Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS

Graphical Abstract

Highlights
- The Hsc70-4/HSPA8 chaperone is post-transcriptionally reduced in ALS models
- ALS-associated mutant TDP-43 inhibits hsc70-4 mRNA translation via sequestration
- TDP-43 impairs the synaptic CSP/Hsc70-4 chaperone complex impacting dynamin

Authors
Alyssa N. Coyne, Ileana Lorenzini, Ching-Chieh Chou, ..., Wilfried Rossoll, Rita Sattler, Daniela C. Zarnescu

Correspondence
zarnescu@email.arizona.edu

In Brief
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by synaptic failure. Coyne et al. show that in multiple models of ALS, ranging from Drosophila to mice to patient-derived motor neurons, deficits in synaptic vesicle cycling can be explained by dysregulation of the Hsc70-4/HSPA8 chaperone.
Post-transcriptional Inhibition of Hsc70-4/HSPA8 Expression Leads to Synaptic Vesicle Cycling Defects in Multiple Models of ALS

Alyssa N. Coyne,1,2 Ileana Lorenzini,4 Ching-Chieh Chou,5 Meaghan Torvund,2 Robert S. Rogers,6 Alexander Starr,4 Benjamin L. Zaepfel,1 Jennifer Levy,4 Jeffrey Johannesmeyer,1 Jacob C. Schwartz,7 Hiroshi Nishimune,6 Konrad Zinsmaier,1,2 Wilfried Rossoll,5 Rita Sattler,4 and Daniela C. Zarnescu1,2,3,8,*

1Department of Molecular and Cellular Biology
2Department of Neuroscience
3Department of Neurology
University of Arizona, Tucson, AZ 85721, USA
4Department of Neurobiology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
5Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
6Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
7Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
8Lead Contact
*Correspondence: zarnescu@email.arizona.edu
https://doi.org/10.1016/j.celrep.2017.09.028

SUMMARY

Amyotrophic lateral sclerosis (ALS) is a synaptopathy accompanied by the presence of cytoplasmic aggregates containing TDP-43, an RNA-binding protein linked to ~97% of ALS cases. Using a Drosophila model of ALS, we show that TDP-43 overexpression (OE) in motor neurons results in decreased expression of the Hsc70-4 chaperone at the neuromuscular junction (NMJ). Mechanistically, mutant TDP-43 sequesters hsc70-4 mRNA and impairs its translation. Expression of the Hsc70-4 ortholog, HSPA8, is also reduced in primary motor neurons and NMJs of mice expressing mutant TDP-43. Electrophysiology, imaging, and genetic interaction experiments reveal TDP-43-dependent defects in synaptic vesicle endocytosis. These deficits can be partially restored by OE of Hsc70-4, cysteine-string protein (Csp), or dynamin. This suggests that TDP-43 toxicity results in part from impaired activity of the synaptic CSP/Hsc70 chaperone complex impacting dynamin function. Finally, Hsc70-4/HSPA8 expression is also post-transcriptionally reduced in fly and human induced pluripotent stem cell (iPSC) C9orf72 models, suggesting a common disease pathomechanism.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease linked to several genes, including SOD1 (Rosen et al., 1993), TARDBP (TDP-43) (Kabashi et al., 2008; Sreedharan et al., 2008), FUS (Kwiatkowski et al., 2009; Vance et al., 2009), and C9orf72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011), suggesting the presence of multiple disease mechanisms (Robberecht and Philips, 2013). Synaptic degeneration is a culminating point in ALS, however, the molecular mechanisms that trigger this remain poorly understood (Gillingwater and Wishart, 2013).

With 2%–3% of ALS patients harboring mutations in TDP-43 (Kabashi et al., 2008; Neumann, 2009; Sreedharan et al., 2008; Van Deerlin et al., 2008) and ~97% of all ALS cases exhibiting TDP-43 pathology (Ling et al., 2013), TDP-43 is a common denominator in ALS. Thus, elucidating the mechanisms by which both wild-type and mutant TDP-43 cause neurodegeneration is essential to our understanding of ALS pathogenesis.

TDP-43 is a nucleo-cytoplasmic shuttling, RNA-binding protein containing a prion-like C-terminal domain where the majority of ALS-causing mutations cluster, causing an increase in TDP-43’s intrinsic propensity for aggregation (Johnson et al., 2009). TDP-43 was shown to bind UG-rich sequences and regulate the splicing of several transcripts encoding synaptic proteins (Polymenidou et al., 2011; Sephton et al., 2011; Tollervey et al., 2011). In addition, TDP-43 regulates the localization and translation of specific mRNAs (Alami et al., 2014; Coyne et al., 2014; Fallini et al., 2012). TDP-43 also associates with RNA stress granules (SGs), which sequester specific mRNAs, resulting in translation inhibition (Dewey et al., 2011; Kim et al., 2014; Liu-Yesucevitz et al., 2010; McDonald et al., 2011). TDP-43 has previously been shown to associate with human Hsc70 (HSPA8) in mammalian cells (Freibaum et al., 2010). Hsc70 proteins comprise a family of constitutive, ubiquitous molecular chaperones with roles in protein folding and degradation, stress response, endosomal microautophagy, and chaperone-mediated autophagy (Liu et al., 2012). Consistent with its role in proteostasis, HSPA8 has been implicated in neurodegeneration as it colocalizes with ubiquitin-positive inclusions in sporadic ALS (Watanabe et al., 2001). Among the multiple Hsc70 proteins in Drosophila (Palter et al., 1986; Perkins et al., 1990), the clathrin-uncoating ATPase Hsc70-4 has roles in synaptic vesicle
Hsc70-4 Protein and mRNA Form a Complex with TDP-43 in Motor Neurons In Vivo

To test whether TDP-43 associates with Hsc70-4, we performed immunoprecipitations (IPs) from Drosophila adults expressing TDP-43 in motor neurons (Figure 1A) followed by mass spectrometry (data not shown). We found that while Hsc70-4 associates with both wild-type TDP-43 (TDP-43WT) and ALS-associated mutant TDP-43 (TDP-43G298S; 22.9% and 30.1% sequence coverage, respectively), its interaction with TDP-43G298S is significantly stronger (Figure 1A). These results confirm that endogenous Hsc70-4 associates with human wild-type and mutant TDP-43 in Drosophila motor neurons.

