Compliance with therapeutic guidelines in Radiation Therapy Oncology Group prospective gastrointestinal clinical trials

Christopher G. Willett, Duke University
Jennifer Moughan, RTOG Statistical Center
Elizabeth O’Meara, RTOG Radiation Therapy Quality Assurance Department
James M. Galvin, RTOG Radiation Therapy Quality Assurance Department
Christopher H. Crane, Univ Texas MD Anderson Canc Ctr
Kathryn Winter, RTOG Statistical Center
Denise Manfredi, RTOG Radiation Therapy Quality Assurance Department
Tyvin. A Rich, University of Virginia
Rachel Rabinovitch, University of Colorado
Robert Lustig, Hospital of the University of Pennsylvania

Only first 10 authors above; see publication for full author list.

Journal Title: Radiotherapy and Oncology
Volume: Volume 105, Number 1
Publisher: Elsevier | 2012-10-01, Pages 9-13
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.radonc.2012.09.011
Permanent URL: https://pid.emory.edu/ark:/25593/s7r2t

Final published version: http://dx.doi.org/10.1016/j.radonc.2012.09.011

Copyright information:
© 2011 Elsevier Ireland Ltd. All rights reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommerical-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Accessed April 4, 2020 7:55 PM EDT
Compliance with Therapeutic Guidelines in Radiation Therapy Oncology Group Prospective Gastrointestinal Clinical Trials

Christopher G. Willett, MD1, Jennifer Moughan, MS2, Elizabeth O'Meara, BS, CCRP, RT (R) (T), James M. Galvin, D. Sc.3, Christopher H. Crane, MD4, Kathryn Winter, MS2, Denise Manfredi, R.T.(T.)5, Tyvin A. Rich, MD5, Rachel Rabinovitch, MD6, Robert Lustig, MD7, Mitchell Machtay, MD8, and Walter J Curran Jr, MD9

1Department of Radiation Oncology, Duke University, Durham, NC
2RTOG Statistical Center, Philadelphia, PA
3RTOG Radiation Therapy Quality Assurance Department, Philadelphia, PA
4Department of Radiation and Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
5Department of Radiation Oncology, University of Virginia, Charlottesville, VA
6Department of Radiation Oncology, University of Colorado, Aurora, CO
7Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
8University Hospitals/Seidman Cancer Center and Case Western Reserve University, Cleveland, OH
9Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA

Abstract

Background—This report analyzes the adherence to radiation therapy protocol guidelines in contemporary Radiation Therapy Oncology Group (RTOG) gastrointestinal trials. We aim to provide insight into current standards and compliance of radiation therapy field design and administration.

Methods—From 1994 to 2006, the Gastrointestinal Cancer Committee of the RTOG initiated and completed 15 phase I-III clinical trials utilizing radiation therapy in the multimodality treatment of gastrointestinal cancers. In each protocol, details for planning and executing radiation therapy were outlined and each protocol contained scoring criteria for these components of radiation therapy, characterized according to per-protocol, variation acceptable and deviation...
Results—Radiation therapy planning and implementation was reviewed in 2,309 of 2,312 (99.9%) patients. The mean rate of compliance over all for the 15 protocols was 65% (total of the 2,309 analyzed patients). The mean variation acceptable rate was 21% whereas the mean deviation unacceptable rate was 5%. The mean “other” rate (no RT given or incomplete RT due to death, progression or refusal) was 8%. Two of the 15 trials (13%) had deviation unacceptable rates > 10%. In four studies incorporating pre-treatment review of radiation therapy planning and treatment, compliance with protocol therapy was enhanced.

Conclusion—The fidelity of radiation planning and execution detailed in protocol to actual therapy is heterogeneous, with a mean per-protocol rate of 65%. As clinical trials evolve, available technology should permit efficient pre-treatment review processes, thus facilitating compliance to protocol therapy. These analyses should also permit prospective analysis of outcome measures by compliance to therapy.

