Mechanistic Insights into the Aerobic Cu(I)-Catalyzed Cross-Coupling of S-Acyl Thiosalicylamide Thiol Esters and Boronic Acids

Adrián Varela-Álvarez, Lanny S. Liebeskind, and Djamaladdin G. Musaev

Cherry L. Emerson Center for Scientific Computation, Emory University, 30322 Atlanta, Georgia, USA

Department of Chemistry, Emory University, 30322 Atlanta, Georgia, USA

Abstract

The Density Functional Theory (DFT) method is used to elucidate the nature of the active species and the mechanism of the aerobic Cu\(^{I}\)-catalyzed cross-coupling of S-acyl thiosalicylamide thiol esters and boronic acids reported previously (J. Am. Chem. Soc. 2007, 129, 15734–15735; Angew. Chem., Int. Ed. 2009, 48, 1417-1421). The energetically lowest isomer of the proposed active species [LC(O)R\(_1\)]Cu-(O\(_2\))Cu[LC(O)R\(_1\)]\(^{2+}\), (where L = thiolatosalicylamide) is found to be \(I_1(\text{OO,OO})\) with a \(\mu-\eta^2:\eta^2\)-peroxo Cu\(_2\)O\(_2\)-core, while its isomers \(I_2(\text{OO,OO})\) with a \(\text{bis}(\mu-\text{O})\) Cu\(_2\)O\(_2\)-core and \(I_3(\text{OO,OO})\) with a \((\mu-\eta^1:\eta^1)\) Cu\(_2\)O\(_2\)-core lie only a few kcal/mol higher and separated by 4–7 kcal/mol energy barriers. In all these isomers, the thiol ester is coordinated to the Cu-centers via its two O-ends. Isomers with \((\text{SO,OO})\) and \((\text{SO,SO})\) coordination modes of the thiol esters lie slightly higher and are separated with moderate energy barriers. We found the latter isomers to be vital for the reported Cu\(^{I}\)-templated cross-coupling of S-acyl thiosalicylamide thiol esters and boronic acids under aerobic conditions. The presence of an anion (halide, carboxylate modeled as formate) in the reaction medium is found to be necessary. Its coordination to the active catalyst \(I_1(\text{SO,SO})\) is the first step of the proposed anion-assisted transmetalation by boronic acid. Overall the transmetalation reaction requires 34.0 kcal/mol and is 24.0 kcal/mol exergonic. This conclusion is in reasonable agreement with available experiments. The C-C bond formation in the transmetalation product requires a 6.3 kcal/mol lower energy barrier and is highly exergonic.

Introduction

Transition-metal-catalyzed C-C and C-X (X = N, O, etc.) cross-coupling reactions are among the most powerful of modern methods of organic synthesis and have had a significant impact on the basic and applied synthetic chemical sciences.\(^1\)-\(^4\) Recently, Liebeskind and co-workers\(^5\) reported an unprecedented reaction for the construction of C-C bonds: the Cu\(^{I}\)-templated coupling of a thiol ester and a boronic acid that was rendered catalytic under aerobic conditions. This new reaction type evolved from a mechanistically distinct earlier anaerobic transformation\(^6\) that required catalytic quantities of Pd and at least a stoichiometric quantity of a Cu\(^{I}\)-carboxylate as a reaction mediator. The proposed\(^5\)
mechanism of this aerobic cross-coupling process includes several elementary reactions and
an active catalyst containing only Cu-centers (Scheme 1).

As seen in Scheme 1, the first step of the proposed mechanism is an aerobic activation of
$X\text{Cu}^I\text{L}_C\text{O}R_1$, by coordination of an O_2 molecule to form a $(X)[\text{L}_C\text{O}R_1]\text{Cu}(O_2)$-
$\text{Cu}(X)[\text{L}_C\text{O}R_1]$, active catalyst (where $L =$ thiolatosalicylamide). In the second stage,
transmetalation of the boronic acid $R_2\text{B(OH)}_2$ occurs to give $X\text{B(OH)}_2$, the ketone
$(OC)R_1R_2$, and a Cu-thiolate $L'\text{Cu}(O_2)-\text{Cu}L'$ (where $L' =$ thiolatosalicylamide), 3. The
catalytic cycle is completed by reaction of the Cu-thiolate 3, with the second (sacrificial)
equivalent of the boronic acid. This would regenerate the requisite Cu(I) complex 1 for
reentry into the catalytic cycle and simultaneously remove the thiolate ligand from the
reaction system by producing the weakly coordinating S-aryl ether. However, until now,
 neither the true nature of the active catalyst 2 and the intermediate 3, nor the factors
controlling the thermodynamics and kinetics of the proposed steps are known.

In general, the active catalyst 2 may have several distinct isomers. Extensive research on the
structure of $L\text{Cu}(O_2)\text{Cu}L$ systems has shown that an O_2 molecule can bind to two Cu-
 centers (as well as other transition metals) in numerous ways, among which the side-on $\mu-$
$\eta^2:\eta^2$-peroxo, 11, bis-μ-η^1-η^1-superoxo, 13, are dominant
bonding motifs (see Scheme 2).

Of course, the relative stability of these binding motifs of O_2 to two Cu centers depends on
the nature of the ligand L. For example, in hemocyanin, where each copper atom of
the active center is coordinated by three histidines, O_2 binds between the two CuII centers
via a μ-η^2-η^2-peroxo manner. However, Masuda and colleagues have demonstrated that
two CuI-complexes with cis,cis-1,3,5-triaminocyclohexane ligands bind O_2 via a bis-μ-η^1-η^1-
fashion.

Intriguingly, $L\text{Cu}(O_2)\text{Cu}L$ complexes with different O_2 coordination motifs show quite
different reactivity. In particular, complexes with the $\{\text{Cu}-\mu-$
$\eta^2:\eta^2$-$O_2)-\text{Cu}\}$ bonding motif have been characterized as basic and nucleophilic,
but not particularly electrophilic. In contrast, complexes with the $\{\text{Cu}-\mu-$
$\eta^1:\eta^1$-$O_2)-\text{Cu}\}$ bonding motif fail to exhibit basic
character and instead enhance the electrophilicity of the bound dioxygen molecule. Finally, complexes with the $\{\text{Cu}-\mu-$
$O)-\text{Cu}\}$ bonding motif exhibit strongly electrophilic character, and can oxidize both
activated and aliphatic C-H bonds, hydroxylate aromatic
rings, and serve as oxidizing agents in electron-transfer reactions. Thus, elucidation of the
true nature of 2 is important in clarification of the real mechanism of CuI-catalyzed
thioorganic and boronic acid coupling reaction under aerobic conditions.