To determine whether hsc70-4 mRNA is present in TDP-43 complexes, we performed RNA IPs (RIP) from Drosophila adults expressing TDP-43WT or TDP-43G298S in motor neurons followed by real-time qPCR. hsc70-4 mRNA was strongly enriched in TDP-43G298S while less was present in TDP-43WT complexes (Figure 1B).

It has been proposed that, under prolonged stress, TDP-43 may sequester its mRNA targets into insoluble complexes, thereby preventing their translation and normal function (Ramaswami et al., 2013). To test whether TDP-43 sequesters hsc70-4 mRNA, we performed subcellular fractionations from Drosophila larvae expressing TDP-43 in motor neurons. Using real-time qPCR, we found an enrichment of hsc70-4 mRNA in the insoluble fraction of animals expressing TDP-43G298S, but not TDP-43WT (Figure 1C), consistent with hsc70-4 mRNA sequestration specifically by TDP-43G298S. These data show that both Hsc70-4 protein and its cognate mRNA associate with TDP-43, albeit preferentially with TDP-43G298S.

OE of TDP-43G298S Inhibits the Translation of hsc70-4 mRNA

The sequestration of hsc70-4 mRNA by TDP-43G298S may impair its translation. To test this possibility, we performed polysome fractionations from adult Drosophila overexpressing TDP-43WT or TDP-43G298S in motor neurons. Using real-time qPCR, we found that TDP-43G298S OE resulted in a shift for hsc70-4 mRNA from actively translating polysomes to non-translated (ribonucleoprotein particle [RNP]) fractions, while TDP-43WT had no effect (Figures 1E and 1F). Given that no changes in overall hsc70-4 mRNA levels were detected in whole animals (Figure 1D), these data suggest that TDP-43G298S impairs the translation of hsc70-4 mRNA by sequestering it into insoluble RNPs. In contrast, TDP-43WT did not affect hsc70-4 mRNA translation, at least within the limits of sensitivity provided by this assay.

TDP-43 Expression Reduces Hsc70-4 Levels at the Larval NMJ in Drosophila

The translation inhibition of hsc70-4 mRNA by TDP-43G298S predicts that Hsc70-4 levels are reduced, which in turn may impair Hsc70-4’s function (Stricher et al., 2013; Uytterhoeven et al., 2015; Zinsmaier and Bronk, 2001). No changes in protein expression were found in extracts of whole larvae or dissected ventral nerve cords (VNCs) from animals overexpressing TDP-43WT or TDP-43G298S in motor neurons (Figures 1G, 1H, 1J, 1L-1N).
Figure 2. Hsc70/HSPA8 Expression Is Reduced in Mutant TDP-43-Expressing Mouse Primary Motor Neurons, at Synaptic Terminals of Mouse NMJs, and in TDP-43G298S Human iPSC Neurons

(A–D) Representative fluorescence images of cell bodies from primary motor neurons transfected with expression constructs for GFP (A–A’’’) or GFP-tagged TDP-43WT (B–B’’’), TDP-43Q331K (C–C’’’), or TDP-43M337V (D–D’’’), as indicated on the left. Antibodies and stains are indicated on the top.

(E–H) Representative fluorescence images of growth cones from primary motor neurons expressing GFP (E and E’) or GFP-tagged TDP-43WT (F and F’), TDP-43Q331K (G and G’), or TDP-43M337V (H and H’), as indicated on the left. Antibodies are indicated on the top.

(I and J) Quantification of fluorescent intensity (a.u.) of Hsc70 in the cell body (I) and growth cones (J).

(K and L) Epifluorescent images of mouse NMJs immunostained for Hsc70/HSPA8 (K’ and L’) and AChR (K’’ and L’’). Genotypes are indicated on the left and antibodies are indicated on the top.

(M) Quantification of Hsc70/HSPA8 intensity from NMJs.

(N) Confocal images of control and TDP-43G298S human iPSC motor neurons labeled with DAPI, the dendritic marker Map2, and Hsc70/HSPA8. Genotypes are indicated on the left and antibodies are indicated on the top.

(legend continued on next page)
OE of Disease-Associated Mutant TDP-43 Reduces HSPA8 Levels in Mouse Primary Motor Neurons

Having identified reduced synaptic expression of Hsc70-4 in the fly, we next asked if Hspa8 levels were also altered in a mammalian model of ALS. To evaluate Hspa8 levels, we transfected mouse primary motor neurons with GFP-tagged TDP-43WT, TDP-43G231K, TDP-43M337V, or GFP alone, and we performed immunostainings for HSPA8. OE of TDP-43 WT had no effect on HSPA8 levels in growth cones or cell bodies (p > 0.05; Figures 2B, 2F, 2I, and 2J). In contrast, TDP-43G231K or TDP-43M337V OE significantly reduced HSPA8 levels in growth cones (by 39% and 41%, respectively, p < 0.01; Figures 2G, 2H, and 2J) and cell bodies (12% decrease for TDP-43G231K, p < 0.05; Figures 2C and 2I; 33% decrease for TDP-43M337V, p < 0.001; Figures 2D and 2J). These data indicate that, similar to what was observed in the fly model, HSPA8 levels are reduced in mammalian primary motor neurons overexpressing disease-associated mutant TDP-43.