Background

A key factor in the successful outcomes of oncology patients is the quality of therapeutic intervention. In radiation therapy, critical elements in optimizing outcomes include accurate definition of target and normal tissues, radiation field design, technique, dose and proper execution of prescribed treatments. Increasing data is becoming available evaluating the technical quality and administration of radiation therapy which should facilitate objective assessment of practice standards and better define this factor to unsuccessful therapeutic outcomes (1-9).

The National Cancer Institute (NCI)-sponsored cooperative group trials employing radiation therapy provide a unique resource of information by assessing the quality and fidelity of radiation therapy. Specifically, there is strict adherence to protocol guidelines of radiation therapy through evaluation of multiple factors including individual field design, dose, technique, and administration. With increasing integration of radiation therapy in the multimodality management of cancer patients, there is imperative to define the quality measures that are associated with improved patient outcomes. This is especially critical because radiation therapy has become progressively sophisticated, potentially including intensity-modulated radiation therapy, radiosurgery, cranial and extra-cranial stereotactic radiation therapy, image guidance, and particle therapy.

The current report analyzes the adherence to radiation therapy protocol guidelines in recent Radiation Therapy Oncology Group (RTOG) gastrointestinal cancer trials to provide insight into current standards and compliance of radiation therapy field design and administration.

Methods

From 1994 to 2006, the Gastrointestinal Cancer Committee of the RTOG initiated and completed 15 phase I, II or III clinical trials utilizing radiation therapy in the multimodality treatment of gastrointestinal cancers (15-30). In each protocol, details for planning and executing radiation therapy were described in detail, including simulation, use of simulation
films and port film verification, clinical target volume definition, critical normal organ identification, time-dose fraction schemes, acceptable and unacceptable treatment interruptions, treatment beam energy, field arrangement, initial and supplemental field design parameters, criteria for shielding normal organs and tissues, requirements for dosimetric planning, and range of acceptable dose heterogeneity. Each protocol provided criteria for scoring these various components of radiation therapy as per-protocol, variation acceptable and deviation unacceptable (www.rtog.org). In brief, the per protocol prescription is used to encourage institutions to devise treatment plans that are as tight as possible in terms of dose conformality for PTV coverage. The variation acceptable compliance criterion is given to allow leeway for more difficult planning situations. In each protocol, the variation acceptable dose limits should be identified as being less desirable but allowed in situations where per protocol limits could not be met. It is important to point out that the variation acceptable should not be used for misinterpreting the statement of the prescription. If an institution applies the prescription incorrectly, a third category deviation unacceptable is used. This approach provides a mechanism for stating the prescription exactly without variation. Review of treatment planning and its execution were performed in all studies following completion of therapy by the principal investigator or co-investigators in collaboration with the dosimetry/physics group of RTOG.

During the time period of these studies, treatment planning became increasingly complex, evolving from two-dimensional techniques (relying primarily on bony anatomy on orthogonal films) to CT-based three-dimensional conformational techniques, and more recently, to intensity-modulated radiation therapy (IMRT) techniques. For all 15 trials, the radiation planning and dosimetry data were reviewed and scored after all treatment was completed. Because of application of radiation therapy in new disease settings such as gastric cancer or implementation of new techniques, four studies incorporated a prospective review of treatment planning prior to initiation of therapy (RTOG 0114, RTOG 0438, RTOG 0529, and RTOG 0822). In these studies, images and treatment planning details were prospectively reviewed and feedback provided to the treating radiation oncologists prior to initiation of therapy. In the IMRT studies (RTOG 0529 and RTOG 0822), institutional credentialing of IMRT was also required before patient registration. One trial (RTOG 9704) requested pre-treatment imaging and treatment planning information for prospective review. However, this was generally not performed because materials required for review did not arrive within the time frame of scheduled therapy.

