Mitochondrially Mediated Integrin alpha(IIb)beta(3) Protein Inactivation Limits Thrombus Growth

Fang Liu, Emory University
Graciela Gamez, Emory University
David R Myers, Emory University
Wayne Clemmons, Emory University
Wilbur Lam, Emory University
Shawn M. Jobe, Emory University

Journal Title: Journal of Biological Chemistry
Volume: Volume 288, Number 42
Publisher: American Society for Biochemistry and Molecular Biology |
2013-10-18, Pages 30672-30681
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1074/jbc.M113.472688
Permanent URL: https://pid.emory.edu/ark:/25593/s74qk

Final published version: http://dx.doi.org/10.1074/jbc.M113.472688

Copyright information:
© 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

Accessed January 22, 2020 10:59 AM EST
Mitochondrially Mediated Integrin $\alpha_{IIb}\beta_3$ Protein Inactivation Limits Thrombus Growth

Fang Liu, Graciela Gamez, David R. Myers, Wayne Clemmons, Wilbur A. Lam, and Shawn M. Jobe

From the 1Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, the 2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and the 3Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, Georgia 30322

Received for publication, March 28, 2013, and in revised form, August 26, 2013. Published, JBC Papers in Press, September 6, 2013, DOI 10.1074/jbc.M113.472688

Background: Changes in integrin $\alpha_{IIb}\beta_3$ binding affinity occur in strongly stimulated platelets.

Results: Platelet mitochondrial permeability transition pore formation enhances calpain activity, which leads to integrin β_3-associated proteolytic cleavage and integrin inactivation.

Conclusion: Mitochondrially mediated integrin $\alpha_{IIb}\beta_3$ inactivation limits platelet aggregation and thrombus growth.

Significance: Modulation of this pathway may offer a novel alternative for the prevention of thrombosis.

When platelets are strongly stimulated, a procoagulant platelet subpopulation is formed that is characterized by phosphatidylserine (PS) exposure and epitope modulation of integrin $\alpha_{IIb}\beta_3$ or a loss of binding of activation-dependent antibodies. Mitochondrial permeability transition pore (mPTP) formation, which is essential for the formation of procoagulant platelets, is impaired in the absence of cyclophilin D (CypD). Here we investigate the mechanisms responsible for these procoagulant platelet-associated changes in integrin $\alpha_{IIb}\beta_3$ and the physiologic role of procoagulant platelet formation in the regulation of platelet aggregation. Among strongly stimulated adherent platelets, integrin $\alpha_{IIb}\beta_3$ epitope changes, mPTP formation, PS exposure, and platelet rounding were closely associated. Furthermore, platelet mPTP formation resulted in a decreased ability to recruit additional platelets. In the absence of CypD, integrin $\alpha_{IIb}\beta_3$ function was accentuated in both static and flow conditions, and, in vivo, a prothrombotic phenotype occurred in mice with a platelet-specific deficiency of CypD. CypD-dependent proteolytic events, including cleavage of the integrin β_3 cytoplasmic domain, coincided closely with integrin $\alpha_{IIb}\beta_3$ inactivation. Calpain inhibition blocked integrin β_3 cleavage and inactivation but not mPTP formation or PS exposure, indicating that integrin inactivation and PS exposure are mediated by distinct pathways subsequent to mPTP formation. mPTP-dependent alkanization occurred in procoagulant platelets, suggesting a possible alternative mechanism for enhancement of calpain activity in procoagulant platelets. Together, these results indicate that, in strongly stimulated platelets, mPTP formation initiates the calpain-dependent cleavage of integrin β_3 and associated regulatory proteins, resulting in integrin $\alpha_{IIb}\beta_3$ inactivation, and demonstrate a novel CypD-dependent negative feedback mechanism that limits platelet aggregation and thrombotic occlusion.

