MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life

Quan Lin, Tongji University
Ravikumar Ponnusamy, Stanford University
Jocelyn Widagdo, University of Queensland
Jung A. Choi, University of California Los Angeles
Weihong Ge, University of California Los Angeles
Christine Probst, University of California Los Angeles
Tyler Buckley, University of California Los Angeles
Mimi Lou, University of Southern California
Timothy W. Bredy, University of Queensland
Michael S. Fanselow, University of California Los Angeles

Only first 10 authors above; see publication for full author list.
MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life

Quan Lin
Ravikumar Ponnusamy
Jocelyn Widagdo
Jung A. Choi
WeiHong Ge
Christine Probst
Tyler Buckley
Mimi Lou
Timothy W. Bredy
Michael S. Fanselow
Keqiang Ye
Yi E. Sun

The prenatal period of cortical development is important for the establishment of neural circuitry and functional connectivity of the brain; however, the molecular mechanisms underlying this process remain unclear. Here we report that disruption of the actin-cytoskeletal network in the developing mouse prefrontal cortex alters dendritic morphology and synapse formation, leading to enhanced formation of fear-related memory in adulthood. These effects are mediated by a brain-enriched microRNA, miR-9, through its negative regulation of diaphanous homologous protein 1 (Diap1), a key organizer of the actin cytoskeletal assembly. Our findings not only reveal important regulation of dendritogenesis and synaptogenesis during early brain development but also demonstrated a tight link between these early developmental events and cognitive functions later in life.

miR-9 | learning | memory | Diap1 | dendritogenesis

Perturbation during the critical period of perinatal cortical development influences the functional connectivity of the brain and can lead to an increased propensity toward neurological disorders such as anxiety, schizophrenia, and autism spectrum disorders (1–3). Neuronal maturation involves distinct, highly regulated events, including neuronal differentiation and migration, dendritogenesis, axon formation/guidance, and synaptogenesis, among others. However, precisely how these events are regulated and how they orchestrate brain development and cognitive function remain largely unknown.

Fear-related learning and memory play a significant role in the development of anxiety disorders. Cortical dysfunction is associated with emotional disturbances, which are underpinned by impaired fear extinction, and an inefficient termination of physiological stress responses (4, 5). The medial prefrontal cortex (mPFC) is a primary mediator of fear-related learning and memory (6, 7). It is evident that the actin cytoskeleton is involved in synaptic plasticity and neuronal morphogenesis underlying the formation of fear memory. For example, a disruption in the actin cytoskeleton assembly in the adult brain impairs both cued and contextual fear conditioning (8–10), and several actin-regulatory proteins have been shown to be involved in synaptic plasticity and neuronal morphogenesis associated with memory formation (11–15).

Small noncoding RNAs, and miRNAs in particular, have emerged as a major regulatory mechanism that precisely controls the level of gene expression. In invertebrates, miRNAs play essential roles in regulating developmental timing. For example, in Caenorhabditis elegans the succession of certain cell fates from first to second larval stage relies on the induction of miRNA lin-4 expression at the first larval stage and reduction of lin-14 activity via base-pairing interactions with its 3′ UTR (16, 17). In mice, miRNAs have been shown to be involved in rapidly fine-tuning the expression of their target mRNAs and in regulating cognitive function (18, 19). In our study, we found that the expression of the actin polymerization regulator diaphanous homologous protein 1 (Diap1) was significantly down-regulated in mouse cortical neurons from E16 to postnatal day 0 (P0), which is concomitant with a critical period of cortical dendritogenesis. We have also shown that the expression of a brain-enriched miRNA, miR-9, was inversely related to the expression of Diap1 (20). Furthermore, we identified a putative miR-9-binding site in the 3′ UTR of Diap1, indicating a potential regulatory relationship between Diap1 and miR-9 during dendritogenesis. These findings prompted an investigation into whether there is a functional relationship between key regulators of the actin cytoskeleton and miR-9 during prenatal development and whether dendritogenesis during the perinatal period will have an impact on cognition in adult life.