Results

Review of radiation therapy planning and its implementation was carried out for 2,309 of 2,312 (99.9%) eligible patients for 15 phase I to III RTOG gastrointestinal cancer protocols (Table 1). Overall, the mean per-protocol rate of the 2,309 analyzed patients was 65%. The mean variation acceptable and deviation unacceptable rates were 21% and 5%, respectively. The mean “other” rate (no RT given or incomplete RT due to death, progression or refusal) was 8%. Across the 15 protocols, the per-protocol rate ranged from 37% to 88%, the variation acceptable rate ranged from 0% to 39%, and the deviation unacceptable rate varied from 0% to 42%. Two of the 15 (13%) trials had deviation unacceptable rates > 10%.
malignancies for which the RTOG has conducted numerous studies, such as esophageal and pancreatic cancer, the deviation unacceptable rates were usually ≤5%.

Four trials (RTOG 0114, RTOG 0438, RTOG 0529 and RTOG 0822) included a preliminary review of radiation field design prior to initiation of therapy. In contrast to an earlier gastric trial (RTOG 9904) where the deviation unacceptable rate was 42%, this figure was 2% and 4% in RTOG 0114 (Table 1). In a study evaluating radiation dose escalation and hypofractionation using highly conformal radiation therapy in the treatment of hepatic metastases (RTOG 0438), the per-protocol rate was 87% (Table 1). In a trial assessing the feasibility of intensity modulated radiation therapy in anal cancer (RTOG 0529) 81% of 52 patients required revisions prior to treatment on initial submission and 46% required multiple resubmissions. Ultimately, there was a 6% deviation unacceptable rate in PTV small bowel scores in this trial and 0% in nodal scores. An 85% per-protocol rate was observed in another trial employing IMRT in the neoadjuvant treatment of rectal cancer patients (RTOG 0822).

On review of the three phase III trials (RTOG 9405, RTOG 9704, and RTOG 9811) and the most recent IMRT trial in anal cancer (RTOG 0529), unacceptable deviations were usually attributed to incorrect gross target volume (GTV) contouring or incorrect field design. Unacceptable deviations in dose or fractionation were uncommon.

Discussion

The results of this analysis demonstrate that a centralized review of radiation therapy techniques is feasible in multimodality gastrointestinal cancer cooperative group clinical trials. The fidelity of described protocol treatment to actual therapy is heterogeneous, with a mean per-protocol compliance rate of 65%. Two of 15 trials (13%) had deviation unacceptable rates > 10% (detailed above).

Not only did the sophistication and multimodality character of the clinical trials evolve over the time period of this study but the treatment planning and administration of radiation therapy became increasingly complex as well. Early clinical trials were based on simple and reproducible 2-D treatment planning techniques and orthogonal x-rays. With time, radiation therapy planning utilized CT-based three-dimensional conformal techniques and more recent trials have employed IMRT methods. Without confidence that the actual radiation therapy planning and delivery is accurate and successfully implemented, results of contemporary and future studies will be potentially skewed. Thus, it is imperative that measures are taken to facilitate the accurate translation of protocol therapy into daily clinical practice.

First, clinical trials need to be written clearly, simply and succinctly to ensure understanding of complex treatments and techniques by caregivers with diverse background of treatment familiarity and sophistication.

As the data from this study has demonstrated, another method to maximize compliance to protocol therapy is pre-treatment review. In this analysis, the 4 studies including pre-treatment review had high levels of compliance. This finding is consistent with the results of Intergroup study 0116, an adjuvant trial for gastric cancer, where modification of pre-
treatment radiation therapy fields enhanced compliance to protocol therapy (29). For many ongoing and future studies, the RTOG has introduced the use of a rapid and efficient prospective method of review via the RTOG Head Quarter's Radiation Therapy Quality Assurance, Image-Guided Therapy Quality Assurance Center (ITC) and the Radiological Physics Center (RPC) (www.rtog.org).