As a first task we used computational approaches to reveal the structure and relative energy
of various isomers of 2, as well as the energy barriers separating those isomers. The second
task of this paper is to elucidate the mechanism and factors controlling the kinetics and
thermodynamics of the aerobic cross-coupling reaction. For this purpose, we calculated all
possible reactants, intermediates, transition states and products of the reaction (1):

$$2+R_2\text{B(OH)}_2 \rightarrow 3+OC(R_1)(R_2) \quad (1)$$

Computational Procedure

Computational Models Used

Liebeskind and co-workers have demonstrated that all sources of CuI tested in catalytic
amounts are able to produce the cross-coupling reaction under aerobic conditions.
independently of the counterion. This finding suggests that the active species of reaction (1) could be the same regardless of the counterion used. Therefore, in our computational study we model the active species 2 by the dicaticionic complex 2a (see Scheme 3).

For the sake of computational efficiency in our modeling of the studied cross-coupling reaction we used \(R^1 = \text{Me} \) and \(R^2 = \text{Ph} \) as the substituents on the thiol ester and the boronic acid, respectively. The \(R' \) substituent attached to the N-atom of the thiosalicylamide ligand has been modeled as an H atom.

Computational Methods Used

The complexes containing \(\text{Cu}_2\text{O}_2 \)-cores have been the subject of many previous computational studies.\(^9,14,15\) Cramer, Gagliardi and coworkers have concluded\(^9,14\) that the better description of such systems requires the use of Completely Renormalized Coupled Cluster (CR-CC) and Restricted Active Space (RAS) approaches. However, application of these methods to large systems, such as those presented in this paper, is not practical. Therefore, the use of relatively less time-consuming approaches, such as various DFT functionals is necessary. Previously, various density functionals were used to study complexes with \(\text{Cu}_2\text{O}_2 \)-cores. Cramer and Gagliardi have reported that local functionals are, in general, more suitable to study the transformations in these systems\(^9,14\) while one should use them, as well as hybrid functionals, with caution. Therefore, in this paper we use a local density functional approach, BLYP,\(^17\) in conjunction with the 6–31G(d,p) \([\text{C, H, O, N, S and B atoms}]\)\(^18\) and LANL08(f) \([\text{Cu atoms}]\) basis sets.\(^19\) Geometries all reported structures were fully optimized without any symmetry restraints. For all reported species, Hessian matrices were calculated, and all transition states confirmed to have one imaginary frequency corresponding to the reaction coordinates. Their nature was confirmed by performing IRC (intrinsic reaction coordinate) calculations. The thermodynamic properties of the reported reactions were computed at 298.15 K and 1 atm employing the usual rigid rotor and harmonic oscillator models.\(^20\) Solvent effects were estimated at the PCM level using gas-phase optimized geometries and dimethylformamide (DMF) as a solvent.\(^21\) All calculations were performed with the Gaussian 09 suite of programs.\(^22\)

Results and Discussion

Part-1: Structure and Stability of Isomers of Complex 2a

As mentioned above, the \(\text{Cu}_2\text{O}_2 \)-core of 2a has many isomeric forms, including I1, I2 and I3 presented in Scheme 2, above. In addition, for each given \(\text{Cu}_2\text{O}_2 \)-core, 2a may have several structures which differ by the coordination modes of the S-acyl thiosalicylamide ligands to the Cu-centers. Indeed, each S-acyl thiosalicylamide ligand could coordinate to the Cu-center either via its S and O\(^3\) ends (termed SO-coordination) or with its O\(^3\) and O\(^5\) atoms (termed OO-coordination). All possible isomers of 2a, as well as the located transition state structures connecting those isomers are schematically presented in Scheme 4. The calculated relative energies of these structures are given in Scheme 5 as \(\Delta H(\Delta G) [\Delta G_{\text{solv}}] \), where \(\Delta H \) and \(\Delta G \) are gas-phase enthalpy and Gibbs free energies. The \(\Delta G_{\text{solv}} \) is calculated as \(\Delta G_{\text{solv}} = [\Delta G - \Delta E] \), where \(\Delta G \) is the PCM calculated free energy in DMF solution and \(\Delta E \) is the gas-phase total energy. The full geometry parameters, as well as absolute and relative energies of these structures are given in Tables S1, S2 and S3 of the Supporting Information, respectively. Their calculated important geometry parameters are given in Tables 1 and 2, while Mulliken spin densities of their important atoms are included to Scheme 4. Despite extensive attempts we were not able to locate all required transition states at their lowest singlet and triplet electronic states, especially those involved in the \(\text{I}1(\mu-\eta^2:\eta^2) \rightarrow \text{I}3(\mu-\eta^\ddagger:\eta^\ddagger) \) isomerization. This failure is a result of the fact that the barriers associated with these transition states are very small.
As seen from the calculated data, all located isomers of 2a are thermodynamically accessible. The most stable isomer of 2a is I$_1$$(OO,OO)$ with a μ-η2:η2-peroxo Cu$_2$O$_2$-core. In this isomer, both substrate molecules are coordinated to Cu-centers by their O-ends (the oxygen of the thiol ester and the oxygen of the amide group). Thermodynamically, the less stable isomer of 2a is I$_2$$(SO,SO)$, which lies 13.7 kcal/mol higher than the I$_1$$(OO,OO)$ isomer (throughout the paper we discuss only solvation free energies ΔG_{solv}). Isomer I$_3$$(SO,SO)$ has a μ-η2:η1-superoxo, Cu$_2$O$_2$-core, where both substrates are in SO- coordination modes.

More detailed analyses of these three isomeric forms show that:

1. At their singlet electronic states all isomers with a μ-η2:η2-peroxo Cu$_2$O$_2$-core, I$_1$, can be better described as a peroxo (O$_2^2$) species with no unpaired spins, and longer, 1.504–1.508 Å, O-O bond distances. At their triplet states these isomers are superoxide (O$_2^-$) species with almost one α-spin (0.90–0.99 e) on the O$_2$-ligand and 0.3–0.4 α-spins on the Cu-centers, and with 1.441–1.448 Å (shorter than that in their singlet states) O-O bond distances. Based on these findings one may assign +2 and +1.5 oxidation states to the Cu-centers at singlet and triplet state of I$_1$ isomers, respectively. Also, the singlet and triplet states of all I$_1$ isomers are very close to each other in energy.