Upon activation, platelets change shape, release granules, and firmly adhere and aggregate through activation of the adhesive receptor integrin $\alpha_{IIb}\beta_3$. In strongly stimulating conditions, additional morphologic and functional changes occur in a subpopulation of activated platelets. These platelets, to which we refer here as procoagulant platelets, vesiculate, expose high levels of PS, and retain high amounts of α-granule proteins (1–3). Other names for this platelet subpopulation have included COAT (3), coated (4), balloon-like (5, 6), sustained calcium-induced platelet morphology (SCiP) (7), and highly activated platelets (8). Conditions that generate procoagulant platelets in vitro include adherence to collagen (5), stimulation with thrombin plus collagen (3), adherence to von Willebrand factor, particularly in the presence of the soluble agonists ADP or thrombin (7, 9, 10), and high shear stress (11).

In addition to these procoagulant and morphologic changes, alterations in integrin $\alpha_{IIb}\beta_3$ also occur in the procoagulant platelet subpopulation (1, 7, 12, 13). When activation-dependent antibodies such as PAC-1 or JON/A are used to interrogate the activation state of integrin $\alpha_{IIb}\beta_3$ after strong stimulation, these antibodies bind transiently. However, minutes after this initial activation, these activation-dependent epitopes are almost absent on the procoagulant platelet subpopulation. In contrast, the binding of antibodies to other extracellular integrin $\alpha_{IIb}\beta_3$ epitopes is unperturbed (1, 7, 12, 13). This integrin $\alpha_{IIb}\beta_3$ epitope modulation has alternatively been proposed to reflect either epitope inaccessibility because of α-granule protein retention (1) or a conformational change in integrin $\alpha_{IIb}\beta_3$ associated with loss of function (7, 14).

Mitochondrial permeability transition pore (mPTP) formation regulates procoagulant platelet formation (8, 15). The mPTP is an inducible inner mitochondrial membrane pore, the formation of which regulates necrotic cell death (16). A key regulator of mPTP formation is the mitochondrially localized peptidylprolyl isomerase cyclophilin D (CypD), and in the

*This work was supported, in whole or in part, by National Institutes of Health grant HL095858. This work was also supported by American Heart Association Fellow-to-Faculty Transition Award 2006-2011.

1 This article contains supplemental Figs. 1–6.

2 The abbreviations used are: PS, phosphatidylserine; mPTP, mitochondrial permeability transition pore; CypD, cyclophilin D; TMRM, tetramethylrhodamine methyl ester; TRITC, tetramethylrhodamine isothiocyanate; SNARF-1, seminaphtharhodafluor; Thr, thrombin; Cvx, convulxin; MDL, MDL28170; CTI, corn trypsin inhibitor.

© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
absence of CypD, mPTP formation in response to calcium and oxidative stress is inhibited (17). In CypD-null platelets, agonist-induced mPTP formation, procoagulant platelet generation, and integrin αIIbβ3 epitope modulation are abrogated (8). Another potentially important regulator of integrin αIIbβ3 function in procoagulant platelets is calpain. However, the role of calpain in the regulation of integrin function remains controversial. Calpain activation has alternatively been proposed to activate integrin through talin cleavage (18), to increase outside-in signaling through distal cleavage of the integrin β3 cytoplasmic tail (19), and to disrupt inside-out mediated conformational changes in integrin αIIbβ3 through proximal cleavage of the integrin β3 cytoplasmic tail (19, 20).

Here we investigate the mechanisms regulating platelet integrin αIIbβ3 epitope modulation and its functional role in the regulation of platelet activation. Studies are also performed investigating the coordination of mPTP formation and calpain activation in procoagulant platelets. In strongly stimulated platelets, mPTP formation is shown to increase intracellular pH and enhance calpain-dependent cleavage of both talin and the cytoplasmic tail of integrin β3. These cleavage events are demonstrated to be closely associated with both integrin αIIbβ3 epitope modulation and down-regulation of integrin αIIbβ3 activity. Finally, using mice with platelet-specific deficiency of CypD, a role for platelet mPTP formation in limiting thrombotic occlusion in vivo is demonstrated conclusively.