Other steps that would be expected to facilitate treatment compliance include enhanced education of residents and other post-graduates, standardized atlases of critical radiologic anatomy tailored for radiation therapy and case examples. Some first reports recently demonstrated the benefit of using guidelines for target volume delineation in decreasing inter-observer variability, especially in breast cancer (10). One limitation of the current analysis is that it does not provide information on important clinical outcomes (e.g. toxicity or efficacy). It is reasonable to assume that non-compliant therapy results in poorer outcomes; however, there is scant evidence to support this relationship (1-9). In a secondary analysis of patients with advanced head and neck cancer treated in a large international phase III trial evaluating radiation therapy with concurrent cis-platin plus tirapazamine, radiation therapy quality was critically important on outcome of these patients (8). In head and neck patients who received at least 60 Gy, those with major deficiencies in their treatment plans (n = 87) had a markedly inferior outcome compared with those whose treatment was initially protocol compliant (n = 502): -2 years overall survival, 50% v 70%; hazard ratio (HR), 1.99; P < .001; and 2 years freedom from locoregional failure, 54% v 78%; HR, 2.37; P < .001, respectively. In gastrointestinal cancer, a recent analysis supports the notion that protocol compliance is associated with treatment outcomes. A secondary analysis of RTOG 9704 (a phase III trial adjuvant trial evaluating maintenance 5-fluorouracil or gemcitabine in resected pancreatic cancer patients receiving chemoradiation) demonstrated an effect of protocol compliance on patient outcomes (31). Specifically, the median survival for resected patients receiving postoperative chemoradiation per-protocol was 1.74 years versus 1.46 years (p=0.008) for patients treated with chemoradiation with variation acceptable or deviations unacceptable. In a multivariate analysis of factors of 359 patients with pancreatic head cancer correlating with survival, treatment arm, nodal status, and radiation therapy quality assurance (per-protocol versus variation acceptable and deviation unacceptable) were all found to be significant factors (Table 2). It is important to recognize that this is a secondary analysis and thus by definition is hypothesis-generating.

The heterogeneity of protocol compliance observed in this analysis is concerning. To enhance compliance, the EORTC compared the influence of a “dummy run” performed before the start of a trial with “the individual case review” done during the course of the trial in a breast cancer trial as well as the comparison between two “individual case reviews”, one done early and late of another breast trial (2,4). Both showed an improvement of the quality assurance measurements over time likely due to the quality assurance measures undertaken.

Not unexpectedly, the protocols in the current study with the highest compliance rates included a pre-treatment review process. Presently available technology should aid in efficient processes of pre-treatment review, thus facilitating compliance to protocol specific therapy as well as permit formal analyses of protocol compliance to treatment-related outcomes, including toxicity and disease-related outcomes.
However, although pre-treatment review can improve protocol compliance, it has not been demonstrated that this is the best way to achieve this result. Pre-treatment review is labor-intensive and the suggestion given above to first investigate methods for improving the clarity of the instructions contained in the protocol might also improve compliance. Another approach used for some RTOG protocols tries to reduce the overall case review effort with a two-step approach that uses a combination of pre-treatment review for a limited number of the initial patients registered by each institution and the timely review of all other patients. This approach can be used to amend, if necessary, the protocol based on lessons learned from the review process. The advantage of this approach is the development of a final protocol that is more universally applicable as it is implemented by a broad range of institutions around the world.

Conclusions
In gastrointestinal cancer clinical trials, the fidelity of radiation planning and implementation detailed in the protocol to actual therapy is heterogeneous, with a mean per-protocol rate of 65%. The mean variation acceptable and deviation unacceptable rates were 21% and 5%, respectively. Two of 15 trials (13%) demonstrated deviation unacceptable rates > 10%. As clinical trials evolve, available technology should aid efficient pre-treatment review processes, thus facilitating compliance to protocol specific therapy. These analyses should also permit prospective and timely analysis of outcome measures by compliance to therapy.

Acknowledgments
This manuscript was supported by RTOG U10 CA21661, CCOP U10 CA37422, and ATC U24 CA 81647 grants from the National Cancer Institute (NCI).