2. In their singlet electronic states all isomers with a \textit{bis}-(μ-O) Cu$_2$O$_2$-core, I$_2$, contain two oxo groups (O$_2^2$) with no unpaired spins. While in their triplet states every oxygen atom of the \textit{bis}-(μ-O)-core in I$_2$ isomers is a monoanion (O$^-$) with significant (0.66 - 0.90 e) α-spins. It is interesting to note that the spin density of the (μ-O)-centers reduces significantly upon changing coordination modes of the thiol ester via (OO,OO) > (SO,OO) > (SO,SO). Thus, coordination of the S-atom of the thiol ester reduces spin density of the (μ-O)-center. Based on these findings we could assign +3 and +2 oxidation states for the Cu-center of the singlet and triplet I$_2$ species. Furthermore, based on the reported difference in the nature of the (μ-O)-centers in singlet and triplet I$_2$ isomers, we should expect their singlet states to be more stable than their triplet states: this is consistent with their energy presented in Scheme 4. The O-O distances on the I$_2$ isomers are calculated to be long, 2.250–2.357 Å, which indicates a lack of O-O interaction.

3. The I$_3$ isomers with a (μ-η1:η1) Cu$_2$O$_2$-core can be best characterized as superoxide (O$_2^-$) complexes in both the singlet and triplet electronic states. At their triplet states, the O$_2$-moiety of the I$_3$ isomers contain 1.07–1.17 |e$^-$| α-spin and the O-O distance ranges from 1.349–1.363 Å. The geometries of the singlet structures mirror the triplet ones. For the singlet states, the calculated spin densities, 0.26–0.27 |e$^-$|, on the O$_2$–moiety are notably smaller than those for triplet states. Based on these findings, we assigned +1.5 oxidation states to the Cu-centers of the I$_3$ isomers, regardless of the electronic state of the complex.

The second interesting finding in the calculated energies of the studied isomers of 2a is the thermodynamic stability of the substrate coordination modes to the Cu-centers, which decreases via (OO,OO) > (SO,OO) > (SO,SO) regardless of the O$_2$-moiety within the Cu$_2$O$_2$-core. Thus, coordination of the thiol ester to the Cu-centers via its S-end is thermodynamically slightly less favorable. However, this coordination mode of the thiol ester is expected to be vital for the reported5 Cul-templated coupling of the S-acyl thiosalicylamide and the boronic acid under aerobic conditions (see below).

Indeed, it is reasonable to expect that those isomers of 2a with a strongly activated S-C(O)Me bond will be more prone to cross-coupling product with the boronic acid. Analyses of geometries of the isomers of 2a show that the S-C(O)Me bond is strongly activated only in isomers with (SO,OO) and/or (SO,SO) coordination of the thiol ester. As seen in Table 1,
the calculated S-C(O)Me bond distances are: in **I1**-type of isomers, 1.787 - 1.789 Å for **I1**(OO,OO), 2.069–2.074 and 1.790–1.792 Å for **I1**(SO,OO), and 2.026 - 2.072 Å for **I1**(SO,SO); in **I2**-type of isomers, 1.781–1.786 Å for **I2**(OO,OO), 2.109–2.127, and 1.783–1791 Å for **I2**(SO,OO), and 2.091 - 2.121 for **I2**(SO,SO); in **I3**-type of isomers, 1.790 - 1.797 Å for **I3**(OO,OO) and (2.015 - 2.037 Å for **I3**(SO,SO).

The oxidation state of the Cu is another factor that can influence the activation of the S-C(O)Me bond. Indeed, as seen in Table 1 the average S-C(O)Me bond distances are: 2.049 and 2.028 Å for **3I1**(SO,SO) and **3I3**(SO,SO), respectively; 2.057 Å for **1I1**(SO,SO) and (2.121 Å) for **1I2**(SO,SO), where the oxidation states of Cu atoms are +1.5, +2 and +3, respectively. Thus, the higher the oxidation state of Cu the more activated the S-C bond in S-C(O)Me. As mentioned above all reported isomers of **2a** are energetically close and could easily transform among each other. We were not able to locate all required transition state structures because the barriers associated with these transition states are very small. Among the numerous barriers located, the highest ones, 19.1 and 15.5 kcal/mol, are that associated with these transition states.

In summary, the above-presented data clearly show that all isomers of **2a** are close in energy and can rearrange to each other with moderate energy barriers. The energetically lowest isomer is **I1**(OO,OO) with a \(\mu^-\eta^2: \eta^2 \)-peroxo Cu\(_2\)O\(_2\) core, while isomer **I2**(OO,OO) with a bis-(\(\mu^-\eta \)) Cu\(_2\)O\(_2\)-core and isomer **I3**(OO,OO) with a (\(\mu^-\eta^1: \eta^1 \)) Cu\(_2\)O\(_2\)-core lie only a few kcal/mol higher and are separated with 4–7 kcal/mol energy barriers. In all of these isomers, the thiol ester is coordinated to the Cu-centers via its two O-ends. Their counterparts with the (SO,OO) and (SO,SO) coordination modes of the thiol esters lie somewhat higher in energy (maximum of 13.7 kcal/mol) and are separated from the former with moderate energy barriers (maximum of 19.1 kcal/mol). However, these high energy isomers are vital for the reported\(^5\) Cu\(^1\)-templated coupling of the S-acyl thiosalicylamide thiol ester and boronic acid under aerobic conditions, because the coordination of the thiol ester to the Cu-centers via its S-end results in a significant elongation of S-C(O)R bond distance that makes the next step of the reaction (i.e. the C-C coupling) a facile.

II. Mechanistic Details of the Cross-Coupling

Having elucidated the structures and energies of the different isomers of **2a**, in this section we discuss the possible mechanisms and factors controlling the kinetics and thermodynamics of the cross-coupling reaction of **2a** with boronic acid, i.e. reaction (1), above. In these studies, we use the **I1**(SO,SO) isomer of **2a** with a \(\mu^-\eta^2: \eta^2 \)-peroxo Cu\(_2\)O\(_2\)-core as an active specie (see the discussion above for additional details). Formate anion is included into our calculations to mimic of presence of the 3-methylsalicylate anion present in the original reaction medium.\(^5\) For simplicity, we organize our analysis and discussion to cover two steps: (1) the transmetalation assisted by formate (as a representative anion), which facilitates the transfer of a Ph-group of Ph-B(OH)\(_2\) to one of the Cu centers, and (2) the C-C bond formation leading to the ketone product. All calculated intermediates, transition states and products of these steps are schematically given in Scheme 6. Their important geometry parameters and the Mulliken atomic spin densities of selected atoms are given in Tables 3 and 4. Their total and relative energies are given in Tables S4 and S5 of the Supporting Materials. Tables S6 and S7 include important geometries of these structures.

