
Susu M Zughaier, Emory University
Shanta M. Zimmer, University of Georgia
Anup Datta, University of Georgia
Russell W. Carlson, University of Georgia
David S Stephens, Emory University

Journal Title: Infection and Immunity
Volume: Volume 74, Number 5
Publisher: American Society for Microbiology | 2006-05-01, Pages 3077-3077
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1128/IAI.74.5.3077.2006
Permanent URL: https://pid.emory.edu/ark:/25593/s7hcb

Final published version: http://dx.doi.org/10.1128/IAI.74.5.3077.2006

Copyright information:
© 2005, American Society for Microbiology. All Rights Reserved.

Accessed March 1, 2020 12:20 PM EST
ERRATUM

Differential Induction of the Toll-Like Receptor 4–MyD88-Dependent and -Independent Signaling Pathways by Endotoxins

Susu M. Zughaier, Shanta M. Zimmer, Anup Datta, Russell W. Carlson, and David S. Stephens

Division of Infectious Diseases, Department of Medicine, and Department of Microbiology and Immunology, Emory University School of Medicine, and Laboratories of Microbial Pathogenesis, Department of Veterans Affairs Medical Center, Atlanta, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia

Volume 73, no. 5, p. 2940–2950, 2005. Page 2940, column 2, lines 4 and 5: “(1, 23, 36)” should read “(1a, 23, 36).”

Page 2941, Table 1: Footnote a should read “The published lipid A structures of these endotoxins showed that meningococcal and V. cholerae lipid A is a symmetrical hexa-acylated structure (6a, 19a), that E. coli lipid A is an asymmetrical hexa-acylated structure (1b, 7a), that Klebsiella pneumoniae, Salmonella serovar Typhimurium, and Salmonella serovar Minnesota lipid A is an asymmetrical hepta-acylated structure (19, 21a, 39a), that Pseudomonas aeruginosa lipid A is an asymmetrical penta-acylated structure (8a), and that Serratia marcescens lipid A is an asymmetrical hexa-acylated structure (1).”

Page 2949: The following references should be added. Because of these additions, original reference 1 becomes reference 1a.