References

24. Crane CH, Winter K, Regine WF, et al. Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally...

Table 1

Radiation Therapy Compliance

<table>
<thead>
<tr>
<th>Disease Site</th>
<th>RTOG Trial (reference #)</th>
<th>Study Design</th>
<th>Pt. #</th>
<th>Cases Reviewed #</th>
<th>Per-Protocol (%)</th>
<th>Variation Acceptable (%)</th>
<th>Deviation Unacceptable (%)</th>
<th>Other (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0113 (16)</td>
<td>Phase II Randomized Trial of Two Nonoperative Regimens (A, B) of Induction Chemo Followed by ChemoRT with Localized Carcinoma of the Esophagus</td>
<td>76</td>
<td>A: 39</td>
<td>B: 37</td>
<td>A: 46</td>
<td>B: 70</td>
<td>A: 35</td>
</tr>
<tr>
<td></td>
<td>0246 (17)</td>
<td>Phase II Study of a Paclitaxel-Based ChemoRT Regimen With Selective Surgical Salvage for Resectable Locoregionally Advanced Esophageal Cancer</td>
<td>41</td>
<td>39</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastric Trials</td>
<td>9904 (18)</td>
<td>Phase II Trial of Preoperative ChemoRT in Patients with Localized Gastric Adenocarcinoma</td>
<td>43</td>
<td>43</td>
<td>37</td>
<td>7</td>
<td>42</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>0114# (19)</td>
<td>Randomized Phase II Trial Evaluating Two Paclitaxel and Cisplatin-Containing</td>
<td>73</td>
<td>A: 28</td>
<td>B: 45</td>
<td>A: 64</td>
<td>B: 53</td>
<td>A: 11</td>
</tr>
<tr>
<td>Disease Site</td>
<td>RTOG Trial reference #</td>
<td>Study Design</td>
<td>Pt. #</td>
<td>Cases Reviewed #</td>
<td>Per-Protocol (%)</td>
<td>Variation Acceptable (%)</td>
<td>Deviation Unacceptable (%)</td>
<td>Other (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>--</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Liver Trial</td>
<td>0438# (20)</td>
<td>Phase I Study of Tightly Conformal RT for Liver Metastases</td>
<td>23</td>
<td>23</td>
<td>87.6</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9704 (21)</td>
<td>Phase III Study of Pre and Post Chemoradiotherapy 5-FU (A) vs. Pre and Post</td>
<td>451</td>
<td>A: 230, B: 221</td>
<td></td>
<td>A: 51, B: 45</td>
<td>A: 36, B: 43</td>
<td>A: 8, B: 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemoradiotherapy Gemcitabine (B) for Postoperative Adjuvant Treatment of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resected Pancreatic Adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreas Trials</td>
<td>9812 (22)</td>
<td>Phase II Trial of External RT (50.4 Gy) and Weekly Paclitaxel (Taxol) for</td>
<td>109</td>
<td>109</td>
<td>88</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Metastatic, Unresectable Pancreatic Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0020 (23)</td>
<td>Randomized Phase II Trial of Weekly Gemcitabine, Paclitaxel and External RT</td>
<td>185</td>
<td>A: 91, B: 94</td>
<td></td>
<td>A: 60, B: 57</td>
<td>A: 33, B: 30</td>
<td>A: 7, B: 10</td>
</tr>
<tr>
<td>Disease Site</td>
<td>RTOG Trial (reference #)</td>
<td>Study Design</td>
<td>Pt. #</td>
<td>Cases Reviewed #</td>
<td>Per-Protocol (%)</td>
<td>Variation Acceptable (%)</td>
<td>Deviation Unacceptable (%)</td>
<td>Other † (%)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
<td>--</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Rectal Cancer Trials</td>
<td>0411 (24)</td>
<td>Phase II Study of Bevacizumab with Concurrent Capecitabine and RT Followed by Maintenance Gemcitabine and Bevacizumab for Locally Advanced Pancreatic Cancer</td>
<td>82</td>
<td>82</td>
<td>73</td>
<td>7</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Rectal Cancer Trials</td>
<td>0012 (25)</td>
<td>Randomized Phase II Trial of Preoperative Combined Modality Chemoradiation (A, B) for Distal Rectal Cancer</td>
<td>103</td>
<td>A:50 B:33</td>
<td>A: 72 B: 77</td>
<td>A: 16 B: 21</td>
<td>A: 4 B: 2</td>
<td>A: 8 B: 0</td>
</tr>
<tr>
<td>Rectal Cancer Trials</td>
<td>0247 (26)</td>
<td>Randomized Phase II Trial of Neoadjuvant Combined Modality Therapy (A, B) for Locally Advanced Rectal Cancer</td>
<td>139</td>
<td>A: 70 B: 69</td>
<td>A: 70 B: 67</td>
<td>A: 17 B: 26</td>
<td>A: 1 B: 1</td>
<td>A: 11 B: 6</td>
</tr>
<tr>
<td>Rectal Cancer Trials</td>
<td>0822# (27)</td>
<td>Phase II Evaluation of Preoperative Chemoradiation utilizing IMRT in Combination with Capecitabine and Oxaliplatin for Patients with Locally Advanced Rectal Cancer</td>
<td>68</td>
<td>68</td>
<td>85</td>
<td>7</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Anal Cancer Trials</td>
<td>9811 (28)</td>
<td>Phase III Trial of Fluorouracil, Mitomycin and RT (A) vs. Fluorouracil, Cisplatin and RT (B) for</td>
<td>649</td>
<td>A: 325 B: 324</td>
<td>A: 68 B: 69</td>
<td>A: 22 B: 18</td>
<td>A: 6 B: 8</td>
<td>A: 3 B: 6</td>
</tr>
<tr>
<td>Disease Site</td>
<td>RTOG Trial reference #</td>
<td>Study Design</td>
<td>Pt. #</td>
<td>Cases Reviewed #</td>
<td>Per-Protocol (%)</td>
<td>Variation Acceptable (%)</td>
<td>Deviation Unacceptable (%)</td>
<td>Other † (%)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------</td>
<td>---</td>
<td>-------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Carcinoma of the Anal Canal</td>
<td>0529# (29)</td>
<td>Phase II Evaluation of Dose-Painted IMRT in Combination with 5-Fluorouracil and Mitomycin-C for Reduction of Acute Morbidity in Carcinoma of the Anal Canal</td>
<td>52</td>
<td>52</td>
<td>85$^\circ$</td>
<td>13</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2312</td>
<td>2309</td>
<td>65</td>
<td>21</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Abbreviations: RT, radiation therapy; chemo, chemotherapy; chemoRT, chemoradiation; IMRT, Intensity Modulated Radiation Therapy.

