Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy

Robert S. Raike, Emory University
Catherine Weisz, Johns Hopkins University
Freek E. Hoebeek, Erasmus Medical Centre
Matthew C. Terzi, Emory University
Chris I. De Zeeuw, Erasmus Medical Centre
Arn M. van den Maagdenberg, Leiden University
Hyder A Jinnah, Emory University
Ellen Hess, Emory University

Journal Title: Neurobiology of Disease
Volume: Volume 50, Number 1
Publisher: Elsevier | 2013-02-01, Pages 151-159
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.nbd.2012.09.005
Permanent URL: https://pid.emory.edu/ark:/25593/s8zz3

Final published version: http://dx.doi.org/10.1016/j.nbd.2012.09.005

Copyright information:
© 2012 Elsevier Inc. All rights reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed November 16, 2019 11:37 PM EST
Stress, caffeine and ethanol trigger transient neurological dysfunction through shared mechanisms in a mouse calcium channelopathy

Robert S. Raikea, Catherine Weiszb, Freek E. Hoebeekc, Matthew C. Terzid, Chris I. De Zeeuwc, e, Arn M. van den Maagdenbergf, H.A. Jinnahd, g, and Ellen J. Hessa, d, \dag

aDepartment of Pharmacology Emory University School of Medicine, Atlanta, GA 30322
dDepartment of Neurology Emory University School of Medicine, Atlanta, GA 30322
gDepartment of Human Genetics Emory University School of Medicine, Atlanta, GA 30322
bDepartment of Neuroscience Johns Hopkins University School of Medicine, Baltimore, MD 21287
cDepartment of Neuroscience Erasmus Medical Centre, 3015 GE, Rotterdam, The Netherlands
eNetherlands Institute for Neuroscience Royal Dutch Academy of Arts & Sciences, Meibergdreef 47, Amsterdam, The Netherlands
fDepartments of Human Genetics and Neurology Leiden University Medical Centre, 2300 RC Leiden, The Netherlands

Abstract

Several episodic neurological disorders are caused by ion channel gene mutations. In patients, transient neurological dysfunction is often evoked by stress, caffeine and ethanol, but the mechanisms underlying these triggers are unclear because each has diverse and diffuse effects on the CNS. Attacks of motor dysfunction in the Ca\textsubscript{V}2.1 calcium channel mouse mutant \textit{tottering} are also triggered by stress, caffeine and ethanol. Therefore, we used the \textit{tottering} mouse attacks to explore the pathomechanisms of the triggers. Despite the diffuse physiological effects of these triggers, ryanodine receptor blockers prevented attacks induced by all of them. In contrast, compounds that potentiate ryanodine receptors triggered attacks suggesting a convergent biochemical pathway. \textit{Tottering} mouse attacks were both induced and blocked within the cerebellum suggesting that the triggers act locally to instigate attacks. In fact, stress, caffeine and alcohol precipitated attacks in Ca\textsubscript{V}2.1 mutant mice in which genetic pathology was limited to cerebellar Purkinje cells, suggesting that the triggers initiate dysfunction within a specific brain region. The surprising biochemical and anatomical specificity of the triggers and the discovery that the triggers operate through shared mechanisms suggests that it is possible to develop targeted therapies aimed at blocking the induction of episodic neurological dysfunction, rather than treating the symptoms once provoked.

Keywords

episodic; channelopathy; cerebellum; Purkinje; calcium channel; \textit{tottering}
Introduction

Recurrent transient neurological dysfunction superimposed on a relatively normal baseline is observed in several disorders such as familial hemiplegic migraine, episodic ataxia, and periodic paralysis. In each case, transient neurological impairments are superimposed on a relatively normal baseline. Although the clinical features of these disorders are diverse, the underlying causes of the condition and the triggers that bring on attacks are strikingly similar. Many of these disorders are associated with ion channel gene mutations, and are therefore known as channelopathies (Bhatia et al., 2000; Cannon, 2006; Ptacek, 1999). Further, regardless of etiology, attacks are induced in many episodic disorders by psychological or physical stress, and the consumption of caffeine or alcohol (Bhatia, 2001; Frucht et al., 2000; Ptacek, 1999).

The mechanisms underlying the induction of neurological dysfunction in patients who are otherwise normal between attacks are unknown primarily because the triggers have a variety of effects on the nervous system. Stress activates the limbic-hypothalamic-pituitary-adrenal axis, causing the release of several neurochemicals, including corticotrophin releasing factor (CRF), adrenocorticotropic hormone, corticosteroids and catecholamines (Koob, 1999). Caffeine acts as a stimulant through adenosine receptor antagonism, inhibits phosphodiesterase and mobilizes calcium from intracellular stores (Daly, 2007; Muller and Daly, 1993). Ethanol acts through multiple signaling cascades involving GABA, glycine, adenosine and NMDA receptors (Kumar et al., 2009; Newton and Messing, 2006). Each of these biochemical mechanisms may impinge on multiple brain areas. Despite the diverse effects of these triggers, their ability to provoke symptoms across a broad range of episodic disorders suggests the possibility of a common mechanism.