EXPERIMENTAL PROCEDURES

Mice—CypD+/+ and CypD−/− mice were maintained on an SV129 background. PF4-Cre and Ppidtm1Mmos/f mice were obtained from The Jackson Laboratory (C57BL/6 background). PF4-Cre+/+/Ppidtm1Mmos+/−/− (CypDΔfrt+/−/) and PF4-Cre−/−+/Ppidtm1Mmos−/−−/−/−/− (CypDΔfrt−/−/) utilized for in vivo testing, were the F1 progeny of a PF4-Cre+/+/Ppidtm1Mmos+/−/− (CypDΔfrt+/−/) and PF4-Cre−/−+/Ppidtm1Mmos−/−−/−/− (CypDΔfrt−/−/) cross. β-actin-GFP transgenic mice (C57BL/6) were provided by Dr. David Archer (Emory University). All animal protocols were approved by the Emory University Institutional Animal Care and Use Committee under National Institutes of Health guidelines. Mice were housed in pathogen-free conditions at Emory University.

Preparation of Washed Platelets—Murine blood was collected in acid citrate dextrose anticoagulant or as indicated below. Washed platelets were isolated as described previously and resuspended in modified Tyrode buffer (134 mM NaCl, 2.9 mM KCl, 12 mM NaHCO3, 20 mM HEPES, 1 mM MgCl2, 0.34 mM Na2HPO4, and 5 mM glucose (pH 7.35)) for at least 20 min at room temperature before experiments (21).

Microfluidic Chamber Fabrication and Protein Patterning—Polymethylsiloxane microfluidic chamber fabrication and collagen patterning were performed as described previously (22). In brief, a dry clean photoresist wafer was silanized with tridecafluoro-1,1,2,2-tetrahydrooctyl (Gelest Inc.) before fabrication. The Sylgard 184 silicone elastomer base and curing agent (Dow Corning) were mixed at 10:1 (v/v) and cured at 80 °C for 2 h. Prior to the experiment, the fibrillar type I collagen (250 μg/ml, Chrono-log Corp.) or fibrinogen (100 μg/ml, catalog no. F3879, Sigma) was immobilized on an acid-pre-treated glass slide (catalog no. 2947, Corning) or cover slide (catalog no. 2940, Corning) for 1 h at room temperature. Then the chamber and patterned cover slide were blocked in HEPES-buffered saline (pH 7.4) with 3% BSA for another hour right before use.

Fluorescence Microscopy of Adherent Platelets—Washed platelets (1 × 10⁸/ml) in modified Tyrode buffer containing 2 mM CaCl2 were allowed to adhere on a fibrinogen-coated (100 μg/ml) cover slide for 20 min in a polydimethylsiloxane microfluidic chamber. After removal of non-adherent platelets, PE-JON/A (catalog no. M023-2, Emfret Analytics), tetramethyl-rhodaminemethyl ester (TMRM, Invitrogen), or annexin V (Alexa Fluor 647-conjugated, Invitrogen) were preincubated with the adherent platelets for 10 min with or without pharmacologic inhibitors (i.e. MDL27180). Platelets were then stimulated with the indicated agonists, either thrombin (Hematologic Technologies) or convulxin (CenterChem, Inc.). Fluorescence and platelet morphology were visualized in real time using a Nikon eclipse Ti inverted microscope (Nikon Instruments Inc.) equipped with a high-resolution Cool Snap HQ2 camera (Photometrics) under a × 60 differential interference contrast objective. Images were recorded for off-line analysis using Nikon NIS Elements AR3.2 software.

Platelet Aggregation Assay—Washed platelets (45 μl, 1 × 10⁹/ml) in a 96-well half-area plate (COSTAR) were incubated for 5 min in a microplate reader (Spectra Max Plus 384, Molecular Devices) at 37 °C before the addition of agonists and CaCl2. Measurements of optical density were performed at 500 nm every 15 s with mixing between every two readings.

