OqxAB, a Quinolone and Olaquindox Efflux Pump, Is Widely Distributed among Multidrug-Resistant Klebsiella pneumoniae Isolates of Human Origin

Federico Perez, Veterans Affairs Medical Center
Susan D. Rudin, Veterans Affairs Medical Center
Steven H. Marshall, Veterans Affairs Medical Center
Peter Coakley, University Hospitals Case Medical Center
Liang Chen, University of Medicine and Dentistry of New Jersey
Barry N. Kreiswirth, University of Medicine and Dentistry of New Jersey
Phil N Rather, Emory University
Andrea M. Hujer, Case Western Reserve University
Philip Toltzis, Rainbow Babies and Children’s Hospital
David van Duin, Cleveland Clinic

Only first 10 authors above; see publication for full author list.

Journal Title: Antimicrobial Agents and Chemotherapy
Volume: Volume 57, Number 9
Publisher: American Society for Microbiology | 2013-09-01, Pages 4602-4603
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1128/AAC.00725-13
Permanent URL: https://pid.emory.edu/ark:/25593/s750s

Final published version: http://dx.doi.org/10.1128/AAC.00725-13

Copyright information:
© 2013, American Society for Microbiology. All Rights Reserved.
Accessed December 17, 2019 2:21 PM EST
OqxAB, a Quinolone and Olaquindox Efflux Pump, Is Widely Distributed among Multidrug-Resistant *Klebsiella pneumoniae* Isolates of Human Origin

Federico Perez, Susan D. Rudin, Steven H. Marshall, Peter Coakley, Liang Chen, Barry N. Kreiswirth, Philip N. Rather, Andrea M. Hujer, Philip Toltzis, David van Duin, David L. Paterson, Robert A. Bonomo

Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Department of Medicine; Department of Molecular Biology and Microbiology; Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Division of Infectious Diseases and HIV Medicine, University Hospitals Case Medical Center, Cleveland, Ohio, USA; Public Health Research Institute, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA; Emory University School of Medicine, Atlanta, Georgia, USA; Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA; Cleveland Clinic, Cleveland, Ohio, USA; University of Queensland, Brisbane, Australia

Use of antibiotics among livestock contributes to the selection and dissemination of multidrug resistant (MDR) bacteria (1). Olaquindox and carbadox are quinolone derivatives with antibacterial properties that prevent dysentery and enhance weight gain in suckling pigs (2). Resistance to quinoloxines is mediated by the efflux pump OqxAB, which also extrudes antibiotics such as chloramphenicol and fluoroquinolones (3). The gene encoding this efflux pump, *oqxAB*, was initially detected within plasmid pOLA52, which was found in *Escherichia coli* isolated from swine manure (4). Dissemination of *oqxAB* has been noted in *Salmonella* species, and the original genetic reservoir of *oqxAB* was traced to the chromosome of *Salmonella enterica* (5, 6). Surprisingly, OqxAB has been reported only in clinical isolates of *Klebsiella pneumoniae* (5, 6, 7–9).

Like other *Enterobacteriaceae*, *K. pneumoniae* is able to colonize and cause infection in animals and humans. As isolates harboring extended-spectrum β-lactamas (ESBLs) and *Klebsiella pneumoniae* carbapenemases (KPCs) have become so prevalent, we hypothesized that OqxAB may be widely present among these clinically relevant types of *K. pneumoniae*.

Isolates were screened by PCR for the *oqxA* gene (forward primer, 5′-GGGTCTCGGGGATACTTGTATG-3′; reverse primer, 5′-GGCGAGGTTTTGATAGTGGA-3′) and, if positive, were also screened for *oqxB* (forward primer, 5′-CTGGGCTTCTCGCTGAATAC-3′; reverse primer, 5′-CTGGGCTTCTCGCTGAATAC-3′). Known positive strains were used as controls. Resistance to ciprofloxacin (as a representative fluoroquinolone) was recorded for each isolate, using a breakpoint of ≥4 μg/ml (10). Sequence type was established using the multilocus sequence typing (MLST) scheme developed at the Institut Pasteur (http://www.pasteur.fr/recherche/genopole/PF8/mlst/Kpneumoniae.html).