Because the attacks are observed only in intact animals, the trigger mechanisms must be assessed in vivo. Mouse mutants that recapitulate both genotypic and phenotypic characteristics of episodic neurological disorders are therefore essential for this type of analysis. The tottering mouse mutant exhibits stereotyped attacks of dystonia (Shirley et al., 2008) that are caused by a mutation in the Cacna1a gene (Fletcher et al., 1996). Mutations in this gene in man and mouse are associated with aberrant function of the pore-forming α_{1} subunit of Ca$V_{2.1}$ (P/Q-type) voltage-gated calcium channels (Jen et al., 2007; Wakamori et al., 1998). In humans, CACNA1A mutations are associated with various disorders, including episodic ataxia type 2 (EA2) and familial hemiplegic migraine type 1 (Ophoff et al., 1996). Similar to humans, the attacks in tottering mice are triggered by stress, caffeine and alcohol (Fureman et al., 2002). Further, drugs that prevent episodic dysfunction in patients, such as 4-aminopyridine, also block attacks in tottering mice (Weisz et al., 2005). Therefore, we used the attacks in tottering mice as a readout to explore the pathomechanisms of the triggers.

Materials and Methods

Animals

Mice were bred and housed at Emory University or Johns Hopkins University vivaria. Tottering mice (Cacna1a$^{tg/tg}$) congenic with C57BL/6J were originally obtained from The Jackson Laboratory (Bar Harbor, ME). Mice carrying floxed Cacna1a alleles (Cacna1a$^{flox/flox}$) were on a C57BL/6J background, as described previously (Todorov et al., 2006). Tg(Pcp2-Cre)2Mpin/J (common name, L7-Cre) on C57BL/6J were purchased from The Jackson Laboratory. Mice carrying a null allele (Cacna1a$^{+/−}$) on a mixed C3H-C57BL/6J background were kindly provided by Dr. David Yue (Johns Hopkins University, Baltimore, MD). PCR was used to genotype mice with forward and reverse primers: for the Cacna1a$^{−}$ allele, 5'-ATAATAAGTCACCTCGTTAAG-3' and 5'-...
CTGACTAGGGAGGAGTAGAAG-3'; for the Cacna1afloxed allele, 5'-ACCTACAGTCTGCCAGGAG-3' and 5'-TGAAGCCCAGACATCCTTG-3'; for the Cacna1atg allele, 5'-GGAAACCAGAAGCTGAACCA-3' and 5'-GAAATGGAGGAATTCAGGG-3'; for L7-Cre, 5'-GCCGTTCCAGTAAACTAC-3' and 5'-TCTCTGACCAGAGTCATCCT-3'.

The PCR product for the Cacna1atg/tg allele was sequenced to detect the C1802T mutation.

Male and female mice (8–20 wks of age) were used in all experiments since we have previously shown that \textit{tottering} mouse attacks are comparable across age and between genders (Weisz et al., 2005). Mice had access to food and water \textit{ad libitum} throughout all experiments. All procedures conformed to the NIH Guidelines for the Care and Use of Animals and were approved by the Emory University or Johns Hopkins University Animal Care and Use Committees.

Motor behavior analyses

Mice were transferred from the vivarium to the laboratory at least 4 hours prior to drug challenge or restraint stress drug. For restraint stress, mice were placed in a plastic tube with air holes for 10 min, and then scored for attacks following release. Pretreatment drugs were administered 30 min before challenge with caffeine or ethanol or 10 min before restraint challenge. After drug challenge or restraint stress, mice were observed for 40 min for the presence or absence of an attack of generalized dystonia. Each mouse was scored for 30 sec every 10 min using a disability scoring system previously described (Jinnah et al., 2000), where D0 = normal motor behavior; D1 = slightly slowed or abnormal movements; D2 = fleeting abnormal postures; D3 = moderate impairment, limited ambulation even when disturbed, frequent abnormal postures; D4 = severe impairment, sustained abnormal postures. An attack was defined as a disability score of D \geq 3. The percent of mice exhibiting an attack during the 40 min following challenge was used as a measure of attack frequency. Observers were blinded to treatment.

To assess the central effects of adenosinergic antagonists, gross locomotor activity was quantified using photocell activity chambers (San Diego Instruments, San Diego, CA). Mice were individually placed into a clean activity chamber and habituated overnight. The following morning mice were treated systemically with drug or vehicle and the total number of beam breaks in the ensuing 40 min period was used for analysis.