Platelet Adhesion in Flow Conditions—To assess platelet recruitment, fibrinogen-adherent platelets were labeled with TMRM (0.1 μM) for 10 min and washed with mTyrode buffer. The adherent platelets were stimulated with thrombin (0.5 units/ml, Hematologic Technologies) and convulxin (100 ng/ml) for 5 min. After washing to remove these agonists, recalcified citrate/corn trypsin inhibitor (CTI)/apryrase-treated whole blood from β-actin-GFP transgenic mice was perfused over the pretreated platelets for 5 min at a 100 s⁻¹ shear rate. Recruitment of GFP-expressing platelets by TMRM (+) platelets and TMRM (-) platelets was determined. For perfusion experiments at arterial shear rates (1500 s⁻¹), murine whole blood was collected in 3.2% citrate with 50 μg/ml corn trypsin inhibitor (CTI, Fisher Scientific) and 0.5 units/ml apyrase and then preincubated with 1 μg/ml of PE-CD41 (eBioscience) for 10 min. Upon recalcification (2 mM CaCl2), the blood was immediately perfused in a microfluidics system across the collagen strip, and platelet accumulation was monitored continuously.

Mesenteric Arterial Thrombus Formation—Six- to eight-week-old littermate mice (F1 progeny of a PF4-Cre+/+/Ppidtm1Mmos+/−/− (CypDΔfrt+/−/) and PF4-Cre−/−+/Ppidtm1Mmos−/−−/−/− (CypDΔfrt−/−/) cross) were anesthetized with ketamine/xylazine, and the mesenteric vasculature was exteriorized. A fluorescently labeled anti-GP1b antibody (1 mg/kg, catalog no. X488, Emfret Analytics) and Rose Bengal (20 mg/kg, catalog no. 330000, Sigma) were injected retro-orbitally in 100 μl Tyrodes. Endothelial injury was initiated within 5 min of injection by exposing the tissue to TRITC bandwidth-filtered light at maximal intensity.
Platelet Mitochondria and Integrin Inactivation

for 30 s. The FITC filter was then selected, and platelet accumulation and flow within the mesenteric vessel were visualized with continuous recording for a maximum of 30 min and analyzed using the NIS Elements software (Nikon). Videos were subsequently analyzed and the time of initial platelet adherence, start of thrombus embolization, and time of stable occlusion were determined (supplemental Fig. 1). Stable occlusion was defined as the absence of observed flow for a minimum of 5 min, a time point after which no recanalization was ever observed. The genotype remained blinded until video analysis was complete.

Tail Bleeding—Tails of anesthetized adult mice were transected 3 mm from the distal end and immediately placed into 37 °C prewarmed saline for 10 min. Time to cessation of bleeding and any rebleeding were recorded.

Western Blot Analysis—After preincubation with or without the indicated inhibitors, washed platelets (1 × 10⁹/ml) were treated with the indicated agonists for 5 min at 37 °C with shaking. Platelets were then lysed at 4 °C in cell lysis buffer (catalog no. 9803, Cell Signaling Technology) with protease inhibitor mixture (Roche) and phenylmethylsulfonyl fluoride (1 mM, Sigma). Equal amounts of platelet lysate were run on a 10% SDS-PAGE gel (Bio-Rad). The target protein was evaluated by Western blot analysis using anti-integrin β₃ C-terminal antibody (catalog no. sc6626, Santa Cruz Biotechnology), N-terminal antibody (catalog no. sc6627, Santa Cruz Biotechnology), and anti-talin antibody (catalog no. sc15336, Santa Cruz Biotechnology). Images were collected using the Odyssey infrared imaging system (LI-COR), and blot intensity was analyzed by Quantity One software (Bio-Rad).

Determination of Platelet Intracellular pH (pHᵢ) — 1 × 10⁹/ml washed platelets suspended in PBS and the non-ionic detergent Pluronic® F-127 (5 μM, catalog no. P6866, Invitrogen) were incubated with the cell-permeant fluorescent pH indicator carboxyl seminaphtharhodafluor, acetoxymethyl ester, acetate 1 (SNARF-1 AM, Sigma) and phenylethylaminesulfon fluoride (1 mM, Sigma). Equal amounts of platelet lysate were run on a 10% SDS-PAGE gel (Bio-Rad). The target protein was evaluated by Western blot analysis using anti-integrin β₃ C-terminal antibody (catalog no. sc6626, Santa Cruz Biotechnology), N-terminal antibody (catalog no. sc6627, Santa Cruz Biotechnology), and anti-talin antibody (catalog no. sc15336, Santa Cruz Biotechnology). Images were collected using the Odyssey infrared imaging system (LI-COR), and blot intensity was analyzed by Quantity One software (Bio-Rad).