Results

Diap1 Regulates Dendritogenesis and Fear-Related Memory. Diap1 belongs to an evolutionarily conserved family of formin-related proteins (21), and binding of profilin (Pfn) to Diap1 mediates fast barbed-end elongation that promotes long, unbranched actin filaments (22). To explore a possible role for Diap1 in neuronal maturation, we analyzed the pattern of cortical Diap1 expression from E12 to adulthood. Diap1 was highly expressed at E12 but progressively decreased to low levels around E18 in cortical neurons. The expression of Diap1 increased again from P1 to P7 and decreased afterward (Fig. 1A). In contrast to Diap1, the expression of a brain-specific isoform of Pfn, Pfn2, increased in the prenatal cortex, decreased postnatally, and then remained relatively constant after P7 (Fig. 1B). Diap1 expression anti-correlates with the critical period of cortical dendritogenesis after neuronal migration is complete (23).

Significance

This study expands our knowledge of small noncoding RNAs and their important roles in brain development and cognitive function. We describe a mechanism by which dendritic morphology and synaptic formation are altered during a critical period of development, eventually leading to altered capacity for learning and memory later in life.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1To whom correspondence may be addressed. Email: ysun@mednet.ucla.edu or qlin@mednet.ucla.edu.

This article contains information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706069114/-/DCSupplemental.
To examine the role of Diap1 and Pfn2 in regulating dendritic morphogenesis in cortical neurons, we delivered Diap1 and Pfn2 shRNAs into neural progenitors in the mouse mPFC at E14.5 by in utero electroporation (Fig. 1B, Upper and Fig. S1A). The in utero electroporation methodology allows specific targeting of neurons in the prelimbic frontal cortex (PL) of the mPFC, an area of the brain that regulates fear-related learning and memory (7). At P40, we imaged PL pyramidal neurons in cortical layers 2/3 and reconstructed them in 3D. The continuous knockdown of Diap1 and Pfn2 from E14.5 to adulthood led to a dramatic increase in dendritic complexity in the PL (Fig. 1B, Lower).

We examined the effect of Diap1/Pfn2 knockdown on fear memory and found that continuous knockdown of Diap1/Pfn2 in PL neurons significantly enhanced the expression of auditory-cued fear memory (Fig. 1C) without changing pain sensitivity (Fig. 1C, Lower Right). However, we did not observe a dramatic effect on contextual fear memory (Fig. S1B). Given that CD-1 mice are low-freezing mice for both tone and context (24, 25), it is possible that we were not able to see an increase in context fear despite the effects of our experimental manipulations on both cue and context fear. Finally, knockdown of Diap1/Pfn2 in the PL did not appear to alter fear acquisition (Fig. S1C).

Diap1 and Pfn2 regulation of dendritic morphology and fear memory is directly regulated by miR-9. Using in situ hybridization (ISH) combined with immunohistochemistry and qPCR, we found that miR-9 was highly expressed in neural progenitor cells in the germinal zone and within newborn neurons in the cortical plate as early as E14.5 (Fig. 1D and Fig. S2A) (20). The expression of miR-9 reached highest level around E16–E18. miR-9 was expressed in neocortical neurons at a relatively low level postnatally (P7–P40).
Coexpression of Diap1 Rescues the Dendritic Phenotype as Well As Alterations in Fear-Related Learning and Memory Deficit Elicted by miR-9 Overexpression. To determine whether miR-9 indeed functions as a negative regulator for Diap1, we carried out rescue experiments to examine the effects of coexpression of Diap1 and miR-9 on dendritic morphogenesis and synaptic formation in cortical neurons. The mRNA of the overexpressed Diap1 lacks the miR-9 3′ UTR binding site (Fig. S6). We showed that coexpression of Diap1 and miR-9 normalized dendritic branching morphology in both primary cortical neurons and in the pyramidal neurons of PL layers 2/3. Overexpression of miR-9 increased dendritic complexity, whereas overexpression of Diap1 alone in cortical neurons reduced dendritic branch points in vitro and in vivo (Fig. 3 A and B). Quantification of synapses revealed a reversal of the number of synaptic puncta to control levels in cultured cortical neurons that coexpressed exogenous Diap1 and miR-9. Knockdown of miR-9 and overexpression of Diap1 reduced the number of synapses (Fig. 3 C). We further demonstrated that co-overexpression of Diap1 with miR-9 in the PL reverses the freezing phenotype that resulted from either miR-9 or Diap1 overexpression alone (Fig. 3 D).