II.1 The Transmetalation Step

A free energy profile of this step is given in Scheme 7, where the reference was set to be the energy of the **I1**(OO,OO) + PhB(OH)\(_2\) + HCO\(_2^-\) dissociation limit. Since this reaction involves negatively (formate) and positively (**2a**) charged fragments, here we only discuss
the free energies in solution. Furthermore, since the electronic ground states of all structures (except structures \textbf{IVa2} and \textbf{IVb}) involved in this step are the triplet states, here we discuss only the triplet state potential energy surface and the triplet state structures of related reactants, intermediates, transition states and products. All data concerning the singlet states are given in supporting materials. Since this step of reaction (1) includes three fragments - \textbf{2a}, formate and boronic acid - it may, in general, proceed via two different pathways. The first pathway starts with formate anion coordination to \textbf{2a}, while the second pathway is initiated by boronic acid addition to \textbf{2a}.

Pathway-1

The addition of formate anion to the \textbf{I1(SO,SO)} isomer of \textbf{2a} leads to formation of \textbf{IIa} and is calculated to be exergonic by 40.4 kcal/mol (i.e. 34.3 kcal/mol, relative to \textbf{I1(OO,OO)} + PhB(OH)\textsubscript{2} + HCO\textsubscript{2}^{-}). In the resulting intermediate \textbf{IIa}, the formate is bidentate coordinated to the Cu1-center forcing the S1-atom of the thiol ester to be detached from Cu1 and coordinate to Cu2 via the carbonyl oxo-end of the–S-C(R1)O group. Furthermore, the O\textsubscript{2} molecule of the Cu\textsubscript{2}O\textsubscript{2}-core changes its coordination mode from a (\(\mu_2\cdot\eta^2\cdot\eta^2\))-peroxo to (\(\mu_2\cdot\eta^1\cdot\eta^1\))-peroxo.

The next step of the reaction is coordination of the boronic acid to intermediate \textbf{IIa}. This process leads to formation of several weakly bound complexes (see the Supporting Information) among which complex \textbf{IIIa} is energetically most favorable. However, even complex \textbf{IIIa} is thermodynamically less stable (by 4.2 kcal/mol) than the dissociation limit of the reaction, \textbf{IIa} + Ph-B(OH)\textsubscript{2}. In this intermediate, Ph-B(OH)\textsubscript{2} is coordinated to the Cu1-center with its OH-group: the calculated Cu1-O6 bond distance is 2.146 \AA. This interaction forces the formate to rearrange its coordination to Cu1 and coordinate to Cu2 via the carbonyl oxygen O6 atom of formate, while the second one starts by interaction of boron with the carbonyl oxygen of formate (which is not coordinated to Cu1-center). Calculations show that the rate-determining step of both pathways is the B-Ph cleavage step (see Figure 1 for transition states associated with these steps), that requires 1.3 kcal/mol more energy for the former than for the latter process. Furthermore, these two processes proceed through similar intermediates and transition states. For the sake of simplicity, we discuss in detail below only the second pathway, while energies and geometries of all intermediates and transition states of the first pathway are given in the Supporting Information. In \textbf{IIIa}, the formate oxygen O8 is coordinated to the Cu1 atom \([d(Cu1,O6) = 2.074 \text{ \AA}])\). The O7 atom of formate is coordinated to the B-center \([d(B-O7) = 1.599 \text{ \AA}]) and makes it a pseudotetrahedral four coordinated center. At the same time, the Ph-group of Ph-B(OH)\textsubscript{2} interacts with the Cu1 center \([d(Cu1-C1) = 2.182 \text{ \AA}]). This interaction induces an elongation of the B-C1(Ph) bond to 1.648 \text{ \AA}. At the transition state (see Figure 1) TS(\textbf{IIIa-IVa1}), which is the B-Ph cleavage transition state, the B-C1(Ph) bond is elongated even further to 2.240A. Simultaneously, the Cu1-C1 bond starts forming: the calculated Cu1-C1 bond distance is 1.982 \text{ \AA}.

The free energy barrier height for this step is calculated to be 34.0 kcal/mol measured from \textbf{IIa} (Scheme 7). Considering the thermal condition of the reported experiments (50 \text{oC}), free energy calculations at 1atm pressure, and the accuracy of the used computational methods (which overestimate the barriers),21 one may assume a satisfactory agreement between computation and experiment.5

Overcoming TS(\textbf{IIIa-IVa1}) leads to the intermediate \textbf{IVa1}, where the formation of the Cu1-C1 bond is completed. The Cu1-C1 bond distance is calculated to be 1.940 \text{ \AA}. At this stage, the byproduct B(O\textsubscript{2}CH)(OH)\textsubscript{2}, weakly interacting with the catalyst, is formed. Dissociation
of the byproduct from the di-Cu complex generates the intermediate IVa. Geometry
dparameters of IVa and IVa1 are very close (see Table 3). This indicates a weak bonding
between IVa and B(O2CH)(OH)2; the calculated free energy of the reaction IVa1 → IVa +
B(O2CH)(OH)2 is 11.0 kcal/mol. Next, IVa rearranges to V with only a 1.7 kcal/mol energy
gain. As seen in Scheme 7, the overall reaction of I1(OO,OO) + PhB(OH)2 + HCO2− → +
B(O2CH)(OH)2 is 24 kcal/mol exergonic and proceeds via the 34 kcal/mol rate-determining
barrier at transition state TS(IIIa-IVa1). The first step of this reaction, formate coordination
to II, is a highly exergonic process.

As seen in Table 4, unpaired spins of the reported intermediates and transition states
involved in this pathway are located, mostly, on the atoms of the Cu2O2-core (1.75 – 1.86 | e−|), and have no significant effect on the reported mechanism of the reaction.

Pathway-2

This pathway starts with addition of the boronic acid to I1(SO,SO) to generate the adduct II
(see Scheme 6), which is 4.8 kcal/mol endergonic (10.9 kcal/mol, relative to I1(OO,OO) +
PhB(OH)2 + HCO2−). The calculated Cu1−C1(Ph) and B-C1(Ph) bond distances in II are
2.175 and 1.598 A, respectively. This process may occur with some energy barrier, which
was not located in present study because the existence of this barrier is not expected to affect
our general conclusion (see below).