To assess the effects of dantrolene on strength and coordination, the cling and pole tests were used. The cling test was performed as previously described (Devanagondi et al., 2007), where mice were habituated for 1 min on a horizontal 20 x 20 cm framed grid of wire mesh suspended above a padded surface. The frame was then rotated 90° to vertical for 1 min, and then rotated another 90° for 1 min so that the mice were inverted. The time to fall was recorded with a 180 sec cut-off. For the pole test, a vertical wooden rod measuring 50 cm in length and 1 cm in diameter affixed to a square base (12 x 12 cm) was used. The base of the pole was placed in the home cage. Mice were placed with the head facing up at the top of the pole. The time for each mouse to turn around, descend the pole and place all four limbs onto the base was recorded. Mice performed 5 trials of training each day for 2 days prior to testing. On the test day, the best time of the 5 trials was used.

Systemic drug administration

All drugs were first tested in normal C57BL/6J mice for deleterious side effects such as sedation or seizures. Each drug was tested on at least 2 separate dates and mice were pseudorandomly assigned to a drug dose or vehicle group. Observers were blinded to treatment. Caffeine, dimethylxanthine (theophylline) and 1,7-dimethylxanthine...
(paraxanthine) were obtained from Sigma (St. Louis, MO). ZM241385 and 8-cyclopropyl-1,3-dipropylxanthine (DPCPX) were obtained from Tocris (Ellisville, MO). Dantrolene was obtained from Proctor & Gamble (Cincinnati, OH). Caffeine, theophylline and paraxanthine were administered subcutaneously (s.c.). All other drugs were administered intraperitoneally (i.p.). Dantrolene was administered 30 min before drug challenge or 10 min before restraint challenge.

Intracerebellar microinjection

Intracerebellar microinjections were performed as previously reported (Pizoli et al., 2002; Weisz et al., 2005). Mice were anesthetized with isoflurane and injected with 0.5 μl of 100 μM ryanodine (Tocris) or saline vehicle. For cerebellum, coordinates were: −6.5 mm AP from bregma, 0 mm ML from midline, −2 mm V from skull. For lateral ventricle, coordinates were: −0.5 mm AP, 1.25 mm ML, −3 mm V. The wound was sealed with Nexaband topical skin closure (Veterinary Products Laboratories, Phoenix, AZ). Mice were administered caffeine or ethanol approximately 2 min after microinjection. Restraint began approximately 4 min after microinjection. Microinjection sites were histologically verified.

Caffeine microperfusion

Concentric microdialysis probes were used to reverse dialyze caffeine into select brain regions. Mice were anesthetized with tribromoethanol (Sigma), a small incision made and a hole drilled for implantation of the probe, which was constructed as previously described (Fan and Hess, 2007). For cerebellum the coordinates for probe implantation were the same as for microinjections. For striatum the coordinates were: −0.6 mm AP, 1.7 mm ML, −5.4 mm V. After surgery, the probe was connected to a microinjection pump (Harvard Apparatus, Holliston, MA) through a liquid swivel (Instech, Plymouth Meeting, MA) and perfused continuously with artificial cerebrospinal fluid (147 mM NaCl, 3.5 mM KCl, 1.2 mM CaCl$_2$, 1.2 mM MgCl$_2$, 1 mM NaH$_2$PO$_4$, 25 mM NaHCO$_3$, pH 7.4) at a flow rate of 1.5 μl/min. Mice were allowed 14–16 hr recovery after surgery and then caffeine was added to the perfusate. Percent recovery of amino-acid neurotransmitters in vitro was used to determine the relative exchange rate of each probe prior to use in vivo. Perfusion sites were histologically verified.

Histology

To verify injection and infusion sites, sections were stained with cresyl violet. For X-gal staining, tissue was incubated in 0.02% Igepal (Sigma), 0.01% sodium deoxycholate, 2 mM MgCl$_2$, 5 mM potassium ferricyanide, 5 mM potassium ferrocyanide and 1 mg/ml X-gal in PBS overnight and counterstained with Nuclear Fast Red (Vector Laboratories, Burlingame, CA).

Statistical analysis

Nonparametric logistic regression and chi-square techniques were used to analyze attack frequency data. Student's t test was used for cling and pole test data. Analyses were performed using Statview (SAS Institute, Cary, NC).

Results

Common biochemical mechanisms of stress, caffeine and ethanol

Although each trigger has many effects on the CNS, all increase arousal. The stimulatory effects of caffeine are attributed to its action as a nonselective A1/A2a adenosine receptor (ADR) antagonist (Williams and Jarvis, 1988). Stress and ethanol are also implicated in A1 and A2a ADR signaling (da Silva Torres et al., 2003; Minor et al., 2001; Newton and
Messing, 2006), suggesting a common mechanism of action. To determine if adenosinergic signaling mediates neurological attacks, we challenged *tottering* mice with a battery of nonselective and selective ADR antagonists. Centrally active doses were first determined by assessing drug-induced increases in locomotor activity in normal mice. All compounds increased locomotor activity at the doses tested (Table 1). As previously reported (Fureman et al., 2002), caffeine dose dependently induced attacks (Figure 1A). Similar to caffeine, the mixed A1/A2a ADR antagonists, 1,3-dimethylxanthine (theophylline) and 1,7-dimethylxanthine (paraxanthine) dose-dependently induced attacks in *tottering* mice (Figure 1B & C). To determine if these effects were specific to a particular ADR subtype, *tottering* mice were challenged with DPCPX, an A1-selective ADR antagonist, or ZM 241385, an A2a-selective antagonist. Neither DPCPX (Figure 1D) nor ZM 241385 (Figure 1E) induced attacks at any dose tested, even at doses that significantly increased motor activity (Table 1). Although these results suggest that attacks are not instigated through either adenosine receptor subtype alone, it is possible that coincident antagonism of A1 and A2a ADRs, similar to the action of caffeine, is necessary to trigger attacks. However, co-administration of the A1-selective ADR antagonist DPCPX and the A2a-selective antagonist ZM 241385 failed to trigger attacks (Figure 1F), suggesting adenosinergic signaling is not likely involved in the instigation of attacks by caffeine.