Interestingly, knockdown of Pfn2 alone does not significantly enhance animal freezing behavior, whereas knocking down Diap1 alone and only during the developmental period (E14.5–P0) via a dox-inducible (Dox)-inducible driver is sufficient to promote dendritic complexity and facilitate fear-memory–related freezing behavior (Figs. S7 and S8). Moreover, restricted overexpression of miR-9 only during development (E14.5–P0) is also sufficient to lead to increased dendritic complexity in the PL neurons and enhanced fear memory (Figs. S7 and S8). Taken together, although both Pfn2 and Diap1 are bona fide targets for miR-9, only Diap1 mainly functions in regulating fear memory. In addition, our data clearly demonstrate a tight functional link between Diap1 and its modulator miR-9 in establishing neural circuits during the critical period of neuronal development. Perturbation of this process has lifelong effects on fear-related learning and memory.

Discussion

Neurodevelopmental disorders can be triggered by environmental and genetic interference with normal brain development. It is well established that there are critical time windows for the establishment of certain types of neural plasticity, and at those times individuals are most vulnerable to external disturbances (27–30). In the current study we provided evidence that miR-9 and Diap1 function as part of an intrinsic program that guides the process of neural maturation (i.e., dendritogenesis and synaptogenesis) and has long-lasting effects on dendritic complexity and synaptic density in adulthood. Furthermore, to provide some temporal specificity, we used a Dox-inducible system to knockdown only Diap1 or miR-9 or to overexpress miR-9 during the early developmental period, i.e., from E14.5 to P0, and found that temporally restricted perturbation of the miR-9–Diap1 axis was sufficient to provide long-lasting effects in dendritic morphology and fear-related learning and memory behavior (Figs. S7 and S8). These data suggest that a disruption in an intrinsic developmental program from the midembryonic stage has a significant impact on cognitive function in adult life.

Our previous and the current studies have shown that overexpressed miR-9 binds exclusively to endogenous target sequences, although it does not target to its binding sequence with seed-sequence mutations (Fig. 1 G). To test the specificity of the miR-9 overexpression construct further, we built miR-9 scramble control (miR-9SC). The scramble sequence of the miR-9 mature sequence was generated using online software (www.genscript.com/tools/create-scrambled-sequence). Using overlapping PCR, the mature miR-9 and its 3′ sequences of the original genomic sequence were replaced by its scrambled and scrambled-complementary sequences, respectively (Fig. S9A) (31). The sequence was introduced into the same backbone vector as the miR-9 overexpression vector. In the luciferase assay we found that, as with the empty vector, the scrambled sequence did not bind to miR-9–binding sequence (Fig. S9B).
Moreover, overexpression of the miR-9SC does not alter dendritic morphology or synapse formation (Fig. S9 C and D). To determine miR-9 knockdown specificity, we constructed a mutant form of the miR-9 knockdown control by replacing the seed-binding sequence with a random sequence (Fig. S9A). A luciferase assay showed that overexpression of the miR-9 knockdown mutant fragment (miR-9ASmut) did not interfere with luciferase gene expression (Fig. S9B). We further showed that overexpression of miR-9ASmut did not affect dendritic branching or synaptic formation (Fig. S9 C and D), suggesting that the miR-9 knockdown sponge configuration is specific.