† Other - no RT given or incomplete RT: death, progression or refusal

$^\circ$ Tumor volume contouring score

$^\circ$ Planning Target Volume (PTV) anal score

$^\#$: Trials undergoing pre-treatment review
<table>
<thead>
<tr>
<th>Adjustment Variables</th>
<th>Comparison</th>
<th>Adjusted HR</th>
<th>p-value<sup>‡</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Gemcitabine vs. 5-FU</td>
<td>0.79 (0.62-0.99)</td>
<td>0.043</td>
</tr>
<tr>
<td>Nodal Involvement</td>
<td>No vs. Yes</td>
<td>1.47 (1.13-1.91)</td>
<td>0.0036</td>
</tr>
<tr>
<td>Tumor Diameter</td>
<td><3 vs. ≥ 3cm</td>
<td>1.25 (0.98-1.59)</td>
<td>0.070</td>
</tr>
<tr>
<td>Surgical Margin Status</td>
<td>Negative</td>
<td>Ref level</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>1.07 (0.82-1.40)</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>0.94 (0.69-1.27)</td>
<td>0.68</td>
</tr>
<tr>
<td>RT QA Score</td>
<td>< PP vs. PP</td>
<td>0.75 (0.60-0.95)</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Abbreviations: 5-FU = fluorouracil; HR = hazard ratio; CI = confidence interval.

‡ p value from chi-square test using the Cox proportional hazards model.