detect a rare event. Firefly luciferase was chosen as a reporter, since the activity assay is simple to perform and has a high signal/noise ratio. The lacZ reporter, which has been used for similar purposes in bacteria, may be atypical with respect to transcription and particularly elongation in yeast cells (29–32).

We constructed a selectable centromeric plasmid (pLuc-Stop) that contained the inducible GAL1 promoter driving transcription of the 550-amino acid luciferase open reading frame with a premature stop codon replacing lysine 445 (Fig. 1). Introduction of this stop codon has been shown previously to destroy the protein’s activity, and it has been used as a reporter in E. coli to assess transcription on mismatch-containing DNA (33, 34). Nine different RNA polymerase II misincorporation mutants are possible at the introduced UAG stop codon triplet: A, G, or C instead of U at position 1; U, C, or G instead of A in position 2; and A, C, or U instead of G at position 3 (Fig. 1). One of these would yield another stop codon (UAG → UAA). The others would result in transcripts that would lead to the substitution of Gln, Glu, Leu, Ser, Trp, or Tyr (two events) for Lys (Fig. 1).

One of the changes would restore a codon for lysine (AAG), the
natural residue. If misincorporation did not result in abortion of full-length transcript synthesis, and the aforementioned amino acid substitutions led to active luciferase (see below), misincorporation should be detectable as luciferase activity after galactose induction in cells harboring the stop codon-containing plasmid. If the SII protein encoded by the DST1 gene contributes to proofreading, then a deletion of DST1 should result in an increase in luciferase activity, since misincorporation levels would be higher in these cells. Stop codon read-through by the translation machinery would be an alternative way to yield full-length protein and luciferase activity.

Luciferase Activity in Cells Harboring Reporter Plasmids—Yeast cells harboring a reporter with an intact luciferase reading frame were able to generate luciferase activity that was inducible upon exposure to galactose (Lys, Fig. 2A) (26). A strain bearing the plasmid encoding a UAG stop codon at position 445 was severely compromised in its ability to generate luciferase, producing a level of activity ~300-fold lower than Lys445 after 30 min of galactose induction (Fig. 2A, compare Lys with Stop; note broken y axis scale). Longer induction times resulted in the additional accumulation of luciferase exhibiting ~10^5 relative light units in a standard assay (data not shown). Similar activity levels were measured in cells with a plasmid containing the UAA stop codon (Fig. 2, UAA). Activity from the pLuc-Stop plasmid could result from a residual level of enzyme activity of the truncated luciferase polypeptide. Alternatively, “leaky” read-through of the stop codon-containing mRNA by the translation machinery and/or a basal level of misincorporation by RNA polymerase II could yield full-length active protein from the mutation-containing plasmid.

To test whether the truncated protein had residual enzyme activity, two control plasmids were created. In one, the luciferase coding sequence downstream of the stop codon at position 445 was deleted (pLuc-Δ). This plasmid could only yield truncated protein regardless of the efficiency of transcriptional or translational read-through. The second control plasmid (p2X-Stop) had a second stop codon engineered in tandem with the first. Thus, two sequential stop codon read-through events or misincorporation events would be required on the same transcript to obtain functional full-length luciferase, an event with a very low probability of occurrence. Cells containing either of these plasmids expressed only background activity (Fig. 2A, Luc-Δ and 2× Stop). Western blotting showed that the amount of each of the truncated proteins generated in cells carrying pLuc-Δ or p2X-Stop was similar to that produced by cells with full-length luciferase (data not shown). This suggests that the majority of the enzyme activity generated by the pLuc-Stop plasmid comes from translational read-through of the stop codon or transcriptional misincorporation and not from residual activity of the truncated proteins.