At high concentrations, caffeine acts at ryanodine receptors (RyR) to facilitate the mobilization of calcium from intracellular stores (Kano et al., 1995; Womack et al., 2000). The caffeine analogs theophylline and paraxanthine also promote ryanodine-sensitive increases in the intracellular Ca\(^{2+}\)-concentration (Muller and Daly, 1993). Further, *tottering* mice carry a mutation in a calcium channel gene, supporting the idea that calcium-dependent mechanisms may be involved. To test the hypothesis that RyRs mediate attacks, *tottering* mice were treated with systemic injections of the RyR antagonist dantrolene before challenge with caffeine, theophylline or paraxanthine. Pretreatment with dantrolene dose-dependently reduced the frequency of attacks induced by all 3 drugs (Figure 2A–C), suggesting that RyR activation is necessary to induce attacks.

In addition to its action at neuronal RyRs, dantrolene blocks RyRs in skeletal muscle and is used as a muscle relaxant in humans. Because it is possible that dantrolene spuriously inhibited the expression of attacks in *tottering* mice by acting as a muscle relaxant rather than blocking the trigger per se, the effect of dantrolene on volitional motor function was examined. Dantrolene did not significantly affect the performance of *tottering* mice on either the cling test or the pole test, which both require strength and motor control (Table 2). These results do not rule out the possibility that dantrolene alters muscle function but do suggest that, at the highest dose used in these experiments, dantrolene did not likely mask *tottering* mouse attacks by weakening muscles.

To determine whether stress triggers attacks through a mechanism similar to caffeine, the ability of dantrolene to block stress-induced attacks was assessed. Pretreatment with dantrolene significantly reduced the frequency of attacks triggered by restraint stress (Figure 2D). Similar experiments using dantrolene to block attacks triggered by ethanol were not feasible due to the sedating effects of this drug combination *in vivo*. Overall, these results suggest that stress and caffeine trigger attacks through similar biochemical mechanisms.

Triggers act in the cerebellum

Localization of (dys)function is critical for understanding pathogenesis; yet stress, caffeine and ethanol act in many brain regions. It is not known whether neurological dysfunction is triggered via diffuse effects, or if attacks are initiated within discrete regions of the brain. We hypothesized that the triggers act locally because the transient motor symptoms arising from mutant Ca\(_{\text{V}}\)2.1 channels in humans and mice are associated with cerebellar
dysfunction (Jen et al., 2007; Walter et al., 2006). Therefore, ryanodine, a RyR antagonist, was microinjected into tottering mouse brain prior to systemic administration of caffeine. Intracerebellar ryanodine injections significantly reduced the frequency of attacks triggered by caffeine compared to intracerebellar injection of saline vehicle (Fig 3A; p < 0.05). However, microinjection of ryanodine into the lateral ventricle had no effect on the frequency of attacks triggered by caffeine whereby four out of five tottering mice treated with vehicle exhibited attacks and four out of six tottering mice treated with ryanodine exhibited attacks (p = 0.62; chi-square test). These results suggest that ryanodine injected into the cerebellum did not diffuse to other brain regions to block attacks.

To determine if the cerebellum is also the site of action for other triggers, we tested the ability of intracerebellar ryanodine injections to block attacks induced by stress or ethanol. Similar to caffeine, intracerebellar injections of ryanodine, but not vehicle, significantly reduced the frequency of attacks induced by stress or ethanol (Figure 3A; p < 0.01; chi-square test) suggesting that all three triggers work through the cerebellum.

To determine if attacks are triggered within the cerebellum, we performed localized microperfusions of caffeine in freely moving tottering mice (Figure 4A). Microperfusion of caffeine into the cerebellum dose-dependently triggered attacks in tottering mice with an average latency of 31 ± 4 min after the start of the infusion, whereas vehicle alone had no effect (Figure 4B). Microperfusion of caffeine into the normal mouse cerebellum did not cause attacks (n = 4; not shown). Microperfusion of caffeine into the tottering mouse striatum did not induce attacks, even after 80 min (Figure 4B) suggesting that the effects of microperfusion are specific to the cerebellum and that microperfused caffeine was not diffusing throughout brain. Furthermore, pretreatment of tottering mice with systemic administration of dantrolene completely blocked attacks triggered by microperfusion of caffeine into the cerebellum (Figure 4C; p < 0.01). Thus, attacks were triggered and blocked within the cerebellum.