HSPA8 Expression Is Reduced at the NMJ in TDP-43G315T Mutant Mice

We next asked whether levels of HSPA8 are also reduced at NMJs of TDP-43 mutant mice. To address this, dissected mouse NMJs were immunostained for HSPA8 and postsynaptic acetylcholine receptors (AChRs). In comparison to controls, synaptic HSPA8 immunoreactivity at NMJs expressing TDP-43G315T (Węgorzewska et al., 2009) was decreased by 21% (p < 0.05; Figures 2K–2M). Taken together, these data indicate that disease-associated mutant TDP-43 reduces levels of HSPA8 at NMJs of both flies and mice.

HSPA8 Expression Is Reduced in TDP-43G2308S Human iPSC Motor Neurons

Next, we sought to determine if expression of HSPA8 was also altered in human iPSC-derived motor neurons harboring the TDP-43G2308S mutation. Immunofluorescence experiments showed a significant decrease in HSP8A expression in the soma and dendrites of TDP-43G2308S iPSC motor neurons compared to controls (Figures 2N and 2O). Notably, hspa8 mRNA expression was unchanged (Figure 2P), consistent with post-transcriptional regulation of HSPA8 expression, as in the fly.

Hsc70-4 OE Mitigates TDP-43-Mediated Toxicity in Flies

To determine whether the reduced levels of Hsc70-4 at NMJs contribute to the locomotor and lifespan defects induced by TDP-43 OE in flies (Coyne et al., 2014, 2015; Estes et al., 2011, 2013), we co-overexpressed Hsc70-4 with either TDP-43WT or TDP-43G2308S in motor neurons, and we found that it significantly improved locomotor function, as indicated by a faster turning time (see the Experimental Procedures; Figure 3A). Co-OE of Hsc70-4 also significantly increased lifespan from 33 to 45 days and from 28 to 55 days for TDP-43 WT and TDP-43G2308S animals, respectively (p < 0.001; Figures 3B and 3C). Notably, suppression of TDP-43 toxicity by Hsc70-4 was not due to a reduction in TDP-43 protein or mRNA levels (Figure S2).

As with TDP-43G2308S, Hsc70-4 also suppressed the locomotor dysfunction induced by OE of disease-associated TDP-43G315K or TDP-43M337V in Drosophila motor neurons (Figure S3C), which supports the notion that different C terminus mutations in TDP-43 employ similar mechanisms. Importantly, co-OE of the Hsc70-4-related protein Hsc70-3 or the Hsc70-interacting protein Hsp90 (Hsp83) had no effect on TDP-43-induced locomotor dysfunction (Figures S3D and S3E). Taken together, these findings suggest that a specific loss of synaptic Hsc70-4 activity underlies, at least in part, the toxic effects of wild-type or mutant TDP-43 OE in Drosophila motor neurons.

Hsc70-4 is known to act as a molecular chaperone and is also involved in endosomal microautophagy (Uytterhoeven et al., 2015; Zinsmayer, 2010). To determine whether OE of TDP-43 WT or TDP-43G2308S affects these functions, we co-overexpressed TDP-43 with chaperone-dead (Hsc70-4D10N) or microautophagy-dead (Hsc70-43KA) Hsc70-4 (Uytterhoeven et al., 2015). In contrast to the mitigating effect of Hsc70-4 WT, co-OE of either Hsc70-4D10N or Hsc70-43KA enhanced TDP-43 WT- (Figure S3A) and had no effect on TDP-43G2308S-induced locomotor dysfunction (Figure S3B). Since Hsc70-4D10N or Hsc70-43KA OE alone had no effect on locomotor activity (Figures S3A and S3B), these results suggest that TDP-43 compromises both the molecular chaperone and the endosomal microautophagy activities of Hsc70-4.

OE of TDP-43 in Motor Neurons Impairs SV Endocytosis

Given the various critical synaptic roles of Hsc70-4 in SVC, such as the uncoating of clathrin-coated SVs in cooperation with auxilin, maintaining SNARE complex assembly and dynamin oligomerization in cooperation with cysteine-string protein (Csp), and degradation of synaptic proteins by endosomal microautophagy (Bronk et al., 2001; Burgoyne and Morgan, 2015; Chang et al., 2002; Eisenberg and Greene, 2007; Uytterhoeven et al.,...
we hypothesized that the reduced synaptic levels of Hsc70-4 induced by wild-type and mutant TDP-43 may impair synaptic function.

We have previously shown that OE of wild-type or mutant TDP-43 decreases the number of synaptic boutons at larval NMJs (Coyne et al., 2014; Estes et al., 2013) and increases bouton size (Figures S4Q and S4R), similar to mutations that affect SV endocytosis (Verstreken et al., 2002). We did not observe a reduction in the number of active zones for neurotransmitter release per bouton area when TDP-43 was expressed in motor neurons (Figures S4A–S4H). Furthermore, TDP-43 OE in motor neurons did not alter the intensity or area occupied by Csp within synaptic boutons (Figures S4I–S4P), suggesting that the total number of SVs was within normal range.