We do have concern that the overexpression of small RNAs may, by itself, have certain cellular and organismic effects that may not depend solely on the specific sequences used. For example, it is possible that overexpression of any exogenous DNA fragment (i.e., GFP, ion channels, noncoding RNAs) in a hemostatic biological system may have some unwanted effects, such as attenuating the transcription and translation machineries of other endogenous genes, changing a cell’s physiological properties. However, with the extensive series of controls described above, we concluded that the nonspecific effects of miR-9 overexpression or knockdown configurations, if any, could contribute little, if at all, to the biological effect we observed. In addition, we are fully aware of the potential off-target issue associated with the shRNA knockdown approach (32). Our Diap1 overexpression and knockdown assays showed that Diap1 regulates dendritogenesis, synapse formation, and fear-related learning and memory. With both constant and temporally restricted gain- and loss-of-function approaches targeting two related endogenous components (Diap1 and miR-9) pointing to the same conclusion, we are confident that overexpression of Diap1 starting from E14.5 in PL cortical neurons altered synaptic formation (**P < 0.01, Kruskal–Wallis test; CTL n = 14; miR-9 n = 17 neurons; miR-9AS n = 16 neurons; Diap1 n = 14 neurons). Shown are examples of a dendrite stained with synaptic markers. (Scale bar, 5 μm.) Presynaptic terminals were identified by staining for synapsin (Syn, red). Postsynaptic structures were identified by staining for postsynaptic density protein 95 (PSD95, blue). Synapses were identified by the close proximity of pre- and postsynaptic elements (≤0.5 μm, arrowheads in the bottom images). (Lower) 3D construction of PSD-95 (blue) and presynaptic synapsin (red) identified using the “create spots” algorithm in Imaris. Insets show boxed areas at high magnification. (Scale bar, 1 μm.) (D, Left) Quantification of the number of protrusions per 10 μm of dendrites. (Scale bar, 2 μm.) (Right) Overexpression or knockdown of miR-9 or overexpression of Diap1 in PL cortical neurons affected dendritic spine formation (**P < 0.01, Mann–Whitney test; CTL n = 28 neurons; miR-9 n = 42 neurons; miR-9AS n = 38 neurons; Diap1 n = 19 neurons).
The constructs of the miR-9 overexpression lentiviral vector were built as described in our previous study (20) using Diap1 and Pfn2 3’ UTR fragments with predicted miR-9-binding sites that were inserted immediately downstream of the luciferase reporter vector, pS0. To regulate the timing of miR-9, Diap1, and Pfn2 expression, a miR-9-2 premiRNA fragment, miR-9 bulged antisense oligo-duplex, Diap1 shRNA, or Pfn2 shRNA was inserted downstream of a p53-driven U6 promoter of tetON plasmids pSingle-Ts-shRNA and pLenti7.3. To build a miR-9 reporter construct, a short-lived eGFP, d2eGFP, was inserted into a pCAG-RFP-CMV vector to create the pCAG-RFP-CMV-d2eGFP construct. Three miR-9-binding sites then were inserted immediately downstream of d2eGFP to create the pCAG-RFP-CMV-d2eGFP-miR-9 AM reporter vector. To overexpress Diap1, Diap1 was PCR amplified from the MGC cDNA clone (Thermo Scientific) and subcloned to a modified plasmid, FUIGW. To test the specificity of the binding sites then were inserted immediately downstream of d2eGFP to create the pCAG-RFP-CMV-d2eGFP-miR-9 AM reporter vector. To overexpress Diap1, Diap1 was PCR amplified from the MGC cDNA clone (Thermo Scientific) and subcloned to a modified plasmid, FUIGW. To test the specificity of the miR-9 overexpression and miR-9 knockdown constructs, we built miR-9SC and miR-9ASMut (Fig. S9) for additional details.

Subjects. For in utero electroperoration experiments, E14 ICR CD-2 mice were used (Charles River Laboratories). All behavior testing was conducted when the mice were 5–6 wk old, during the light phase in illuminated testing rooms following protocols approved by the Institutional Animal Care and Use Committee of the University of California, Los Angeles.

ISH. ISH assays were carried out as described by Zhao et al. (20). See SI Materials and Methods for additional details.

Western Blot Analysis. The whole cerebral cortex was lysed in 0.7% Nonidet P-40 lysis buffer with 1 mM phenylmethylsulfonyl fluoride (PFSF), 10 mM DTT, and a mixture of protease inhibitors. The antibodies used for Western blotting were rabbit anti-Diap1 (1:1,000, Abcam); mouse anti-Pfn2 antibody (1:500, Santa Cruz); mouse anti-Tbr1 (1:2,000, Abnova); mouse anti-Arpg1a (1:1,000, Abnova); mouse anti-WAVE2 (1:1,000, Cell Signaling); rabbit anti-GEF-H1 (Arhgef2) (1:1,000, rabbit anti-PAK4 antibody (1:1,000), and mouse anti-MYPT1 (Ppp1r12a) (1:1,000, BD Bioscience); goat anti-Arp1c (1:1,000, Abnova); mouse anti-j-actin (1:1,000, Sigma); and mouse anti-GAPDH (1:4,000, Genetex).