Attacks are mediated by Purkinje cells

Although stress, caffeine and ethanol act as nonselective agents throughout the CNS, the previous results suggest that attacks are triggered locally within the cerebellum. In light of this localized effect, we asked if a single cell type might mediate the response. Purkinje cells provide the sole output of cerebellar cortex and their firing patterns are exquisitely sensitive to changes in Cav2.1 currents (Hoebeek et al., 2005; Walter et al., 2006). Therefore, we tested the hypothesis that Purkinje cells mediate the response to triggers by using the conditional floxed Cacna1a allele in combination with the tottering allele to achieve cell-specific expression (Table 3). Heterozygous tottering mice (Cacna1atg/+; n = 14) did not exhibit attacks (Campbell and Hess, 1998). Likewise, Cacna1atg/flox mice, which bear one tottering allele and one normoactive floxed Cacna1a allele (Todorov et al., 2006), did not exhibit attacks (n = 8). To isolate the attack-causing genotype to Purkinje cells, the L7-Cre transgene, which drives Cre recombinase expression in Purkinje cells (Figure 5), was bred into Cacna1atg/flox mice. These mice carried one normoactive allele and one tottering allele throughout the nervous system (totteringhaplo mice were also generated to control for Cacna1a gene dose and to determine if other cell types contribute to the response to triggers. Mice bearing one tottering and one null allele throughout the nervous system (totteringhaplo mice) were also generated to control for
tottering mice (ED$_{50}$ = 0.69 g/kg) did not differ from tottering$^{PC-Cre}$ mice (ED$_{50}$ = 0.85 g/kg; Figure 6). These results demonstrate that the response to triggers is not modified by Purkinje cell expression of Cre recombinase per se. All three triggers also induced attacks in totteringhaplo mice. However, totteringhaplo mice were more sensitive to the triggers compared to tottering mice. Even minor stressors triggered attacks more frequently in totteringhaplo than in tottering mice (Figure 6A). The dose response curves for both caffeine and ethanol (ED$_{50}$ = 0.10 g/kg) were shifted to the left for totteringhaplo mice compared to tottering mice (Figure 6B & C), although it was not possible to calculate the ED$_{50}$ for caffeine in totteringhaplo due to the high vehicle baseline. These results suggest that there is an effect of gene dose whereby mice that are haploinsufficient for the tottering allele are more sensitive to the triggers than mice that are homozygous for the tottering allele. Stress, caffeine and ethanol also induced attacks in tottering$^{PC-haplo}$ mice. These mice were also more sensitive to stressors than tottering mice (Figure 6A). The ED$_{50}$ for caffeine was shifted ~5-fold to the left in tottering$^{PC-haplo}$ mice (ED$_{50}$ = 0.62 mg/kg) compared to tottering mice. A similar 5-fold shift in the dose-response for ethanol was observed in tottering$^{PC-haplo}$ mice (ED$_{50}$ = 0.14 g/kg) compared to tottering mice. Overall, mice with the attack-causing genotype in only Purkinje cells had preserved and even exaggerated responses to triggers.

To determine if the triggers of attacks in tottering$^{PC-haplo}$ mice also depend on RyR activity within the cerebellum, localized microinjections of ryanodine were conducted. Similar to tottering mice, intracerebellar injections of ryanodine significantly reduced the frequency of attacks induced by stress, caffeine or ethanol (Figure 3B; p < 0.01, p < 0.05 and p < 0.01; as determined by chi-square test) indicating that the mechanisms for attacks in tottering$^{PC-haplo}$ mice are similar to those of tottering mice.

Discussion

Here, we described the biochemical and anatomical targets of stress, caffeine and ethanol in the induction of attacks of neurological dysfunction due to a calcium channelopathy. At the biochemical level, we found that compounds that potentiate RyR activity, including caffeine, theophylline and paraxanthine, triggered attacks. Conversely, dantrolene and ryanodine, which are structurally unrelated RyR antagonists, prevented attacks induced by stress, caffeine or ethanol. Taken together, these results suggest that the triggers act through a common biochemical pathway that includes RyR signaling. At the anatomical level, we found that the attacks are triggered locally. Intracerebellar delivery of ryanodine blocked attacks and intracerebellar infusions of caffeine induced attacks. Further, the results of the conditional genetic manipulations implicate a single cell type – Purkinje cells. Thus, the seemingly disparate triggers share biochemical and anatomical substrates. These results suggest that despite the diverse and relatively diffuse actions of the triggers throughout the CNS, the substrates of attack induction are surprisingly well circumscribed.