To test whether wild-type or mutant TDP-43 OE in motor neurons affects synaptic transmission, we recorded spontaneous

Figure 3. TDP-43 Expression Results in Defects in SV Endocytosis that Are Suppressed by Hsc70-4 in a Variant-Dependent Manner
(A) Motor neuron expression of TDP-43WT or TDP-43G298S results in increased larval turning time, which is mitigated by OE of Hsc70-4.
(B and C) Motor neuron expression of TDP-43 variants WT (B) or G298S (C) leads to reduced lifespan. OE of Hsc70-4 increases lifespan for both TDP-43WT (B) and TDP-43G298S (C).
(D) Representative electrophysiology traces of EJPs. Genotypes are indicated on the top.
(E–G) EJP amplitude (E), miniature EJP (mEJP) amplitude (F), and quantal content (G) measurements from electrophysiology recordings. Genotypes are indicated on the bottom.
(H–P) Confocal images of FM1-43 dye uptake in synaptic boutons of Drosophila larvae after 5 min of stimulation in HL-3 saline containing 90 mM KCl and 2 mM Ca2+. Genotypes are indicated on the top and left.
(Q) Quantification of FM1-43 dye uptake normalized to total FM1-43 uptake area. Note an 18% ± 1.8% reduction in FM1-43 dye uptake for TDP-43G298S, Hsc70-4 OE compared to w1118 controls (p < 0.001).
All data shown are mean ± SEM. Scale bar, 10 μm (D).
and evoked excitatory postsynaptic potentials (EPSPs) from larval NMJs of muscle 6. In comparison to controls, neither TDP-43 WT nor TDP-43 G298S OE had an effect on spontaneous or stimulus-evoked EPSP amplitudes (Figures 3D–3F). Accordingly, quantal content of evoked neurotransmitter release was normal (Figure 3G).

Next, we examined SVC by performing FM1-43 dye uptake assays at the larval NMJ (see Experimental Procedures; Kuromi and Kidokoro, 2005). In comparison to controls, TDP-43 WT and TDP-43 G298S OE significantly reduced K+-induced FM1-43 dye uptake by 33% ± 1.8% and 39% ± 2.1%, respectively (p < 0.001; Figures 3H–3J and 3Q). Subsequent K+ stimulation to un-load FM1-43 dye from boutons showed no difference between TDP-43 mutant NMJs and controls (Figures S5A–S5C). Taken together, these results indicate that TDP-43 OE does not affect exocytosis but causes defects in SV endocytosis.

The Chaperone Activity of Hsc70-4 Is Required to Mitigate SVC Defects Caused by TDP-43 G298S

We next asked whether Hsc70-4 OE can mitigate TDP-43-induced defects in FM1-43 dye uptake. When OE was in a wild-type background or together with TDP-43 WT, Hsc70-4 had no effect on FM1-43 dye uptake at the NMJ (p > 0.05; Figures 3K, 3L, and 3Q). In contrast, co-OE of Hsc70-4 with TDP-43 G298S strongly suppressed the defects in FM1-43 dye uptake induced by TDP-43 G298S OE (p < 0.001; Figures 3M and 3Q).

To determine whether the chaperone activity of Hsc70-4 is required for its protective effect, we co-overexpressed chaperone-dead Hsc70-4 (Hsc70-4 D10N, Utterhoeven et al., 2015), and we found that it does not alter FM1-43 dye uptake deficits induced by TDP-43 (p > 0.05; Figures 3O–3Q). It also had no effect on its own when OE was in a wild-type background (p > 0.05; Figures 3N and 3Q). These data suggest that TDP-43 WT OE induces SV endocytosis defects that are, at least in part, independent of Hsc70-4. In contrast, mutant TDP-43 G298S induces defects in SV endocytosis that are mechanistically linked to the chaperone activity of Hsc70-4.

Auxillin OE or RNAi-Mediated Knockdown Does Not Alter TDP-43 Locomotor Phenotypes

Hsc70’s molecular chaperone activity critically requires DNAJ proteins, which transition Hsc70-ATP to the ADP-bound state to stabilize client interactions (Jiang et al., 2007; Kampina and Craig, 2010). At synaptic terminals, Hsc70’s chaperone function in SV exo- and endocytosis is facilitated by the DNAJ proteins auxillin and Csp on SVs (Kampina and Craig, 2010; Liu et al., 2012; Zinnsmaier and Bronk, 2001). To determine the mechanisms underlying Hsc70-4-dependent phenotypes of TDP-43 OE, we used larval turning assays to examine the effects of mutations affecting critical steps of SVC (Figure 4A).

We first tested whether TDP-43 OE impairs auxillin/Hsc70-mediated clathrin uncoating of SV. Auxillin OE or RNAi-mediated knockdown (55% decrease in expression by qPCR, data not shown) had no effect on larval turning on its own or in combination with wild-type and mutant TDP-43 (Figures 4B and 4C). This suggests that the synaptic defects induced by wild-type or mutant TDP-43 OE are unlikely due to a compromised auxillin/Hsc70 clathrin-uncoating activity.

Csp Levels and Chaperone Activity Modulate TDP-43-Mediated Locomotor Dysfunction

Next, we tested for genetic interactions with Csp, which recruits Hsc70-4 to a chaperone complex on SVs, ensuring proper assembly of SNARE and dynamin complexes during SV exo- and endocytosis, respectively (Chandra et al., 2005; Tobaben et al., 2001; Zhang et al., 2012; Zinsmaier, 2010). OE of Csp in a wild-type background from a genomic transgene (increasing Csp gene dosage by one copy) (Zinnsmaier et al., 1994) had no effect on larval turning time (Figure 4D), while co-OE with TDP-43 WT or TDP-43 G298S restored larval turning time to control levels (Figure 4D). OE of Csp with a UAS transgene had a significant effect on larval turning time on its own (data not shown), likely due to high levels of Csp causing neurodegeneration (Nie et al., 1999); therefore, we did not pursue this line for further genetic interactions with TDP-43.