Formate coordination to II initiates the transmetalation process. In the resulting intermediate
III, the formate molecule is coordinated to the tetrahedral B-center [d(B-O2) = 1.474 A],
which results in elongation of the B-C1 and Cu1−C1(Ph) bonds to 1.654 A, and 2.307 A,
respectively, and formation of the Cu1−O6 bond. The reaction HCO2− + II → III is
calculated to be 24.3 kcal/mol exergonic. Transmetalation in the resulting

intermediate III occurs via transition state TS(III-IVb1) (see Figure 1). As seen in Table 3,
at this transition state the B-C1(Ph) and Cu1-O6 bonds are elongated to 2.171 and 2.172 A,
respectively, and the Cu1-C1 bond is being formed with distance of 2.037 A. These
gemetry changes are consistent with a transition state where the B-Ph bond cleaves as the
Cu-Ph bond forms. The energy barrier associated with this transition state is calculated to be
12.8 kcal/mol (relative to the pre-reaction complex III). Overcoming this barrier leads to
complex IVb1 with a strong Cu1-C1(Ph) bond [d(Cu1-C1 = 1.921 A], where the resulting
Cu2-complex interacts with the byproduct B(O2CH)(OH)2. The byproduct dissociation from
the Cu2-fragment of IVb1 generates IVb complex. The IVb1 → IVb + B(O2CH)(OH)2
process is found to be exergonic by 7.4 kcal/mol. Isomers IVb and V are very close in
energy and are separated by a very small energy barrier.

Thus, if the formate-assisted transmetalation reaction starts with boronic acid addition to 2a,
pathway-2, then several (at least 10.9) kcal/mol of energy are required to initiate the
process. Subsequent steps of this pathway are less energy demanding and occur very easily.
The overall reaction I1(OO,OO) + PhB(OH)2 + HCO2− → V + B(O2CH)(OH)2 is exergonic by 24–25 kcal/mol.

Comparison of the above presented pathways 1 and 2 shows that transmetalation most likely
will proceed via pathway-1. Indeed, pathway-1 does not require any energy to initiate the
reaction, while pathway-2 requires several kcal/mol of energy for coordination of boronic
acid to the active species 2a. Thus, one may predict that formate-assisted transmetalation in
2a starts with addition of formate to one of Cu-centers of 2a to generate intermediate IIa. At
the next step, the boronic acid coordinates to IIa via its OH-group to form intermediate IIIa.
Interaction of the carbonyl oxygen of formate with the B-center facilitates the B-C(Ph) bond
cleavage, which occurs via the rate-determining (34 kcal/mol) transition state TS(IIa-IVa1)
The C-C Bond Formation Step

The final product of the above-presented transmetalation step, complex V, is well positioned for formation of the C-C bond that will generate the ketone product. Indeed, in V, the S^1 atom is coordinated to Cu^1 center and the S^1-C^2(O)Me bond is activated (1.925 Å, see Table 3). Furthermore, the C^2(O)Me fragment and phenyl group, which are expected to couple, are located in a suitable position with d(C^1-C^2) = 3.702 Å.

Overcoming TS(V-VI) leads to intermediate VI with a real C^1-C^2 bond between the phenyl and acetyl groups [d(C^1-C^2) = 1.482 Å], a much stronger Cu^1-S^1 bond [d(Cu^1-S^1) = 2.178 Å], and the final ketone molecule interacting with the Cu^2 center [d(Cu^1-O^2) = 2.116 Å]. As expected, this process is strongly exergonic by 56.0 kcal/mol.

The last step of the reaction is dissociation of the ketone from VI that leads to the ketone and complex VII. This process releases 1.4 kcal/mol of free energy in solution, so the overall transformation, i.e. 2a + PhB(OH)_2 + HCO_2^- → VII + (HCO_2)B(OH)_2 + OC(R^1) (R^2), is strongly exergonic: 57.4 kcal/mol relative to the most stable II_{(OO,OO)} isomer of 2a and 23.0 kcal/mol relative to most stable intermediate of transmetalation step IIa.

As in the transmetalation process, a majority (1.55–1.66 |e^-|) of the two unpaired spins of the triplet states for all reported structures are always located at the Cu_2O_2-core, and do not play significant role in the mechanism of reported reactions.

Conclusions

We can draw the following conclusions from the above-presented findings:

1. The energetically lowest isomer of [LC(O)R^1]Cu-(O_2)-Cu[LC(O)R^1]^2+, 2a, (where L = thiolatosalicylamide) is II_{(OO,OO)} with a μ_η^-:η^-peroxo Cu_2O_2-core, while isomers II_{(OO,OO)} with a μ^-:η^-peroxo Cu_2O_2-core and II_{(OO,OO)} with a μ^-:η^-peroxo Cu_2O_2-core lie only a few kcal/mol higher and are separated from the former (and from each other) with 4–7 kcal/mol energy barriers. In all of these isomers, the S-acyl thiosalicylamide thiol ester is coordinated to the Cu-centers via its two O-ends. Their counterparts with the (SO,OO) and (SO,SO) coordination modes of the thiol...
esters lie somewhat higher in energy (maximum of 7.3 kcal/mol) and are separated from the former by moderate energy barriers (maximum of 15.5 kcal/mol). In general, isomers with the (SO,OO) and (SO,SO) coordination modes of thiol esters are vital for the reported\(^5\) Cu\(^{1+}\)-templated coupling of a thioorganic and boronic acid under aerobic conditions.

2. The Cu-centers are in their: (a) +2 and +1.5 oxidation states at singlet and triplet \(\mathbf{I}\) isomers with a \(\mu-\eta^2:\eta^2\)-peroxo \(\text{Cu}_2\text{O}_2\)-core, respectively; (b) +3 and +2 oxidation states at singlet and triplet \(\mathbf{I}_2\) species with a bis-(\(\mu\)-O) \(\text{Cu}_2\text{O}_2\)-core, and (c) +1.5 oxidation states at singlet and triplet \(\mathbf{I}_3\) species with a (\(\mu-\eta^1:\eta^1\)) \(\text{Cu}_2\text{O}_2\)-core.

3. The presence of an anion such as halide or carboxylate in the reaction medium (the latter modeled by formate in this paper) is necessary; coordination of this anion to the active catalyst is the first step of the proposed anion-assisted transmetalation in the active species \(\mathbf{2a}\) by boronic acid. The overall formate-assisted reaction is 24.0 kcal/mol exergonic and proceeds via a moderate rate-determining energy barrier of 34.0 kcal/mol at the B-C(Ph) bond cleavage transition state \(\text{TS(IIa-IVa1)}\) leading to intermediate \(\mathbf{V}\). This conclusion is in reasonable agreement with available experiments.\(^5\)

4. The C-C bond formation in intermediate \(\mathbf{V}\) requires a 6.3 kcal/mol lower energy barrier and is highly exergonic.