RyR signaling was necessary for the induction of attacks by stress, caffeine and ethanol. RyRs mediate the release of intracellular stores of calcium from the endoplasmic reticulum in response to changes in the cytosolic calcium concentration. Acute changes in cytosolic calcium concentrations can have an immediate impact on excitability through the regulation of transmitter release and by mediating the activity of other ion channels and receptors. While it is possible that stress, caffeine and ethanol exert their effects directly at RyR, it is more likely that each trigger disrupts calcium homeostasis through unique mechanisms and the requirement for RyR activity is downstream of the primary effects. Stress induces the release of CRF, which evokes ryanodine-sensitive Ca$^{2+}$-release from internal Ca$^{2+}$-stores (Riegel and Williams, 2008; Yamamori et al., 2004). Stress also stimulates noradrenergic transmission to promote calcium release from intracellular stores through α$_1$-adrenergic
receptors (Kirischuk et al., 1996; Paladini and Williams, 2004). In fact, α-adrenergic receptor signaling is required for stress-induced attacks in *tottering* mice (Fureman and Hess, 2005). At millimolar concentrations in vitro, caffeine induces rapid and sustained increases in cytoplasmic calcium concentrations through RyR activation (Kano et al., 1995; Womack et al., 2000). However, only micromolar concentrations of caffeine are typically achieved in vivo. Low caffeine concentrations evoke an increase in the rate of calcium sparks (Kong et al., 2008; Usachev and Thayer, 1997), which are short-lived local increases in intracellular calcium concentrations (Cheng and Lederer, 2008). It is possible that caffeine triggers attacks by promoting calcium sparks. It is also possible that the other diverse actions of caffeine, such as phosphodiesterase inhibition, contribute, although we have ruled out adenosinergic signaling. Ethanol indirectly mediates the disposition of calcium through the regulation of numerous calcium-permeable channels (Crews et al., 1996; Haorah et al., 2007). Thus, RyR blockade may preclude attacks by damping abnormal fluctuations in cell calcium caused by the triggers without direct interaction of the triggers at RyRs. Although additional experimentation is needed to describe the precise role of RyR receptors in the response to triggers, the experiments presented here provide a clear direction for examining shared biochemical features, despite the complex physiological effects of stress, caffeine and alcohol.

Several different lines of evidence converge to suggest that the triggers act specifically within the cerebellum but not other brain regions. Infusion of caffeine directly to the cerebellum, but not the striatum, triggered attacks. Attacks induced by stress, caffeine and ethanol were blocked by intracerebellar injection of ryanodine, but not by microinjection of ryanodine into the lateral ventricle. Finally, attacks persisted even after isolating the attack-causing genotype to Purkinje cells in *tottering* mice suggesting that the abnormal response to the triggers originates specifically within these neurons. However, it is possible that the triggers instigate abnormal presynaptic signals that then provoke abnormal Purkinje cell responses, but not likely because the abnormal activity in *tottering* mouse Purkinje cells is intrinsically generated and independent of synaptic input (Chen et al., 2009; Walter et al., 2006). This finding does not rule out the possibility that other cells contribute. Although restricting the attack-causing genotype to Purkinje cells in *tottering* mice caused an increase in sensitivity to stress, caffeine and ethanol compared to *tottering* mice, *tottering* mice also exhibited a similar increase in sensitivity. Indeed, *tottering* mice appeared even more sensitive to stress than *tottering* mice and a similar trend for an increase in sensitivity to caffeine and ethanol is also evident for *tottering* mice. The exaggerated response in both *tottering* and *tottering* mice is likely caused by haploinsufficiency of the *Cacna1a* gene in Purkinje cells. The further augmentation of the response in *tottering* mice suggests that other cells may also contribute but abnormal Purkinje cells alone are sufficient for the response to stress, caffeine and ethanol.

The abundant expression of Cax2.1 channels in Purkinje cells may, in part, explain the selective vulnerability of these neurons (Volsen et al., 1995; Westenbroek et al., 1995). The intrinsic pacemaking function of Purkinje cells is mediated by calcium-dependent small-conductance type (SK) potassium channels, which are exclusively activated by calcium entry through Cax2.1 channels (Womack and Khodakhah, 2004). Loss of precision in Purkinje cell firing patterns has been detected in *tottering* mice presumably due to inefficient SK channel activation (Hoebeek et al., 2005; Walter et al., 2006). Furthermore, potassium channel activators correct the irregular Purkinje cell firing patterns in mice (Alvina and Khodakhah, 2010) and ameliorate attacks of cerebellar dysfunction in both EA2 patients and *tottering* mice (Strupp et al., 2004; Weisz et al., 2005). The effects of the persistent subclinical abnormalities in Purkinje cell calcium handling caused by the calcium channel mutation plus the typically inconsequential effects of the triggers combine to precipitate overt behavioral dysfunction in the form of an attack. Thus, rather than indiscriminately
acting throughout the CNS, the triggers likely exploit cell-type specific differences in gene expression and electrophysiological properties.