Csp’s J domain promotes the ATPase activity of both Hsc70 and Hsp70, which is abolished by mutations in the HPD motif and J domain (Braun et al., 1996; Bronk et al., 2005; Chamberlain and Burgoyn, 1997; Zhang et al., 1999). OE of J domain mutant Csp H45Q alone (Bronk et al., 2005) had no effect on larval turning (Figure 4E); however, co-OE with TDP-43 WT or TDP-43 G298S strongly enhanced locomotor dysfunction (Figure 4E). Taken together, these results suggest that OE of wild-type or mutant TDP-43 impairs the activity of the Csp/Hsc70-4 chaperone complex.

OE of Csp/Hsc70-4’s Client Dynamin Mitigates TDP-43-Induced Locomotor Dysfunction

Csp/Hsc70-4 chaperone activity maintains SV endocytosis by ensuring proper oligomerization of the GTPase dynamin (Rozas et al., 2012; Zhang et al., 2012). Once a critical mass is reached, oligomerization activates dynamin’s GTPase activity, which in turn pinches or pops off newly formed SVs from the plasma membrane (Haucke et al., 2011; Jahn and Fasshauer, 2012; Ramachandran, 2011). To determine whether TDP-43 OE affects Csp/Hsc70-4’s chaperone activity on dynamin, we tested whether OE of Drosophila dynamin (shibire) may restore TDP-43-induced locomotor defects, and we found that, while OE of shibire alone had no effect on larval turning (Figure 4F), co-OE with TDP-43 WT or TDP-43 G298S in motor neurons restored locomotor function (Figure 4F). Notably, none of the mRNAs encoding the examined SVC proteins was enriched in wild-type or mutant TDP-43 complexes or were translationally dysregulated, as suggested by polysome fractions (Figure S6).

OE of Hsc70-4’s Co-chaperone Csp or Its Client Dynamin Suppresses SVC Defects Induced by TDP-43 in Motor Neurons

To determine whether OE of Hsc70-4’s co-chaperone Csp or their client dynamin can mitigate TDP-43-dependent defects in SVC, we tested if the genomic Csp construct or dynamin OE can restore FM1-43 dye uptake defects induced by TDP-43. We found that OE of either Csp from a genomic transgene or dynamin alone had no effect on K+-induced FM1-43 dye uptake in comparison to control (p > 0.05; Figures 4J, 4M, and 4P). Co-OE of Csp fully restored the defect in FM1-43 dye uptake induced by TDP-43 WT or TDP-43 G298S OE (Figures 4G–4I) to control levels (Figures 4K, 4L, and 4P). Similarly, co-OE of dynamin also fully suppressed
Taken together, these data suggest that OE of wild-type or mutant TDP-43 impairs the activity of the Csp/Hsc70 complex in maintaining normal dynamin function for SV endocytosis.

OE of Hsc70-4 Attenuates the Aggregation of TDP-43WT but Not TDP-43G298S

Given the general role of Hsc70-4 in clearance of misfolded or aggregated proteins (Liu et al., 2012; Stricher et al., 2013; Zetterström et al., 2011), we hypothesized that Hsc70-4 OE may influence TDP-43 aggregation. To examine this, we performed subcellular fractionations from *Drosophila* larvae co-overexpressing wild-type or mutant TDP-43 with Hsc70-4 in motor neurons, and we quantified the amount of TDP-43 in the soluble (low-salt [LS]), sarkosyl (Sark), and urea (Urea) fractions. Interestingly, Hsc70-4 co-OE significantly reduced the amount of TDP-43WT in the Urea fraction and increased the amount of TDP-43WT in the Sark fraction (p < 0.01 and p < 0.05 respectively; Figures 4N–4P).
Notably, Hsc70-4 OE had no significant effect on the solubility of ALS-associated mutant TDP-43 G298S (Figures 5B and 5E), despite its neuroprotective effects on TDP-43G298S-induced functional phenotypes (Figures 3A–3C and 3H–3M).

Conversely, TDP-43 WT or TDP-43 G298S OE in motor neurons did not affect the solubility of endogenous Hsc70-4 at the larval stage (Figures 5C and 5F). However, adult flies (7 days) exhibited a significant increase in insoluble Hsc70-4 protein for both wild-type and mutant TDP-43 (p < 0.001; Figures 5D and 5G). Adults expressing TDP-43WT also showed a corresponding decrease of Hsc70-4 protein in the Sark fraction in comparison to controls (p < 0.001; Figures 5D and 5G). These data suggest an age-dependent sequestration of Hsc70-4 by insoluble cytoplasmic RNA/protein complexes, as previously observed in sporadic ALS patient samples (Watanabe et al., 2001).

Co-OE of Hsc70-4 with TDP-43 WT significantly decreased the amount of insoluble Hsc70-4 in the Urea fraction (p < 0.001; Figures 5D and 5G) and increased the amount of Hsc70-4 in the Sark fraction compared to TDP-43 WT expression alone.

Figure 5. TDP-43WT Insolubility Is Reduced by OE of Hsc70-4, and Hsc70-4 Insolubility Is Increased in an Age-Dependent Manner

(A and B) Solubility studies of third-instar larvae show the distribution of TDP-43WT (A) and TDP-43G298S (B) in low-salt (LS), sarkosyl (Sark), and Urea-containing fractions alone and in the context of Hsc70-4 OE.

(C) Solubility studies of third-instar larvae show Hsc70-4 distribution in LS, Sark, and Urea fractions.

(D) Solubility studies of 7-day-old adults show Hsc70-4 distribution in LS, Sark, and Urea fractions.

(E) Quantification of TDP-43WT and TDP-43G298S levels in LS, Sark, and Urea fractions, normalized to input.