The following sets of isolates were studied (Table 1): (i) *K. pneumoniae* isolates harboring *bla*KPC (*n* = 12) collected in a pediatric long-term-care facility in northeast Ohio in 2004 (11); (ii) *K. pneumoniae* isolates harboring *bla*KPC (*n* = 36) obtained from acute-care hospitals in northeast Ohio in 2012; (iii) *K. pneumoniae* isolates harboring *bla*KPC (*n* = 43) obtained between 2004 and 2011 from the mid-Atlantic states of the United States (New Jersey, New York, Pennsylvania); and (iv) ESBL-producing *K. pneumoniae* isolates (*n* = 16) with a variety of *bla*SHV, *bla*TEM, and *bla*CTX-M genes, collected in the 1990s from Taiwan, Australia, Argentina, Belgium, Turkey, South Africa, and the United States (12).

The prevalence of *oqxAB* varied widely in the different sets of strains (Table 1). Among KPC-producing *K. pneumoniae* isolates from northeast Ohio, *oqxAB* was present in 100%. This included contemporary isolates from acute-care facilities that were also quinolone resistant and belonged to sequence type (ST) 258, as well as isolates from a pediatric long-term-care facility that were quinolone susceptible and belonged to ST 36. Among KPC-producing *K. pneumoniae* isolates from the mid-Atlantic, the genes

<p>| TABLE 1 Presence of oqxAB in diverse clinical isolates of Klebsiella pneumoniae |
|----------------------------------|-----------------|-----------------|-----------------|------------------|------------------|</p>
<table>
<thead>
<tr>
<th>Location, yr of isolation</th>
<th>No. of isolates</th>
<th>Source(s)</th>
<th>Sequence type(s)</th>
<th>Acquired β-lactamase (β-lactamase) type(s)</th>
<th>Prevalence of oqxAB (%)</th>
<th>% with ciprofloxacin resistance (MIC ≥ 4 μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric long-term-care facility, northeast Ohio, 2004</td>
<td>12</td>
<td>Stool</td>
<td>ST 36</td>
<td>KPC-3</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Acute-care hospitals, northeast Ohio, 2012</td>
<td>36</td>
<td>Blood, urine, sputum</td>
<td>ST 258</td>
<td>KPC-2, KPC-3</td>
<td>100</td>
<td>96.8</td>
</tr>
<tr>
<td>Acute-care hospitals, New York, New Jersey, Pennsylvania, 2006–2009</td>
<td>6</td>
<td>Urine, sputum</td>
<td>ST 134, ST 254, ST 379,</td>
<td>KPC-2, KPC-3</td>
<td>83.3</td>
<td>83.3</td>
</tr>
</tbody>
</table>

Hospitals in Taiwan, Australia, Argentina, Belgium, Turkey, South Africa, and the United States, 1996–1997

16 | Blood | Not determined | TEM-10, SHV-2, SHV-5, CTX-M-2, CTX-M-3 | 88.7 | Not determined |
were present in 71% (22/31) of ST 258 isolates and 91.7% (11/12) of other non-ST 258 types; 96.8% and 58.3% of these isolates were ciprofloxacin resistant, respectively. Also, oqxAB was present in 87.5% (14/16) of international ESBL-producing K. pneumoniae isolates.

Our survey indicates that OqxAB, an efflux pump found in isolates of veterinary origin, is highly prevalent in diverse clinical MDR K. pneumoniae strains isolated from humans, including KPC-producing K. pneumoniae isolates of ST 258. Furthermore, its presence in K. pneumoniae isolated more than a decade ago suggests widespread dissemination. The association of the OqxAB efflux pump with a diverse set of substrates, including fluoroquinolones, commonly used in humans, may contribute to the MDR profile of K. pneumoniae. The occult dissemination of this efflux pump gene adds to the constellation of resistance determinants already circulating in Enterobacteriaceae.

ACKNOWLEDGMENTS

This work was supported by funds and facilities provided by the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, by the VISN 10 Geriatric Research, Education and Clinical Care Center (VISN 10) of the Department of Veterans Affairs, and by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (NIH) under grant numbers R01AI072219, R01AI063517, and R01AI100560 to R.A.B. B.N.K. is supported by the NIH under award numbers R01AI072219, R01AI063517, and R01AI100560 to R.A.B. B.N.K. is supported by the NIH under award numbers R01AI090155 and R21AI106551. F.P. and D.V.D. are supported by the Clinical and Translational Science Collaborative of Cleveland under grant number UL1TR000439 from the National Center for Advancing Translational Sciences (NCATS) component of the NIH and NIH Roadmap for Medical Research. P.N.R. is supported by Merit Review and Research Career Scientist awards from the Department of Veterans Affairs.

REFERENCES