RESULTS

Dependence of Platelet Shape Change and Integrin α₁β₃ Epitope Modulation on mPTP Formation—Integrin α₁β₃ epitope modulation has been described primarily in flow cytometry experiments (1, 12, 13) or in fixed platelets (7) at discrete time points. To allow uninterrupted visualization of procoagulant platelet formation and assess the coordination of adhesive and mitochondrial events, fibrinogen-adherent platelets were observed continuously following stimulation with thrombin and convulxin (Thr/Cvx). This agonist combination was chosen because it is particularly effective in generating procoagulant platelets (13). Within 1 min of stimulation, lamellipodia and filipodia formation occurred, associated with an increase in platelet diameter and JON/A binding (Fig. 1, A–C). Subsequently, in a platelet subpopulation, the previously extended lamellipodia and filipodia retracted, and the platelets assumed a rounded morphology that correlated with a decrease in platelet diameter and a decrease in JON/A binding (Fig. 1, A and B, and supplemental Fig. 2, B and C). Platelet rounding, decreased JON/A binding, and PS exposure were associated both in individual platelets and temporally (Fig. 1, A–C, and supplemental Fig. 2A). In contrast to the decreased binding of the activation-dependent epitope JON/A, no decrease was noted in the expression levels of non-activation-dependent integrin α₁β₃ epitopes (supplemental Fig. 2, B and C).

TMRM is a Δψᵢ-sensitive cationic dye that labels intact and metabolically active mitochondria. Evaluation of mitochondrial transmembrane potential (Δψᵢ) using TMRM revealed that platelet rounding was associated with loss of Δψᵢ (Fig. 1, D and E). Consistent with the central role of mPTP in procoagulant platelet formation (8), platelet rounding, integrin α₁β₃ epitope modulation, and PS exposure were all markedly abrogated in the absence of CypD (Fig. 1, B–E, and supplemental Fig. 2A, i). Together, these results clearly demonstrate the close association of procoagulant platelet rounding with integrin α₁β₃ epitope modulation and loss of Δψᵢ and their dependence on the mPTP regulatory protein CypD.

Mitochondrial Dependence Events Limit Platelet Aggregation and Adhesion—To more directly ascertain the relationship of these changes in morphology and Δψᵢ with integrin α₁β₃ function, platelet adherence to TMRR-labeled platelets was assessed in a platelet recruitment assay (Fig. 2A and supplemental Fig. 3A). Whole blood from a GFP transgenic mouse was perfused over a mixed population of adherent TMRM(−) relative to TMRM(+) platelets generated by prior stimulation with Thr/Cvx. In these conditions, stable recruitment of perfused GFP(+) platelets was decreased significantly (6-fold) in platelets that had lost Δψᵢ (TMRM(−)) relative to TMRM(+) platelets. These results demonstrate the close association of mitochondrial depolarization with a decreased ability to maintain stable platelet-platelet contacts in flow conditions.

Next, the role of mPTP-dependent events in regulating integrin α₁β₃ function was assessed in a platelet aggregation assay (Fig. 2B and supplemental Fig. 3B). When platelets were stimulated with either thrombin or convulxin alone, aggregation progressed rapidly to a maximal amplitude. However, strongly stimulating conditions (Thr/Cvx) resulted in a significantly different pattern of aggregation. Initially, aggregation progressed smoothly. However, after 3–4 min, aggregation slowed, and a chaotic pattern consistent with intermittent disaggregation was observed. In CypD⁻/⁻ platelets, this pattern of disaggregation was not observed (Fig. 2B, right panel). These results indicate that, in strongly stimulating conditions, a CypD-mediated event limits platelet aggregation.