(F) Quantification of Hsc70-4 levels in LS, Sark, and Urea fractions from larval fractionations, normalized to input.

(G) Quantification of Hsc70-4 levels in LS, Sark, and Urea fractions from adult fractionations, normalized to input.
G4C2 repeats back to control levels (Figures 6 L and 6M). These findings are reminiscent of that seen in the TDP-43 fly model, we hypothesized that C9 repeat expansions may also disrupt SVC. To test this possibility, we performed FM1-43 dye uptake experiments at the fly NMJ. OE of 36 G_{C2} repeats in motor neurons significantly decreased FM1-43 dye uptake compared to G_{C2} 3X controls (53% ± 4.4%, p < 0.001; Figures 6L and 6M). To determine the contribution of reduced synaptic expression of Hsc70-4 to SVC deficits, we co-overexpressed Hsc70-4, and we found that it restores FM1-43 dye uptake in flies expressing expanded G_{C2} repeats back to control levels (Figures 6L and 6M). These data indicate that C9-mediated FM1-43 dye uptake deficits are, at least in part, the result of decreased Hsc70-4 expression at the NMJ. Furthermore, these findings suggest that both TDP-43 and C9orf72 models of ALS share common features of post-transcriptionally reduced Hsc70 expression levels that are accompanied by defects in SVC.

DISCUSSION

ALS is a synaptopathy like other neurodegenerative disorders, including Parkinson’s and Alzheimer’s diseases (Gillingwater and Wishart, 2013). However, the mechanisms underlying synaptic dysfunction and neurodegeneration remain poorly understood. TDP-43 has been linked to a majority of ALS cases and is known to associate with RNA SGs, which sequester specific mRNAs and reduce their translation during stress (Dewey et al., 2011; Kim et al., 2014; Liu-Yesucevitz et al., 2010; McDonald et al., 2011). Collectively, these studies have suggested that TDP-43 association with RNA SGs plays a critical role in maintaining both proteostasis and ribostasis by controlling the expression of target mRNAs and sequestration of protein partners. Because of its central role in ALS pathogenesis, understanding the molecular mechanisms underlying TDP-43-mediated neurodegeneration and defining its mRNA targets and their mode of regulation are expected to provide a deeper understanding of disease pathophysiology and identify novel therapeutic targets.

C9orf72 Repeat Expansions Reduce Hsc70-4/HSPA8 Levels and Induce Defects in SVC

We next sought to determine whether similar SVC defects were present in C9orf72 (C9) repeat expansion models (DeJesus-Hernandez et al., 2011; Renton et al., 2011). Using a fly model of C9 ALS (Mzielińska et al., 2014) containing 56 G_{C2} repeats, we detected no alterations in Hsc70-4 expression in dissected VNCs (Figures 6A and 6B). However, at synaptic boutons of larval NMJs, Hsc70-4 levels were significantly decreased compared to controls (21%, p < 0.001; Figures 6E-6G). There was no change in hsc70-4 mRNA transcript levels in VNCs or NMJ preparations (Figures 6C and 6D), and Hsc70-4 protein levels in muscles were normal (Figure 6H). To support this, bioinformatics analyses of published crosslinking IP (CLIP) data suggest that endogenous TDP-43 can bind HSPA8 introns and exons in mouse brains and human K562 cells (Polymenidou et al., 2011; Van Nostrand et al., 2016) (Figure S7).

Hsc70 belongs to a neuroprotective synaptic network that maintains SV exo- and endocytosis and prevents neurodegeneration (Brikon et al., 2001; Chang et al., 2002; Zinnsmaier, 2010; Zinnsmaier and Bronk, 2001). This led us to hypothesize that alterations in Hsc70-4 expression may be detrimental to synaptic function. Indeed, using a combination of FM1-43 dye loading and unloading experiments together with electrophysiology, we find that OE of TDP-43WT or TDP-43G289SE in motor neurons leads to defects in SV endocytosis, but not exocytosis. Although loss of endogenous fly TDP-43 (TPB4) has been shown to cause reduced expression of the synaptic proteins Syntaxin (Romano et al., 2014) and Cacophony (Chang et al., 2014) at the NMJ, and defects in SVC have been previously described in Parkinson’s disease (Xu et al., 2016), here we provide mechanistic insights into reduced SV endocytosis at the NMJ, in the context of TDP-43 toxicity.

In the case of mutant TDP-43, co-OE of Hsc70-4 provides significant rescue of the FM1-43 dye uptake defect, although we note that this is not a full restoration to the levels observed in controls. Co-OE of chaperone-dead Hsc70-4-D101N fails to mitigate TDP-43G289SE-induced FM1-43 dye uptake defects, suggesting that motor neuron expression of mutant TDP-43 reduces Hsc70-4 levels below a threshold that is necessary to maintain a molecular chaperone activity facilitating SV endocytosis/cycling.

In contrast, for TDP-43WT, co-OE of Hsc70-4, while not sufficient to rescue SVC, appears to mitigate toxicity by generally...
Figure 6. C9orf72 Repeat Expansions Cause Reduced Hsc70-4/HSPA8 Expression and Defects in SVC

(A) WB for Hsc70-4 levels in VNCs of G_{C2}-expressing larvae. Genotypes are indicated on the bottom. Actin was used as a loading control.

(B) Quantification of Hsc70-4 protein levels from WBs represented as a ratio to G_{C2} 3X controls.

(C) qPCR for hsc70-4 mRNA in VNCs from animals expressing G_{C2} 36X in motor neurons versus G_{C2} 3X controls.