To test if active luciferase can be produced by the possible amino acid substitutions expected from transcriptional misincorporation (Fig. 1), we generated a family of plasmids with the cognate single base mutations that change the stop codon to Leu, Trp, Gln, Glu, or Ser. These were compared with luciferase encoding the natural lysine residue at position 445. Plasmids were introduced individually into wild-type yeast and the level of inducible luciferase activity was measured after galactose induction. The luciferase enzymes produced by these substitutions were as active as that containing lysine445 (shown for the Gln substitution in Fig. 2A; data not shown for the other substitutions). We conclude that active luciferase enzyme can be produced by eight of the nine misincorporation events at the DNA-encoded stop codon, and we should be able to score them using this luciferase reporter system. (The ninth possible change, which yields a UAA stop codon, would not be informative.)

Yeasts Deleted for the SII Gene Do Not Show Enhanced Luciferase Activity from the pLuc-Stop Reporter—To test whether SII plays a role in misincorporation, we transformed the stop codon-containing luciferase reporter plasmid into a strain of yeast deleted for the DST1 open reading frame. If SII enhanced the fidelity of transcription, cells lacking it would show an increased level of transcripts containing misincorporated bases that should code for active luciferase. However, after a 3-h galactose induction, these cells generated luciferase activity comparable with, or slightly less than, that seen for cells expressing wild-type SII (Fig. 2B).

Cells lacking SII are defective in transcriptional induction of a number of genes (10, 12, 35). To ensure that the luciferase activity determinations were not biased by a difference in luciferase mRNA levels between the DST1 deletion and cells wild-type for DST1, we measured the amount of transcript by Northern blotting (data not shown). When luciferase activity
was normalized to the abundance of luciferase mRNA in each sample, the values were indistinguishable for SII-containing and SII-lacking strains (Fig. 2C).

Messenger RNAs containing a premature stop codon can be substrates for the nonsense-mediated mRNA decay pathway (36). To compare the mRNA degradation rates of the luciferase mRNAs bearing the stop codon, lysine codon, or tryptophan codon at position 445, we measured mRNA half-life by inhibiting transcription by the addition of glucose and by quantifying the mRNA decay rate. All of these mRNAs showed similar half-lives (25–30 min), indicating that differential mRNA turnover cannot account for differences in the yield of luciferase activity for mRNAs encoding wild-type, missense-containing, or prematurely truncated luciferases (Fig. 3). From these results, we conclude that there is no evidence that SII affects misincorporation by RNA polymerase II, at least as assessed in this assay system.

Detection of Active Luciferase Enzyme by Induction of Translational Misreading—A crucial question is whether this assay would detect transcriptional misincorporation if it took place, especially if translational read-through of the stop codon takes place at high frequency. There are no known genetic changes that lead to an increase or decrease in misincorporation by RNA polymerase II that could serve as a positive control for an error-prone polymerase. Nor are there experimental perturbations proven to alter misincorporation by RNA polymerases in

Fig. 2. Induction of luciferase activity with galactose in DST1+ (A) and dst1− (B and C) cells. A, yeast strains containing the plasmids encoding Lys445 luciferase (DY978), the Lys3 → Gln substitution (DY771), luciferase with a premature UAG stop codon (DY979), luciferase with tandem stop codons 445 and 446 (DY975, 2X-Stop), and luciferase sequence extending only up to residue 445 (DY969, Luc-A), were exposed to galactose. Cell extracts were prepared at the indicated times and assayed for luciferase activity. Experiments were performed in triplicate, and the mean and S.D. (error bars) were calculated and plotted. Only 0- and 30-min points were taken for the 2X-Stop and Luc-A samples. B, strains DY766 (WT) and DY770 (dst1) were grown in raffinose-containing medium. Galactose was added at time 0, and extract was prepared for luciferase assay at the indicated times. Triplicate samples were averaged, and S.D. are shown as error bars. C, normalization of the luciferase enzyme activity to luciferase mRNA levels. The enzyme activity values shown in B were divided by the relative levels of luciferase mRNA determined by Northern blotting and phosphorimaging.
vivo. As an alternative test of the assay’s sensitivity, we re-
sorted to the use of a drug that enhances the frequency of
translational read-through of a stop codon. The antibiotic paro-
momycin has been shown to induce stop codon read-through in
yeast as well as in other organisms (see Ref. 20; reviewed in
Ref. 37). Wild-type cells harboring pLuc-Stop were induced
with galactose to express luciferase and then treated with the
antibiotic paromomycin or left untreated. A strong, time-de-
pendent increase in luciferase activity was observed after treat-
ment of wild-type cells with paromomycin compared with un-
treated cells (Fig. 4, ○). After 7.5 h, the paromomycin-treated
cells showed an ~6-fold increase in luciferase activity. Note as
well that after this long induction period, untreated yeast with
a disruption of DST1 again displayed luciferase activity com-
parable with wild-type cells with the pLuc-Stop plasmid (Fig. 4,
● versus ▲). This latter result provides further confirmation of
the strain used above to measure pLuc-Stop expression (Fig.
2A), suggesting that our analysis thus far has taken place in
Ψ− strains, although their Ψ phenotype has not been otherwise
tested. The plasmid encoding truncated luciferase (pLuc-Δ),
which cannot yield full-length luciferase by either translational
or transcriptional errors, was equivalently inactive in the Ψ+ and
Ψ− strains (data not shown).