The adherence and accumulation of CypD⁺/⁺ and CypD⁻/⁻ platelets to type I collagen was evaluated in arterial conditions
(1500 s⁻¹) in recalcified whole blood (Figs. 2, C and D, and 5E). Relative to CypD⁺/⁺ blood, platelet accumulation was markedly increased when CypD⁻/⁻ blood was perfused. Platelet accumulation was blocked by JON/A in both CypD⁺/⁺ and CypD⁻/⁻ whole blood, demonstrating the dependence of the observed platelet accumulation on activated integrin α₁Ibβ₃. Taken together, these results comparing the adhesive and aggregatory properties of CypD⁺/⁺ and CypD⁻/⁻ platelets demonstrate that CypD-dependent mPTP formation limits platelet adhesion and aggregation in static and flow conditions. Furthermore, these results demonstrate the close association of integrin α₁Ibβ₃ epitope modulation in procoagulant platelets with decreased integrin α₁Ibβ₃ function or secondary integrin α₁Ibβ₃ inactivation.

Accelerated Thrombosis in Mice with Megakaryocyte/Platelet Deficiency of CypD

The physiologic role of CypD-mediated events in platelets, including integrin α₁Ibβ₃ inactivation, was evaluated in vivo. CypD is a ubiquitously expressed protein (16). Because our previous in vivo experiments evaluating the role of CypD in thrombosis were performed in mice with germ line deletion of CypD (8), the absence of CypD in endothelial cells or other blood cell components associated with the forming thrombus may have contributed to the observed defect. As in the carotid artery (8), a prothrombotic phenotype was noted in CypD⁻/⁻ mice relative to CypD⁺/⁺ mice in the smaller caliber mesenteric artery (supplemental Fig. 4). To directly evaluate the in vivo effects of mPTP dysfunction within the platelet lineage, mice with a megakaryocyte/platelet-specific deficiency of
CypD (CypD<yref>plt</yref>/H11002/H11002/H11002) were generated. Absent CypD expression and impaired procoagulant formation were confirmed in CypD^{plt}/H11002/H11002 mice. As no difference was noted in procoagulant platelet formation or integrin inactivation between wild-type CypD^{plt}/H11001/H11001 and heterozygote CypD^{plt}/H11001/H11002 mice³, CypD^{plt}/H11001/H11002 and CypD^{plt}/H11002/H11002 mice were compared in <i>in vivo</i> studies.

In comparison with CypD^{plt}+/- mice, in which integrin inactivation is unimpaired, CypD^{plt}-/- mice had a markedly shortened time to stable occlusion in a model of arterial thrombosis, and complete arterial occlusion was increased (Fig. 3A). There was no observed difference in the timing of initial platelet adherence.⁴ As was seen in CypD^{-/-} mice (8), no significant difference was noted in the tail bleeding time of CypD^{plt}+/- and CypD^{plt}-/- mice (Fig. 3B). These <i>in vivo</i> results demonstrating the platelet- intrinsic effects of CypD deletion, together with the <i>in vitro</i> results demonstrating the importance of CypD in the negative regulation of integrin α_{IIb}β₃ function, strongly point to mPTP-mediated integrin α_{IIb}β₃ inactivation and procoagulant platelet formation as a critical negative determinant limiting platelet aggregation and thrombus formation.

Calpain-mediated Cleavage of the Cytoplasmic Domain of Integrin β₃ Is Dependent on CypD—Cleavage of the cytoplasmic tail of integrin β₃ and associated cytoskeletal components occurs following platelet activation (23, 24). We examined whether these cleavage events could account for integrin α_{IIb}β₃ inactivation in strongly stimulated platelets. Cleavage of integrin β₃ and talin were assessed simultaneously by Western blot analysis using their respective antibodies. In strongly stimulated platelets (Thr/Cvx or Thr/ionomycin) but not in platelets stimulated with either thrombin or convulxin alone, ~50% of both talin and integrin β₃ were cleaved within 5 min (Fig. 4, A and B, and supplemental Fig. 5). In strongly stimulated platelets, a low molecular weight band consistent in size with the talin head domain appeared coincident with loss of full-length talin, and interrogation of integrin β₃ using an antibody directed against the C-terminal cytoplasmic tail (C-20) demonstrated decreased binding. That this decreased binding was due to removal of the cytoplasmic tail from the full-length integrin β₃ and not to loss of the integrin β₃ protein was demonstrated

³S. M. Jobe, unpublished observations.