(D) qPCR for hsc70-4 mRNA in NMJ preparations from animals expressing G_{C2} 36X in motor neurons versus G_{C2} 3X controls.

(E and F) Single confocal sections of synaptic boutons in NMJ preparations immunostained for Hsc70-4 and the neuronal membrane marker Hrp from larvae expressing G_{C2} 36X (F) compared to G_{C2} 3X controls (E). Antibodies are indicated on the left.

(G) Quantification of Hsc70-4 intensity in synaptic boutons, normalized to bouton area.

(H) Quantification of Hsc70-4 intensity in muscle, normalized to muscle area.

(I) Confocal images of control and C9 ALS human iPSC motor neurons immunostained for DAPI, the dendritic marker Map2, and Hsc70/HSPA8. Genotypes are indicated on the left and antibodies are indicated on the top.

(J) Quantification of Hsc70/HSPA8 intensity in the soma and dendrites of control and C9 ALS human iPSC motor neurons.

(K) qPCR for Hsc70/HSPA8 mRNA in control and C9 ALS human iPSC motor neurons.

(L) Confocal images of FM1-43 dye uptake at Drosophila NMJs after 5 min of stimulation in HL-3 saline containing 90 mM KCl and 2 mM Ca^{2+}. Genotypes are indicated on the top and left.

(M) Quantification of FM1-43 dye uptake, normalized to total FM1-43 uptake area.

All data shown are mean ± SEM. Scale bars, 5 and 1 μm (E and F) and 10 μm (I and L).
improving proteostasis and specifically reducing the aggregation of TDP-43 WT itself, which correlates with improved locomotor function and increased lifespan. This suggests that the mechanism by which TDP-43 WT and TDP-43 G298S cause defects in FM1-43 dye uptake is, at least in part, distinct; but, ultimately, reduced Hsc70-4 levels at the NMJ impact the activity of its co-chaperone complexes and clients, many of which control critical steps in SVC.

Perturbations in the SV Cycle Highlight Key TDP-43-Dependent Functional Interactions between Hsc70-4 Co-chaperone and Client Partners

Co-OE of Csp, an Hsc70-4 co-chaperone critical for stabilizing client binding (Jiang et al., 2007; Kampinga and Craig, 2010), restores FM1-43 dye uptake to control levels for both TDP-43 WT and TDP-43 G298S. This is surprising given that Hsc70-4 co-OE mitigated the effects of TDP-43 G298S but failed to rescue TDP-43 WT-mediated defects in endocytosis. A reasonable explanation for this result is that Csp has synaptic functions that are independent of Hsc70-4, as previously suggested (Bronk et al., 2005). These additional functions may contribute to improved SVC when Csp and TDP-43 WT are co-overexpressed in motor neurons. Co-OE of the GTPase dynamin, a client of the Csp/Hsc70-4 chaperone complex (Zhang et al., 2012), also significantly restores FM1-43 dye uptake to control levels for wild-type and mutant TDP-43. Together, these findings are consistent with a scenario whereby co-OE of Hsc70-4 impairs the activity of the Csp/Hsc70 chaperone complex to maintain normal dynamin function.

Toward a Common, Synaptic Pathomechanism of Disease

Similar to what we found for TDP-43, we show that HSPA8 expression is reduced at synaptic terminals of C9 repeat-expressing flies and in cell bodies and dendrites of human C9 iPSC motor neurons. Furthermore, we show that C9 repeat expansions in flies lead to defects in FM1-43 dye uptake. However, the precise mechanism by which C9 repeat expansions regulate Hsc70 expression and SVC remains to be determined. As previous studies have reported a decrease in excitatory junction potential (EJP) amplitude and quantal content in a fly model of C9 ALS (Zhang et al., 2015), it is possible that C9-mediated reduced synaptic expression of Hsc70 may elicit FM1-43 dye uptake defects that arise due to deficits in both SV exo- and endocytosis. Recent reports suggest that splicing and transcriptome alterations, including changes in synaptic gene expression, contribute to C9 ALS pathology (Cooper-Knock et al., 2015; Prudencio et al., 2015). Thus, it is likely that multiple mechanisms may be at play to alter SVC in C9-mediated ALS.

Although OE of either TDP-43 WT or disease-associated TDP-43 G298S leads to similar phenotypes, our findings of hsc70-4 mRNA as a mutant-specific sequestration and translation target suggest that the molecular mechanisms utilized by different TDP-43 variants are, at least in part, distinct (see Figure 2). This knowledge could impact the development of therapeutic strategies that ought to take into consideration the specific mechanisms of toxicity associated with TDP-43 WT, which is linked to 97% of ALS cases, as opposed to ALS-associated mutant TDP-43 that only represents 2%-3% of ALS cases. Taken together, our data suggest that post-transcriptional dysregulation of Hsc70-4 expression connect defects in ribostasis and proteostasis at synapses in ALS across multiple models. Improving SVC through OE of Hsc70, its co-chaperone Csp, or their client dynamin highlights the SV cycle as a unifying therapeutic target in ALS and related neurodegenerative disorders, such as frontotemporal dementia (FTD) and Alzheimer’s disease, in which TDP-43 pathology has been reported.

EXPERIMENTAL PROCEDURES

Drosophila Genetics

All Drosophila stocks and crosses were kept on standard yeast/cornmeal/molasses food at 22°C unless otherwise noted.

Larval Turning Assays

Wandering third-instar larvae were placed on a grape juice plate. After a 30-s acclimation, larvae were gently turned ventral side up and observed until they turned over and began making a forward motion.

Life-span Analysis

Newly eclosed males and females (100 per genotype) were separated and placed in a new vial every 7 days. Survival plots were generated using R and RStudio.