Understanding the mechanisms underlying the induction of transient neurological dysfunction is essential for the development of therapies that eliminate or reduce the incidence of attacks. Though dantrolene is most commonly used clinically to treat spasticity, the drug's ability to stabilize abnormal neuronal calcium handling (Chen et al., 2008; Liu et al., 2009; Nagatomo et al., 2001) and to prevent attacks in totering mice and seizures in other mice (Nagatomo et al., 2001; Swiader et al., 2002) suggests that it could be used similarly to block episodic neuronal dysfunction in patients. Indeed, compounds that regulate calcium signaling, particularly verapamil which is an L-type calcium channel blocker, have been used as treatments for hemiplegic migraine, severe myoclonic epilepsy of infancy and paroxysmal dyskinesia (Hsu et al., 2008; Iannetti et al., 2009; Links et al., 1998; Szczaluba et al., 2009). Despite the global CNS effects of the triggers, the surprising biochemical and anatomical specificity of the triggers suggests that it is possible to develop targeted therapies aimed at blocking the induction of episodic neurological dysfunction, perhaps by damping or stabilizing calcium signaling in target neurons, rather than treating the symptoms after they arise.

Acknowledgments

This work was supported by the United States National Institutes of Health (R01 NS033592, R01 NS040470, F32 NS055584), the Dystonia Medical Research Foundation, ZonMW and the NeuroBasic-PharmaPhenomics consortium.

References

Fan X, Hess EJ. D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD. Neurobiol Dis. 2007; 26:201–211. [PubMed: 17291774]

Minor TR, Rowe MK, Soames Job RF, Ferguson EC. Escape deficits induced by inescapable shock and metabolic stress are reversed by adenosine receptor antagonists. Behav Brain Res. 2001; 120:203–12. [PubMed: 11182168]

RyR signaling is necessary for the induction of attacks by stress, caffeine and ethanol in *tottering* mice.

Stress, caffeine and ethanol act specifically within the cerebellum but not other brain regions, to trigger attacks in *tottering* mice.

Abnormal Purkinje cells mediate the response to stress, caffeine and ethanol to instigate neurological dysfunction in *tottering* mice.
Figure 1. Response to adenosine receptor antagonists

A–C. Systemic injections of the nonselective adenosine receptor antagonists caffeine, theophylline or paraxanthine dose-dependently induced attacks in *tottering* mice (n = 10–24/dose). D–F. Systemic injections of the A1 adenosine receptor-selective antagonist DPCPX or the A2a adenosine receptor antagonist ZM 241385 did not induce attacks when administered alone or in combination (n = 10–16/dose). **p < 0.01, ***p < 0.001 as determined by logistic regression analysis.
Figure 2. Effect of dantrolene on caffeine- and stress-induced attacks

A–C. Systemic administration of the RyR antagonist dantrolene dose-dependently reduced the frequency of attacks in tottering mice triggered by 5 mg/kg caffeine, theophylline or paraxanthine (n = 10–17/dose). D. Dantrolene dose-dependently blocked attacks triggered by restraint stress (n = 11–12/dose). *p < 0.05, **p < 0.01, ***p < 0.001 as determined by logistic regression analysis.
Figure 3. Effect of intracerebellar ryanodine microinjections on tottering mouse attacks

Mice were pretreated with intracerebellar microinjections of ryanodine (100 μM) or vehicle prior to restraint stress or systemic injections of caffeine (5 mg/kg) or ethanol (1 g/kg). A. Ryanodine significantly reduced the frequency of attacks triggered by stress, caffeine or ethanol in tottering mice (n = 5–12/dose). B. Ryanodine significantly reduced the frequency of attacks triggered by stress, caffeine or ethanol in tottering PC-haplo mice (n = 5–7/dose), which carrying an attack-causing genotype in only Purkinje cells. *p < 0.05, **p < 0.01 as determined by chi-square test.
Figure 4. Effect of intracerebellar caffeine infusion on tottering mouse attacks
Vehicle or caffeine was reverse dialyzed into cerebellum or striatum of awake-behaving mice. A. Typical location of a cerebellar microperfusion probe. Scale bar, 500 μm B. Intracerebellar infusions of caffeine dose-dependently induced attacks in tottering mice (n = 7–9/dose). *p < 0.05, ***p < 0.001 as determined by logistic regression analysis. C. Microperfusions of 2.5 mM caffeine into the tottering mouse striatum (n = 6) did not elicit any motor abnormalities. C. Systemic administration of 20 mg/kg dantrolene (+Dan), but not vehicle (+Veh), blocked attacks induced by intracerebellar microperfusions of caffeine (n = 4–5/dose). *p < 0.05, **p < 0.01 as determined by chi-square test.
Figure 5. X-gal staining as a reporter for Cre recombinase expression in mice carrying the L7-Cre transgene

The L7-Cre transgene was bred onto the Cre-reporter mouse line, Rosa26, which is permissive for β-galactosidase expression in the presence of Cre recombinase. A–D. X-gal staining was localized to Purkinje cells. Scale bars, 100 μm
The L7-Cre transgene, which expresses Cre recombinase only in Purkinje cells was bred into mice bearing one tottering allele and one floxed allele (Cacna1a^{tg/flox}) to generate tottering^{PC-haplo} mice, which carry an attack-causing genotype only in Purkinje cells. Mice bearing one tottering allele and one null allele (tottering^{haplo}) and tottering mice carrying the L7-Cre transgene (tottering^{PC-Cre}) were also tested as controls.