Immunohistochemistry. The primary antibodies used in this study were rabbit anti-T-box brain 1 antibody (Tbr1) (1:2,000; EMD Millipore); rabbit anti-T-box

Fig. 3. Coexpression of Diap1 in miR-9-overexpressing cortical neurons normalizes the number of dendritic branches and synaptic puncta and the increased fear memory elicited by the overexpression of miR-9. (A and B) Coexpression of Diap1 and miR-9 in cortical neurons rescued the dendritogenesis and behavioral phenotypes. In agreement with emerging findings on the important role of noncoding RNAs in rapidly shaping phenotypic outcomes in response to current environmental demands, our findings suggest that perturbation of miR-9 activity during early-life events can elicit sensitization toward subsequent stressors later in life and that this sensitization is manifested as enhanced fear-related learning in adulthood.

Materials and Methods

Plasmid Constructions. The constructs of the miR-9 overexpression lentiviral plasmid and the miR-9 antisense sponge were built as described in our previous study (20) using Diap1 and Pfn2 3’ UTR fragments with predicted miR-9-binding sites that were inserted immediately downstream of the luciferase reporter vector, pS0. To regulate the timing of miR-9, Diap1, and Pfn2 expression, a miR-9-2 premiRNA fragment, miR-9 bulged antisense oligo-duplex, Diap1 shRNA, or Pfn2 shRNA was inserted downstream of a p53-driven U6 promoter of tetON plasmids pSingle-Ts-shRNA and pLenti7.3. To build a miR-9 reporter construct, a short-lived eGFP, d2eGFP, was inserted into a pCAG-RFP-CMV vector to create the pCAG-RFP-CMV-d2eGFP construct. Three miR-9-binding sites then were inserted immediately downstream of d2eGFP to create the pCAG-RFP-CMV-d2eGFP-miR-9 AM reporter vector. To overexpress Diap1, Diap1 was PCR amplified from the MGC cDNA clone (Thermo Scientific) and subcloned to a modified plasmid, FUIGW. To test the specificity of the binding sites then were inserted immediately downstream of d2eGFP to create the pCAG-RFP-CMV-d2eGFP-miR-9 AM reporter vector. To overexpress Diap1, Diap1 was PCR amplified from the MGC cDNA clone (Thermo Scientific) and subcloned to a modified plasmid, FUIGW. To test the specificity of the miR-9 overexpression and miR-9 knockdown constructs, we built miR-9SC and miR-9ASMut (Fig. S9). See SI Materials and Methods for additional details.

Subjects. For in utero electroperoration experiments, E14 ICR CD-1 mice were used (Charles River Laboratories). All behavior testing was conducted when the mice were 5–6 wk old, during the light phase in illuminated testing rooms following protocols approved by the Institutional Animal Care and Use Committee of the University of California, Los Angeles.

ISH. ISH assays were carried out as described by Zhao et al. (20). See SI Materials and Methods for additional details.

Western Blot Analysis. The whole cerebral cortex was lysed in 0.7% Nonidet P-40 lysis buffer with 1 mM phenylmethylsulfonyl fluoride (PFSF), 10 mM DTT, and a mixture of protease inhibitors. The antibodies used for Western blotting were rabbit anti-Diap1 (1:1,000, Abcam); mouse anti-Pfn2 antibody (1:500, Santa Cruz); mouse anti-j-actin (1:1,000, Sigma); rabbit anti-WAVE2 (1:1,000, Cell Signaling); rabbit anti-GEF-H1 (Arhgef2) (1:1,000, rabbit anti-PAK4 antibody (1:1,000), and mouse anti-MYPT1 (Ppp1r12a) (1:1,000, BD Bioscience); goat anti-Arp1c (1:1,000, Abnova); mouse anti-j-actin (1:1,000, Sigma); and mouse anti-GAPDH (1:4,000, Genetex).

Immunohistochemistry. The primary antibodies used in this study were rabbit anti-T-box brain 1 antibody (Tbr1) (1:2,000; EMD Millipore); rabbit anti-T-box