Sensitivity of the Luciferase Assay—To assess the sensitivity
of the luciferase assay under the conditions employed here, we
set up a titration curve using wild-type luciferase purified to
near homogeneity. The assay was linear over 6 orders of mag-
nitude of enzyme concentration (Fig. 6A). We could reliably
measure the signal from 4 fg (39,000 molecules) of luciferase,
which was greater than 2 S.D. values above background (Fig.
6A, solid line). To ensure that the activity of purified luciferase
was not compromised after cell lysis by inhibitors in the ex-
tract, we performed a mixing experiment in which varying
amounts of purified luciferase was added to a standard amount
of cell extract made from yeast devoid of a luciferase gene (Fig.
6B, ○). Signal from the extract containing recombi-
nant purified luciferase was comparable with, and even slightly
higher on a per molecule basis than, purified protein alone.
This indicates that the enzyme is stable in a yeast cell extract.
From this standard curve, we determined that the relative
light unit output per molecule of wild type luciferase is 8 × 10−8.
The basis of the use of this assay to score for SII-depend-
ent misincorporation requires the detection of an increase in
luciferase reporter activity over that detected in cells bearing
the pLuc-Stop plasmid. To determine the sensitivity with
which we could observe full-length luciferase against the pLuc-
Stop signal, we repeated the mixing experiment, this time
adding increasing amounts of purified recombinant luciferase
to an extract from cells with pLuc-Stop plasmid that had been
induced with galactose (Fig. 6B). From this graph, we conser-
vatively (>11 S.D. values) estimate that we can detect 12 × 106
molecules of wild-type luciferase over the basal luciferase ac-
tivity of this extract (Fig. 6B, inset).

DISCUSSION

Our initial efforts at designing an in vivo transcriptional
misincorporation assay in yeast provided no evidence for a role
e of SII in RNA polymerase II proofreading. Since this is negative
evidence, we cannot exclude the possibility that SII and the nuclease activity it activates are involved in transcriptional fidelity in vivo. The results, however, suggest that the SII-activated nuclease activity and misincorporation itself are not biologically robust processes in yeast and that they may be masked by a higher rate of translational errors.

A more direct measurement of misincorporation, such as nucleotide sequencing of cDNAs or RT-PCR products derived from cells containing or lacking SII, would be technically forbidding, since the best estimates of in vivo RNA polymerase misincorporation frequencies suggest that it is low (10^{-5}) (19, 23, 24, 40). Furthermore, base changes due to misincorporation by RNA polymerase II would have to be detectable against a comparable background of misincorporation by reverse transcriptase and DNA polymerase during reverse transcription and PCR. As a positive indicator of the efficacy of the assay presented here, we induced translational misreading of a reporter transcript in yeast using an antibiotic known to alter stop codon read-through. In prior work, paromomycin increased translation errors by 20-fold at 200 μM in yeast (20).

