OqxAB, a Quinolone and Olaquindox Efflux Pump, Is Widely Distributed among Multidrug-Resistant *Klebsiella pneumoniae* Isolates of Human Origin

Federico Perez, ab Susan D. Rudin, ab Steven H. Marshall, a Peter Coakley, a Liang Chen, f Barry N. Kreiswirth, f Philip N. Rather, f Andrea M. Hujer, b Philip Tollitz, a David van Duin, d David L. Paterson, f Robert A. Bonomo, ab, c,d

Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; a Department of Medicine, b Department of Molecular Biology and Microbiology, c and Department of Pharmacology, d Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Division of Infectious Diseases and HIV Medicine, University Hospitals Case Medical Center, Cleveland, Ohio, USA; a Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA; a Emory University School of Medicine, Atlanta, Georgia, USA; a Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA; a Cleveland Clinic, Cleveland, Ohio, USA; a University of Queensland, Brisbane, Australia.

Use of antibiotics among livestock contributes to the selection and dissemination of multidrug resistant (MDR) bacteria (1). Olaquindox and carbadox are quinoxaline derivatives with antibacterial properties that prevent dysentery and enhance weight gain in suckling pigs (2). Resistance to quinoxinolines is mediated by the efflux pump OqxAB, which also extrudes antibiotics such as chloramphenicol and fluoroquinolones (3). The gene encoding this efflux pump, oqxAB, was initially detected within plasmid pOLAS2, which was found in *Escherichia coli* isolated from swine manure (4). Dissemination of oqxAB has been noted in *Salmonella* species, and the original genetic reservoir of oqxAB was traced to the chromosome of *Salmonella* (5, 6). Surprisingly, OqxAB has been reported only in clinical isolates of *K. pneumoniae* from China, South Korea, and Spain (7–9).

Like other *Enterobacteriaceae*, *K. pneumoniae* is able to colonize and cause infection in animals and humans. As isolates harboring extended-spectrum β-lactamases (ESBLs) and *Klebsiella pneumoniae* carbapenemases (KPCs) have become so prevalent, we hypothesized that OqxAB may be widely present among these clinically relevant types of *K. pneumoniae*.

Isolates were screened by PCR for the oqxA gene (forward primer, 5′-GGCTCTCGGGATACATTGAT-3′; reverse primer, 5′-GGCGAGGTTTTGATAGTGGA-3′) and, if positive, were also screened for oqxB (forward primer, 5′-CTGGGCTTCTCGCTGAATAC-3′; reverse primer, 5′-CAGGTAACCGGAAACACTG-3′). Known positive strains were used as controls. Resistance to ciprofloxacin (as a representative fluoroquinolone) was recorded (10). Sequence type was established using the multilocus sequence typing (MLST) scheme developed at the Institut Pasteur (http://www.pasteur.fr/recherche/genopole/PPB/mlst/Kpneumoniae.html).

The following sets of isolates were studied (Table 1): (i) *K. pneumoniae* isolates harboring *bla*KPC (n = 12) collected in a pediatric long-term-care facility in northeast Ohio in 2004 (11), (ii) *K. pneumoniae* isolates harboring *bla*KPC (n = 36) obtained from acute-care hospitals in northeast Ohio in 2012, (iii) *K. pneumoniae* isolates harboring *bla*KPC (n = 43) obtained between 2004 and 2011 from the mid-Atlantic states of the United States (New Jersey, New York, Pennsylvania), and (iv) ESBL-producing *K. pneumoniae* isolates (n = 16) with a variety of *bla*TEM, *bla*SHV, and *bla*CTX-M genes, collected in the 1990s from Taiwan, Australia, Argentina, Belgium, Turkey, South Africa, and the United States (12).

The prevalence of oqxAB varied widely in the different sets of strains (Table 1). Among KPC-producing *K. pneumoniae* isolates from northeast Ohio, oqxAB was present in 100%. This included contemporary isolates from acute-care facilities that were also quinolone resistant and belonged to sequence type (ST) 258, as well as isolates from a pediatric long-term-care facility that were quinolone susceptible and belonged to ST 36. Among KPC-producing *K. pneumoniae* isolates from the mid-Atlantic, the genes

TABLE 1 Presence of oqxAB in diverse clinical isolates of *Klebsiella pneumoniae*

<table>
<thead>
<tr>
<th>Location, yr of isolation</th>
<th>No. of isolates</th>
<th>Source(s)</th>
<th>Sequence type(s)</th>
<th>Acquired β-lactamase (bla) gene type(s)</th>
<th>Prevalence of oqxAB (%)</th>
<th>% with ciprofloxacin resistance (MIC ≥ 4 µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric long-term-care facility, northeast Ohio, 2004</td>
<td>12</td>
<td>Stool</td>
<td>ST 36</td>
<td>KPC-3</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Acute-care hospitals, northeast Ohio, 2012</td>
<td>36</td>
<td>Blood, urine, sputum</td>
<td>ST 258</td>
<td>KPC-2, KPC-3</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hospitals in Taiwan, Australia, Argentina, Belgium, Turkey, South Africa, and the United States, 1996–1997</td>
<td>16</td>
<td>Blood</td>
<td>Not determined</td>
<td>TEM-10, SHV-2, SHV-5, CTX-M-2, CTX-M-3</td>
<td>87.5</td>
<td>Not determined</td>
</tr>
</tbody>
</table>

Published ahead of print 1 July 2013

Address correspondence to Robert A. Bonomo, robert.bonomo@va.gov.

Copyright © 2013, American Society for Microbiology. All Rights Reserved.
were present in 71% (22/31) of ST 258 isolates and 91.7% (11/12) of other non-ST 258 types; 96.8% and 58.3% of these isolates were ciprofloxacin resistant, respectively. Also, oqxAB was present in 87.5% (14/16) of international ESBL-producing K. pneumoniae isolates.

Our survey indicates that OqxAB, an efflux pump found in isolates of veterinary origin, is highly prevalent in diverse clinical MDR K. pneumoniae strains isolated from humans, including KPC-producing K. pneumoniae isolates of ST 258. Furthermore, its presence in K. pneumoniae isolated more than a decade ago suggests widespread dissemination. The association of the OqxAB efflux pump with a diverse set of substrates, including fluorquinolones, commonly used in humans, may contribute to the MDR profile of K. pneumoniae. The occult dissemination of this efflux pump gene adds to the constellation of resistance determinants already circulating in Enterobacteriaceae.

ACKNOWLEDGMENTS

This work was supported by funds and facilities provided by the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, by the VISN 10 Geriatric Research, Education and Clinical Care Center (VISN 10) of the Department of Veterans Affairs, and by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) under award numbers R01AI072219, R01AI063517, and R01AI100560 to R.A.B. B.N.K. is supported by the NIH under award numbers R01AI072219, R01AI063517, and R01AI100560 to R.A.B. B.N.K. is supported by the NIH under award numbers UL1TR000439 from the National Center for Advancing Translational Sciences (NCATS) component of the NIH and NIH Roadmap for Medical Research. P.N.R. is supported by Merit Review and Research Career Scientist awards from the Department of Veterans Affairs.

REFERENCES