Electrophysiology

Current-clamp recordings were made from muscle 6 of third-instar larvae using a modified Ca²⁺ free HL-3 saline, as described (Dawson-Scully et al., 2000).

FM1-43 Dye Uptake Assays

FM1-43 dye uptake assays using 4 μM FM1-43FX, 90 mM KCl, and 2 mM Ca²⁺ for stimulation were adapted from Kuromi and Kidokoro (2005) and Verstreken et al. (2008).

Cellular Fractionations and Western Blotting

Cellular fractionations were previously described (Estes et al., 2013; Liachko et al., 2010).

Western blots (WBs) were performed as described (Coyne et al., 2014, 2015). Primary antibodies were 1:3,000 rabbit Anti-Hsc70-4 (from K. Zinsmaier), 1:6,000 rabbit Anti-GFP (Invitrogen), and 1:5,000 rabbit Anti-β-actin (Cell Signaling Technology).

IPs

IPs were performed using published protocols (Coyne et al., 2014).

Polyosome Fractionations

Polyosome fractionations were previously described (Coyne et al., 2014, 2015).

Real-Time qPCR

Real-time qPCR is described in the Supplemental Experimental Procedures. An RNeasy kit (QIAGEN) was used for RNA isolation. First-strand cDNA synthesis was performed with a Superscript III cDNA synthesis kit (Invitrogen). qPCR reactions were carried out using SYBR Select Master Mix (Applied Biosystems) and an ABI 7300 Real Time PCR System (Applied Biosystems).

Immunohistochemistry and Confocal Imaging

Larval NMJs were prepared as described (Estes et al., 2011, 2013). Primary antibodies were 1:50 rabbit Anti-Hsc70-4 (from K. Zinsmaier), 1:300 mouse Anti-DCSP2 (DSHB), and 1:50 mouse Anti-Bruchpilot, NC82 (DSHB).
Primary Neuron Cultures: Transfection, Staining, Image Acquisition, and Analysis

All procedures for animal experiments were approved by the Emory University Institutional Animal Care and Use Committee (IACUC) and the Emory University Institutional Review Board. Primary motor neurons from spinal cords of mouse embryos were isolated and plated at day 13.5 (Fallini et al., 2010).

Human iPSC Motor Neuron Differentiation and Immunocytochemistry for Hsc70/HSPA8

Control iPSCs and C9 iPSCs (>30 repeats) were differentiated to motor neurons as described by previous studies (Donnelly et al., 2013; Zhang et al., 2015).

Mouse NMJs

Animal lines and procedures are described in the Supplemental Experimental Procedures. All procedures were approved by the University of Kansas Medical Center IACUC. Immunohistochemistry, image analysis, and statistics were described in Chen et al. (2011, 2012) and Nishimune et al. (2004).

Bioinformatics Analyses

See the Supplemental Experimental Procedures.

Statistical Analyses

Larval turning assays used 30 larvae/genotype. Lifespan analysis used 100 flies/genotype. At least 6 animals/genotype were used for electrophysiology. FM1-43 dye uptake experiments were performed on 12 animals, and a total of 24 NMJs (2/animal) were used for analysis. Cellular fractionation, IPs, WBs, polysome fractionations, and qPCR were performed in triplicate. For analysis of mouse primary motor neurons, cell bodies and 10-μm segments of the axonal growth cones were analyzed (cell body: GFP n = 57, TDP-43 WT n = 49, TDP-43 Q331K n = 42, and TDP-43 M337V n = 49; growth cone: GFP n = 30, TDP-43 WT n = 24, TDP-43 Q331K n = 35, and TDP-43 M337V n = 36). For immunocytochemistry in TDP-43 iPSC motor neurons, two control lines and two differentiations of one TDP-43 line were used. For immunocytochemistry in C9orf72 iPSC motor neurons, one control line and one C9 line were used. Statistical analyses were performed using the appropriate t test or ANOVA model with Tukey’s post hoc test. For cellular fractionations, Fisher’s test was used. Statistics were performed using GraphPad Prism software version 7.0. Lifespan statistical analysis was done using the log-rank test in R. All data shown are mean ± SEM (*p < 0.05, **p < 0.01, and ***p < 0.001; n.s., not significant).

Additional details on fly lines, iPSC demographic information, and experimental procedures can be found in the Supplemental Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and seven figures and can be found with this article online at https://doi.org/10.1016/j.celrep.2017.09.028.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

This work was funded by NIH K-INBRE postdoctoral award P20 GM103418 (to R.S.R.), NIH R01 NS02376 (to J.C.S.), NIH R01NS078214 and R01AG051470 (to H.N.), NIH R21 NS094809 (to K.Z.), an Emory Medicine Catalyst Award (to W.R.), the Muscular Dystrophy Association MDA348086 (to R.S.), the ALS Association ALSA 16-117P (to R.S.), the Barrow Neurological Foundation (to R.S.), and NIH R01 NS091299 (to D.C.Z.). Additional funds were provided by the Himelick Family Foundation (to D.C.Z.) and the Neurosciences Graduate Interdisciplinary Program at UA and ARCS (to A.N.C.). We thank members of the Zarnescu laboratory for helpful feedback. We thank J. Paul Taylor, Takeshi Iwatsubo, Fen-Biao Gao, Norbert Perrimon, and Patrik Verstreken for sharing Drosophila lines (see the Supplemental Experimental Procedures). We also acknowledge the Bloomington Drosophila Stock Center at Indiana University and the Developmental Studies Hybridoma Bank at the University of Iowa for fly stocks and antibodies, respectively.

Received: December 27, 2016

Revised: May 9, 2017

Accepted: September 7, 2017

Published: October 3, 2017

REFERENCES