Our ability to detect an effect of paromomycin in this reporter assay indicates that we can observe rate changes of this size. Similarly, experiments on yeast with a known nonsense suppression phenotype support the idea that the assay is robust in its ability to detect nonsense codon read-through by the translation machinery.

We can use the data presented herein to make two estimates. The first is the maximal level of RNA polymerase misincorporation that would be required if the activity from pLuc-Stop in a DST1- cell is assumed to be entirely due to misincorporation by RNA polymerase II. The second is the maximal number of misincorporation-containing transcripts that would be detectable in a standard reaction.

Since luciferase truncated at codon 445 is inactive (Fig. 2A), we can estimate a maximal frequency of transcriptional misincorporation that would be needed to account for all of the enzyme activity derived from pLuc-Stop plasmid. Although it is possible, and perhaps likely, that little or none of this activity is due to misincorporation, this would provide an upper limit. Using our standard curve for purified authentic wild-type luciferase activity (Fig. 6A, solid line), we calculate that a molecule of Lys445 expressed from pGAL-LUC-AAG corresponds to 10^{-3} relative light units. (This value has been corrected for the reduced activity, relative to authentic luciferase, of the Lys445 luciferase expressed from the plasmid, which also contains a Tyr444→Ser substitution due to creation of a restric-
tion site during cloning (data not shown)). This allows us to estimate that the pLuc-Stop extract contains at most \(1.1 \times 10^7\) molecules (90,000 relative light units in a 4-h induction) of luciferase. This is in comparison with \(4 \times 10^{10}\) luciferase molecules measured in yeast expressing luciferase from pGAL-LUC-AAG with the natural lysine 445. Thus, a maximal frequency of misincorporation by RNA polymerase II of \(2.8 \times 10^{-4}\) can be estimated by dividing the maximal number of active luciferase molecules derived from pLuc-Stop, \(1.1 \times 10^7\), by the number of total luciferase enzymes present in the pGAL-LUC-AAG extract, \(4 \times 10^{10}\). The actual frequency would be lower if activity from the pLuc-Stop plasmid was due to other causes, one of which would be stop codon read-through.

The deletion or disruption of SII did not change the yield of luciferase reporter activity in two independent \(d st1\) strains assayed here. It is important to know what level of misincorporation the assay can detect had there been an effect. Since we can readily detect \(1.2 \times 10^8\) molecules of Lys\(^{445}\) luciferase above background in this extract (Fig. 6B, corrected for the substitution at 444) and abundant transcripts are translated, corrected for the above background in this extract (Fig. 6), we estimate that the pLuc-Stop extract contains at most 1.1 molecules (90,000 relative light units in a 4-h induction) of luciferase (24, 26). We consider it unlikely that SII-independent proofreading may be induced or active only under a specific set of conditions. SII-activated proofreading might operate either through RNA polymerase II’s cleavage activity or via a distinct proofreading system, thereby making SII’s contribution to proofreading appear undetectable. Thus far, only SII has been shown to activate nascent RNA cleavage by RNA polymerase II. In vitro, RNA polymerase shows a low level of transcript cleavage activity in the absence of cleavage-activating factors (5, 43). It is possible that this low level of intrinsic nuclelease activity is sufficient to remove misincorporated bases in the absence of SII, or it may be activated by an alternative pathway to a level that may compensate for the loss of SII. Finally, SII and transcript cleavage may simply not participate in proofreading in vivo.

Acknowledgments—We thank Drs. Judy Fridovich-Keil, Charlie Moran, Yury Chernoff, Dean Jones, and the Biochemistry Department Chalk Talk for helpful discussions and Dr. Avrom Caplan for plasmid DNA. We also thank John Mote for technical assistance.

REFERENCES

Use of an \textit{in Vivo} Reporter Assay to Test for Transcriptional and Translational Fidelity in Yeast

Randal J. Shaw, Nicholas D. Bonawitz and Daniel Reines

doi: 10.1074/jbc.M202059200 originally published online May 2, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M202059200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 41 references, 22 of which can be accessed free at
http://www.jbc.org/content/277/27/24420.full.html#ref-list-1