function of Diap1 in regulating dendritogenesis, synaptic formation, and fear-related learning and memory (Fig. 3). It remains to be determined whether indirect effects of the overexpression or knockdown of miR-9 or Diap1 on their neighborhood neurons contribute to the neuronal morphology and behavioral phenotypes. In agreement with emerging findings on the important role of noncoding RNAs in rapidly shaping phenotypic outcomes in response to current environmental demands, our findings suggest that perturbation of miR-9 activity during early-life events can elicit sensitization toward subsequent stressors later in life and that this sensitization is manifested as enhanced fear-related learning in adulthood.
brain 2 antibody (Tbr2) (1:2,000; Millipore); mouse anti-Pax6 antibody (1:500; The Developmental Studies Hybridoma Bank); rabbit anti-GFP antibody (1:200; MBL); rabbit anti-brain-derived neurotrophic factor and mouse anti-synapsin antibodies (1:1,000; Synaptic Systems); guinea pig anti-PSD95 (1:1,000; Synaptic Systems); and guinea pig anti-synapsin (1:1,000; Synaptic Systems). Images were processed with software Imaris (Bitplane).

miRNA TaqMan-qPCR. Total RNAs were extracted from the whole cerebral cortex of E14–P40 CD-1 mice or from in vitro-cultured cortical neurons. RT-qPCR and qPCR were described in our previous study (20).

Luciferase Assay. Details are given in Si Materials and Methods.

Primary Neuronal Transformation. Details are given in Si Materials and Methods.

Administration of Dox. Dox was administered in the animal’s drinking water at a concentration of 2 mg/mL (33).

In Utero Electroporation. The in utero electroporation procedure was carried out as described by Zhao et al. (20). We electroporated the plasmid to a single side of the prelimbic cortex.

Dendrite, Dendritic Spine, and Synaptic Puncta Imaging and Image Processes. The entire profile of each GFP-labeled neuron to be quantified was acquired using a 25× oil immersion objective without optical zoom, NA 0.80. The dendritic branch point is defined as the number of branch bifurcations in the shortest path from the beginning point to a given point in the dendritic graph. Dendrites of individual neurons for each condition were drawn manually and calculated using the Filament function of Imaris software. The dendritic spines were acquired using a 63× oil immersion objective lens, NA 1.40 (Planapo; Zeiss). The spines were analyzed as described by Swanger and Basell (34). The synaptic puncta were acquired using a 100× oil immersion objective lens, NA 1.40 (Planapo; Zeiss) at a resolution of 1.024×512 pixels. A z-step of 0.2-μm intervals was used. The pre- and postynaptic puncta were analyzed as described by Fogarty et al. (35). See Si Materials and Methods for additional details.

Fear Conditioning. Cued fear was induced with three pairings of a 2-min, 80-dB, white-noise conditional stimulus (CS) coterminating with a 2-s, 0.4-mA foot shock followed by a 2-min intertrial interval (ITI). Two days after fear acquisition all mice were tested in context B. After a 2-min acclimation, freezing was assessed during two 2-min CS presentations see Si Materials and Methods for additional details.

Pain Sensitivity Assays. We assessed the pain processing by analyzing shaking reactivity during the shock in fear conditioning. The unconditioned response to shock was examined by a motion index of each animal during footshock (Video Freeze Software; Med Associates). Histology. At the completion of behavioral testing (for all experiments), the brains were fixed and sectioned. The mice with a majority GFP- or RFP-labeled cells in the PL of the mPFC were used for behavior analysis.

Statistical Analysis. All statistical significance was assessed using an alpha level of 0.05. Statistical analysis was performed using SAS 9.2 and/or GraphPad Prism software.

ACKNOWLEDGMENTS. We thank the Intellectual and Developmental Disabilities Research Center (IDDRC) at the University of California, Los Angeles (UCLA) supported by NIH Grant U54HD087101-02, Donna Crandall of the UCLA-IDDRC Media Core for help with the figures, and Rowan Tweedale for help with the artwork. This work was supported by Basic Research Program of China Grants 2012CB966303, 2014CB860200, and 31471009 (to Y.E.S. and Q.L.). Q.L. is the recipient of the 2009 Richard Heyler Award and a 2012 Brain & Behavior Research Foundation NARSAD Young Investigator Grant. J.W. is the recipient of Australian Research Council Discovery Early Career Researcher Award (DE170100112. Funding was also provided by NIH/National Institute of Mental Health (NIMH) Grant R01MH084095 and by Chinese National Natural Science Foundation Grants 31271371, 91319309, 2016YFA0500801, and 31620103904 (to Y.E.S.); by NIMH Grant R01MH62122 (to M.S.F.); and by Australian National Health and Medical Research Council Grant GNT069570 (to T.W.B.).