Overall, we can now place the aerobic, Cu-catalyzed coupling of boronic acids with S-acyl thiosalicylamides in mechanistic context with the earlier described Pd-catalyzed, Cu\(^{1+}\) carboxylate-mediated desulfitative coupling reactions.\(^6\) In the original anaerobic desulfitative chemistry, which spans a wide variety of thioorganic substrates, palladium is required to affect an oxidative adduction with the C-S bond to activate the thioorganic, which produces an intermediate, R-PdL\(_n\)-SR, able to undergo transmetalation with a boronic acid when mechanistically facilitated through the action of the Cu\(^{1+}\) carboxylate.\(^24\) In comparison, the S-acyl thiosalicylamide substrates described herein do not require prior activation by Pd in order to participate in Cu-mediated cross-coupling with boronic acids. Thus, coordination to Cu not only provides a template that orients a reactive R-Cu moiety (generated upon transmetalation from B to Cu) proximal to the thiol ester unit, but it also enhances the native electrophilicity of the thiol ester bond and facilitates the C-C bond forming step. However, the aerobic reaction conditions are not essential in order to induce ketone formation from an S-acyl thiosalicylamide and a boronic acid. In fact, treatment of an S-acyl thiosalicylamide and a boronic acid with stoichiometric quantities of a Cu\(^{1+}\) carboxylate salt under anaerobic conditions slowly mediates the formation of ketone product in very good yields.\(^25\) In comparison, under aerobic reaction conditions two changes occur: (1) the reaction is rendered catalytic in Cu, and (2) the ketone formation proceeds at a much faster observed rate when conditions catalytic in Cu are compared to the anaerobic reaction using stoichiometric quantities of Cu. Although the computational study described within does not address the fine mechanistic detail of the aerobic catalytic turnover step directly (see stage 3 of Scheme 1, above), it is clear that a second, sacrificial equivalent of the boronic acid is intimately involved in the turnover.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by the National Science Foundation for DGM under the Center for Chemical Innovation in Stereoselective C–H Functionalization (CHE-0943980). The authors gratefully acknowledge NSF...
MRI-R2 grant (CHE-0958205) and the use of the resources of the Cherry Emerson Center for Scientific Computation.

References

Figure 1.
Calculated important transition states of the formate-assisted transmetalation in 2a by boronic acid and the C-C bond cross-coupling reactions. Here, we also present the atomic notations used in this paper.
Scheme 1.
The proposed mechanism of the CuI-templated aerobic cross-coupling of thioorganic and boronic (see Ref. 5)
Scheme 2.
Three possible O$_2$-coordination modes in Cu$_2$O$_2$-cores
Scheme 3.
Model of species 2, as 2a, used in this paper
Scheme 4.
Calculated isomers of 2a and connecting transition states (in dashed boxes) studied in this paper. Mulliken spin densities (in |e|) are given with each structure. Values in red and blue are for triplet and singlet electronic states of the reported structures, respectively.
Scheme 5.
Calculated relative energies (ΔH[ΔG]) in kcal/mol) of various isomers of 2a and connecting transition states. Values in red and blue are for triplet and singlet electronic states of the reported structures, respectively.

Organometallics. Author manuscript; available in PMC 2013 April 03.
Scheme 6.
Schematic presentation of located important reactants, intermediates, transition states and products of formate-assisted transmetalation in 2a by boronic acid and C-C bond cross-coupling reactions. For structures of the presented transition states see Figure 1. Full geometry parameters for all of these structures are given in the Supporting Information. Their important geometry parameters are given in Table 3.
Scheme 7.
Calculated potential energy surface of the formate-assisted transmetalation in 2a by boronic acid and the subsequent C-C bond cross-coupling reactions. Presented energies are Gibbs free energies in solution (in kcal/mol). For notation of the structures, see Scheme 5 and Figure 1.
Table 1

The calculated important bond distances (in Å) of various isomers of 2a studied in this paper, at their singlet and triplet electronic states. Full geometries of these isomers are included in supporting Materials.

<table>
<thead>
<tr>
<th>Param.</th>
<th>$I_{1}(00,00)$</th>
<th>$I_{1}(SO,00)$</th>
<th>$I_{1}(SO,SO)$</th>
<th>$I_{2}(00,00)$</th>
<th>$I_{2}(SO,00)$</th>
<th>$I_{2}(SO,SO)$</th>
<th>$I_{3}(00,00)$</th>
<th>$I_{3}(SO,SO)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mult.</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Cu^1-O^1</td>
<td>2.012</td>
<td>1.940</td>
<td>1.966</td>
<td>1.935</td>
<td>1.929</td>
<td>1.908</td>
<td>1.846</td>
<td>1.818</td>
</tr>
<tr>
<td>Cu^1-O^2</td>
<td>2.038</td>
<td>1.943</td>
<td>2.127</td>
<td>1.959</td>
<td>2.209</td>
<td>2.003</td>
<td>1.846</td>
<td>1.820</td>
</tr>
<tr>
<td>Cu^2-O^1</td>
<td>2.063</td>
<td>1.943</td>
<td>2.171</td>
<td>1.993</td>
<td>2.193</td>
<td>2.008</td>
<td>1.892</td>
<td>1.820</td>
</tr>
<tr>
<td>Cu^2-O^2</td>
<td>2.010</td>
<td>1.940</td>
<td>1.950</td>
<td>1.917</td>
<td>1.929</td>
<td>1.915</td>
<td>1.893</td>
<td>1.818</td>
</tr>
<tr>
<td>Cu^1-O^3</td>
<td>1.976</td>
<td>1.961</td>
<td>1.912</td>
<td>1.908</td>
<td>1.905</td>
<td>1.920</td>
<td>1.963</td>
<td>1.948</td>
</tr>
<tr>
<td>Cu^1-O^4</td>
<td>1.981</td>
<td>1.965</td>
<td>4.002</td>
<td>4.014</td>
<td>-</td>
<td>-</td>
<td>1.967</td>
<td>1.952</td>
</tr>
<tr>
<td>S^1-CHO</td>
<td>1.788</td>
<td>1.787</td>
<td>2.069</td>
<td>2.074</td>
<td>2.072</td>
<td>2.045</td>
<td>1.783</td>
<td>1.781</td>
</tr>
<tr>
<td>Cu^2-O^4</td>
<td>1.954</td>
<td>1.961</td>
<td>1.941</td>
<td>1.957</td>
<td>1.915</td>
<td>1.911</td>
<td>1.979</td>
<td>1.952</td>
</tr>
<tr>
<td>S^1-CHO</td>
<td>1.789</td>
<td>1.787</td>
<td>1.792</td>
<td>1.790</td>
<td>2.026</td>
<td>2.069</td>
<td>1.786</td>
<td>1.781</td>
</tr>
</tbody>
</table>
The calculated important bond distances (in Å) of located transition states connecting various isomers of 2a studied in this paper, at their singlet and triplet electronic states. Full geometries of these isomers are included in Supporting Materials.