A. Environmental challenges. Restraint induced attacks in all genotypes. Tottering^{PC-haplo} mice (n = 11–12/challenge) and tottering^{haplo} mice (n = 14/challenge) were more sensitive to the other environmental challenges than tottering mice (n = 11/challenge) and tottering^{PC-Cre} mice (n = 7/challenge).

B. Caffeine dose-dependently induced attacks in all genotypes. Tottering^{PC-haplo} mice (n = 11–12 per dose) and tottering^{haplo} mice (n = 13–14/dose) were more sensitive to the effects of caffeine than tottering mice (n = 10–11/dose) and tottering^{PC-Cre} mice (n = 7/dose).

C. Ethanol dose-dependently induced attacks in all genotypes. Tottering^{PC-haplo} mice (n = 10–16/dose) and tottering^{haplo} mice (n = 12–14/dose) were more sensitive to the effects of ethanol than tottering mice (n = 9–11/dose) and tottering^{PC-Cre} mice (n = 7/dose). *p < 0.05, **p < 0.01, ***p < 0.001 as determined by logistic regression analysis.
Table 1

Effect of adenosinergic antagonists (5 mg/kg) on the locomotor activity of normal mice

<table>
<thead>
<tr>
<th>Drug (ADR subtype)</th>
<th>Beam breaks (% vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffeine (mixed)</td>
<td>281 ± 33***</td>
</tr>
<tr>
<td>Theophylline (mixed)</td>
<td>223 ± 42*</td>
</tr>
<tr>
<td>Paraxanthine (mixed)</td>
<td>346 ± 72**</td>
</tr>
<tr>
<td>DPCPX (A1)</td>
<td>234 ± 54*</td>
</tr>
<tr>
<td>ZM 241385 (A2a)</td>
<td>281 ± 36***</td>
</tr>
<tr>
<td>DPCPX + ZM 241385 (A1+A2a)</td>
<td>369 ± 63**</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM and were analyzed with Student's t test (n = 6–11/drug).

* $p < 0.05$, ** $p < 0.005$, *** $p < 0.001$ compared to vehicle treatment.
Table 2

Effect of dantrolene (20 mg/kg) on the motor performance of *tottering* mice

<table>
<thead>
<tr>
<th>Time after injection</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole Test (sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>17 ± 2</td>
<td>13 ± 1</td>
</tr>
<tr>
<td>Dantrolene</td>
<td>14 ± 2</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>Cling Test (sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>150 ± 6</td>
<td>142 ± 2</td>
</tr>
<tr>
<td>Dantrolene</td>
<td>156 ± 7</td>
<td>144 ± 6</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM and were analyzed with Student's *t* test (n = 9–10/group). There were no significant differences between vehicle and treated mice.
Table 3

Nomenclature of experimental and control mice

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Genotype</th>
<th>Description</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Cacna1a<sup>+/+</sup></td>
<td>Normal C57BL/6J mice</td>
<td>Normal</td>
</tr>
<tr>
<td>Tottering</td>
<td>Cacna1a<sup>+/−</sup></td>
<td>Two tottering alleles</td>
<td>Attacks</td>
</tr>
<tr>
<td>Heterozygous tottering</td>
<td>Cacna1a<sup>+/−</sup></td>
<td>One tottering and one normal allele</td>
<td>Normal</td>
</tr>
<tr>
<td>Heterozygous tottering-floxed</td>
<td>Cacna1a<sup>+/−</sup></td>
<td>One tottering and one normal floxed allele</td>
<td>Normal</td>
</tr>
<tr>
<td>Tottering<sup>PC-Cre</sup></td>
<td>Cacna1a<sup>+/−</sup>; L7-Cre<sup>+/−</sup></td>
<td>Tottering mice expressing Cre recombinase in Purkinje cells</td>
<td>Attacks</td>
</tr>
<tr>
<td>Tottering<sup>haplo</sup></td>
<td>Cacna1a<sup>−/−</sup></td>
<td>One tottering and one null allele throughout</td>
<td>Attacks</td>
</tr>
<tr>
<td>Tottering<sup>PC-haplo</sup></td>
<td>Cacna1a<sup>+/−</sup>; L7-Cre<sup>+/−</sup></td>
<td>One tottering and one null allele in Purkinje cells but otherwise heterozygous throughout</td>
<td>Attacks</td>
</tr>
</tbody>
</table>