<table>
<thead>
<tr>
<th>Param.</th>
<th>$\text{TS}_1(\text{OO-SO,OO})$</th>
<th>$\text{TS}_1(\text{SO,OO-SO})$</th>
<th>$\text{TS}_2(\text{SO,OO-SO})$</th>
<th>$\text{TS}_1-2(\text{SO,OO})$</th>
<th>$\text{TS}_1-2(\text{SO,SO})$</th>
<th>$\text{TS}_1-3(\text{OO,OO})$</th>
<th>$\text{TS}_1-3(\text{SO,SO})$</th>
<th>$\text{TS}_1-3(\text{SO,OO})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mult.</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cu1-O1</td>
<td>1.919</td>
<td>1.913</td>
<td>1.919</td>
<td>1.819</td>
<td>1.848</td>
<td>1.852</td>
<td>1.854</td>
<td>1.859</td>
</tr>
<tr>
<td>Cu1-O2</td>
<td>2.021</td>
<td>1.975</td>
<td>1.926</td>
<td>1.859</td>
<td>1.837</td>
<td>1.848</td>
<td>1.853</td>
<td>1.882</td>
</tr>
<tr>
<td>Cu2-O1</td>
<td>1.957</td>
<td>2.106</td>
<td>1.812</td>
<td>1.825</td>
<td>1.872</td>
<td>1.982</td>
<td>1.854</td>
<td>2.009</td>
</tr>
<tr>
<td>Cu2-O2</td>
<td>1.924</td>
<td>1.889</td>
<td>1.820</td>
<td>1.818</td>
<td>1.794</td>
<td>1.971</td>
<td>1.852</td>
<td>1.947</td>
</tr>
<tr>
<td>O1-O2</td>
<td>1.490</td>
<td>1.490</td>
<td>2.286</td>
<td>2.221</td>
<td>2.268</td>
<td>1.893</td>
<td>1.855</td>
<td>1.870</td>
</tr>
<tr>
<td>Cu1-O1</td>
<td>1.940</td>
<td>1.904</td>
<td>1.978</td>
<td>1.934</td>
<td>1.914</td>
<td>1.96</td>
<td>1.959</td>
<td>1.914</td>
</tr>
<tr>
<td>Cu1-O3</td>
<td>2.210</td>
<td>-</td>
<td>2.245</td>
<td>2.248</td>
<td>-</td>
<td>1.965</td>
<td>1.961</td>
<td>4.018</td>
</tr>
<tr>
<td>S1-CHO</td>
<td>1.898</td>
<td>2.070</td>
<td>1.902</td>
<td>1.902</td>
<td>2.100</td>
<td>1.782</td>
<td>1.784</td>
<td>2.116</td>
</tr>
<tr>
<td>Cu2-S2</td>
<td>-</td>
<td>2.708</td>
<td>-</td>
<td>-</td>
<td>2.718</td>
<td>-</td>
<td>3.880</td>
<td>3.791</td>
</tr>
<tr>
<td>Cu2-O4</td>
<td>1.952</td>
<td>1.936</td>
<td>1.950</td>
<td>1.946</td>
<td>1.934</td>
<td>1.971</td>
<td>1.959</td>
<td>1.965</td>
</tr>
<tr>
<td>Cu2-O6</td>
<td>1.968</td>
<td>2.180</td>
<td>1.961</td>
<td>1.954</td>
<td>2.196</td>
<td>1.988</td>
<td>1.961</td>
<td>2.000</td>
</tr>
<tr>
<td>S2-CHO</td>
<td>1.787</td>
<td>1.891</td>
<td>1.782</td>
<td>1.782</td>
<td>1.903</td>
<td>1.789</td>
<td>1.784</td>
<td>1.791</td>
</tr>
</tbody>
</table>
The calculated important bond distances (in Å) of the located intermediates, transition states and products of the formate-assisted transmetalation in 2a with boronic acid. Full geometries of these structures are included to Supporting Materials. Here, we report only the triplet ground states of these structures. Geometries of their singlet counterparts are given in Supporting Materials section. See Figure 1 for atomic notations and for reported transition states.

<table>
<thead>
<tr>
<th>Param.</th>
<th>IIa</th>
<th>II</th>
<th>IIIa</th>
<th>III</th>
<th>TS(IIIa-IVa1)</th>
<th>TS(IIIa-IVa2)</th>
<th>TS(III-IVb1)</th>
<th>IVa1</th>
<th>IVb1</th>
<th>IVa</th>
<th>IVb</th>
<th>V</th>
<th>TS(V-VI)</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(^{1})-O(^{1})</td>
<td>1.957</td>
<td>2.042</td>
<td>1.964</td>
<td>1.923</td>
<td>1.986</td>
<td>2.043</td>
<td>1.991</td>
<td>1.973</td>
<td>2.064</td>
<td>1.978</td>
<td>2.051</td>
<td>2.030</td>
<td>1.978</td>
<td>1.857</td>
<td>1.897</td>
</tr>
<tr>
<td>Cu(^{1})-O(^{3})</td>
<td>2.030</td>
<td>1.969</td>
<td>2.068</td>
<td>2.113</td>
<td>2.205</td>
<td>2.023</td>
<td>2.080</td>
<td>2.203</td>
<td>2.005</td>
<td>2.114</td>
<td>2.016</td>
<td>2.126</td>
<td>2.236</td>
<td>2.134</td>
<td>2.189</td>
</tr>
<tr>
<td>Cu(^{1})-O(^{6})</td>
<td>3.486</td>
<td>2.146</td>
<td>1.986</td>
<td>-</td>
<td>2.845</td>
<td>2.172</td>
<td>-</td>
<td>3.176</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.723(^{a})</td>
<td>2.345(^{a})</td>
<td>2.178(^{b})</td>
<td>2.170(^{b})</td>
</tr>
<tr>
<td>Cu(^{1})-O(^{7})</td>
<td>2.073</td>
<td>-</td>
<td>2.004</td>
<td>-</td>
<td>-</td>
<td>2.435</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.29(^{b})</td>
<td>2.184(^{b})</td>
<td>2.192(^{b})</td>
<td>2.133(^{b})</td>
</tr>
<tr>
<td>Cu(^{1})-C(^{1})</td>
<td>2.144</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.096</td>
<td>-</td>
<td>-</td>
<td>2.412</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.723(^{a})</td>
<td>2.345(^{a})</td>
<td>2.178(^{b})</td>
<td>2.170(^{b})</td>
</tr>
<tr>
<td>Cu(^{1})-C(^{1})</td>
<td>-</td>
<td>2.175</td>
<td>3.801</td>
<td>2.307</td>
<td>1.982</td>
<td>1.988</td>
<td>2.037</td>
<td>1.940</td>
<td>1.921</td>
<td>1.919</td>
<td>1.906</td>
<td>1.930</td>
<td>2.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu(^{2})-O(^{2})</td>
<td>1.980</td>
<td>2.020</td>
<td>1.989</td>
<td>1.984</td>
<td>1.962</td>
<td>1.943</td>
<td>1.928</td>
<td>1.970</td>
<td>1.937</td>
<td>1.950</td>
<td>1.965</td>
<td>1.910</td>
<td>1.924</td>
<td>1.957</td>
<td>1.971</td>
</tr>
<tr>
<td>Cu(^{2})-O(^{4})</td>
<td>2.081</td>
<td>2.080</td>
<td>2.065</td>
<td>2.092</td>
<td>2.126</td>
<td>2.149</td>
<td>2.093</td>
<td>2.143</td>
<td>2.322</td>
<td>2.140</td>
<td>2.116</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cu(^{2})-O(^{5})</td>
<td>2.060</td>
<td>1.989</td>
<td>2.042</td>
<td>2.051</td>
<td>2.085</td>
<td>2.027</td>
<td>2.021</td>
<td>2.076</td>
<td>2.025</td>
<td>1.988</td>
<td>2.088</td>
<td>2.019</td>
<td>2.035</td>
<td>2.095</td>
<td>2.051</td>
</tr>
<tr>
<td>Cu(^{2})-S(^{1})</td>
<td>2.401</td>
<td>2.404</td>
<td>2.414</td>
<td>2.403</td>
<td>2.380</td>
<td>2.448</td>
<td>2.461</td>
<td>2.384</td>
<td>2.428</td>
<td>2.628</td>
<td>2.357</td>
<td>2.470</td>
<td>2.470</td>
<td>2.749</td>
<td>2.457</td>
</tr>
<tr>
<td>O(^{1})-O(^{2})</td>
<td>1.345</td>
<td>1.324</td>
<td>1.327</td>
<td>1.357</td>
<td>1.353</td>
<td>1.341</td>
<td>1.357</td>
<td>1.364</td>
<td>1.338</td>
<td>1.349</td>
<td>1.340</td>
<td>1.379</td>
<td>1.385</td>
<td>1.355</td>
<td>1.389</td>
</tr>
<tr>
<td>B-O(^{6})</td>
<td>-</td>
<td>1.365</td>
<td>1.429</td>
<td>1.570</td>
<td>1.423</td>
<td>1.441</td>
<td>1.448</td>
<td>1.378</td>
<td>1.386</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B-O(^{9})</td>
<td>-</td>
<td>-</td>
<td>3.967</td>
<td>1.474</td>
<td>1.474</td>
<td>1.491</td>
<td>1.426</td>
<td>1.440</td>
<td>1.402</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B-C(^{1})</td>
<td>-</td>
<td>1.598</td>
<td>1.563</td>
<td>1.654</td>
<td>2.240</td>
<td>2.156</td>
<td>2.171</td>
<td>3.371</td>
<td>4.123</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.702(^{c})</td>
<td>2.350(^{c})</td>
<td>1.482(^{c})</td>
</tr>
<tr>
<td>S(^{1})-C(^{2})</td>
<td>1.799</td>
<td>1.780</td>
<td>1.801</td>
<td>1.791</td>
<td>1.801</td>
<td>1.803</td>
<td>1.804</td>
<td>1.801</td>
<td>1.807</td>
<td>1.819</td>
<td>1.807</td>
<td>1.925</td>
<td>2.374</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^{a}\) For Cu\(^{1}\)-S\(^{1}\) distance;

\(^{b}\) For Cu\(^{2}\)-O\(^{3}\) distance;

\(^{c}\) For Cl\(^{1}\)-C\(^{2}\) distance.
Table 4

The calculated Mulliken spin densities (in |e|) of the located intermediates, transition states and products of the formate-assisted transmetalation in 2a with boronic acid. Here, we report only the triplet ground states of these structures. See Figure 1 for used atomic notations used.

<table>
<thead>
<tr>
<th>Atom</th>
<th>Ia</th>
<th>II</th>
<th>IIIa</th>
<th>III</th>
<th>TS(IIa-IVa1)</th>
<th>TS(IIa-IVa2)</th>
<th>TS(III-IVb1)</th>
<th>IVa1</th>
<th>IVb1</th>
<th>IVa</th>
<th>IVb</th>
<th>V</th>
<th>TS(V- VI)</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1</td>
<td>0.38</td>
<td>0.15</td>
<td>0.34</td>
<td>0.35</td>
<td>0.39</td>
<td>0.31</td>
<td>0.33</td>
<td>0.46</td>
<td>0.32</td>
<td>0.34</td>
<td>0.31</td>
<td>0.36</td>
<td>0.30</td>
<td>0.26</td>
<td>0.28</td>
</tr>
<tr>
<td>Cu2</td>
<td>0.20</td>
<td>0.31</td>
<td>0.22</td>
<td>0.23</td>
<td>0.19</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.26</td>
<td>0.17</td>
<td>0.24</td>
<td>0.24</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>O1</td>
<td>0.63</td>
<td>0.67</td>
<td>0.67</td>
<td>0.61</td>
<td>0.60</td>
<td>0.66</td>
<td>0.61</td>
<td>0.58</td>
<td>0.67</td>
<td>0.60</td>
<td>0.68</td>
<td>0.62</td>
<td>0.56</td>
<td>0.51</td>
<td>0.52</td>
</tr>
<tr>
<td>O2</td>
<td>0.58</td>
<td>0.69</td>
<td>0.62</td>
<td>0.57</td>
<td>0.57</td>
<td>0.56</td>
<td>0.53</td>
<td>0.57</td>
<td>0.57</td>
<td>0.61</td>
<td>0.57</td>
<td>0.44</td>
<td>0.45</td>
<td>0.55</td>
<td>0.50</td>
</tr>
<tr>
<td>O3</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>O4</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>O5</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>O6</td>
<td>-</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>O7</td>
<td>0.09</td>
<td>-</td>
<td>0.06</td>
<td>0.00</td>
<td>0.05</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O8</td>
<td>0.05</td>
<td>-</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.10</td>
<td>0.18</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Cl1</td>
<td>-</td>
<td>0.01</td>
<td>0.00</td>
<td>0.04</td>
<td>0.10</td>
<td>0.10</td>
<td>0.14</td>
<td>0.09</td>
<td>0.14</td>
<td>0.07</td>
<td>0.16</td>
<td>0.21</td>
<td>0.15</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Cl2</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>