⁴F. Liu, G. Gamez, D. R. Myers, W. Clemmons, W. A. Lam, and S. M. Jobe, unpublished observations.
by the persistent binding of an antibody directed against the integrin β_3 extracellular domain (N-20) (Fig. 4C).

The association of these cleavage events with integrin $\alpha_{\text{IIb}}\beta_3$ inactivation and their dependence on mPTP formation was examined. Both talin and integrin β_3 cleavage were abrogated in CypD$^{-/-}$ platelets, demonstrating the mutual importance of mPTP formation in mediating both these cleavage events (Fig. 4 and supplemental Fig. 5) and integrin $\alpha_{\text{IIb}}\beta_3$ inactivation. Because CypD primarily acts to potentiate the calcium sensitivity of the mPTP (25), stimulation with high concentrations of the calcium ionophore ionomycin can initiate mPTP formation and subsequent PS exposure even in the absence of CypD (26). Similarly, ionomycin stimulation bypassed the inhibitory effect of the absence of CypD on talin and integrin β_3 cleavage (Fig. 4, A and B, and supplemental Fig. 5). Procoagulant platelet formation recapitulates many events that occur in apoptotic and necrotic cells (27), where important mediators of proteolytic cleavage events include calpain and caspases. In strongly stimulated platelets, pharmacologic inhibition of calpain blocked platelet rounding and $\alpha_{\text{IIb}}\beta_3$ epitope modulation (Fig. 5, A–C), a result consistent with the effects reported previously of calpain inhibition on sustained calcium-induced platelet morphology platelet formation (7). Inhibition of calpain similarly eliminated the pattern of attenuated platelet aggregation that occurred in strongly stimulating conditions (Fig. 5D). Furthermore, MDL treatment resulted in increased platelet accumulation in high shear conditions in CypD$^{+/+}$ mice. A rapid and pronounced increase in intracellular pH $\Delta\psi_{\text{m}}$ was noted following Thr/Cvx stimulation with high concentrations of CypD$^{+/+}$ and CypD$^{-/-}$ platelets, demonstrating the mutual importance of mPTP formation in regulating the calcium sensitiv

FIGURE 3. Thrombotic and hemostatic response in mice with megakaryocyte/platelet-specific deficiency of CypD. A, thrombosis was initiated within the mesenteric artery by photochemical injury, and time to stable occlusion was determined in littermate CypD$^{+/+}$ and CypD$^{-/-}$ mice. *p < 0.05 by Mann-Whitney U test. B, tail bleeding time. Shown is the time to first and final cessation of bleeding in CypD$^{+/+}$ and CypD$^{-/-}$ mice. $\Delta\psi_{\text{m}}$, platelet shape change were observed simultaneously in MDL-treated platelets. MDL treatment had no effect on mPTP formation (Fig. 5, A and F), and large numbers of spread platelets demonstrated loss of $\Delta\psi_{\text{m}}$, which, in untreated platelets, is almost invariably associated with a rounded platelet morphology. PS exposure was similarly unaffected by calpain inhibition (Fig. 5F). Together, these results demonstrate that calpain acts downstream of mPTP formation to mediate secondary integrin $\alpha_{\text{IIb}}\beta_3$ inactivation in platelets.

Platelet Mitochondria and Integrin Inactivation

Calpain Acts Downstream of mPTP Formation to Mediate Secondary Integrin $\alpha_{\text{IIb}}\beta_3$ Inactivation—The involvement of calpain in β_3 C terminus cleavage led us to more closely examine its role in the regulation of platelet integrin $\alpha_{\text{IIb}}\beta_3$ function. Pharmacologic inhibition of calpain blocked platelet rounding and integrin $\alpha_{\text{IIb}}\beta_3$ epitope modulation (Fig. 5, A–C), a result consistent with the effects reported previously of calpain inhibition on sustained calcium-induced platelet morphology platelet formation (7). Inhibition of calpain similarly eliminated the pattern of attenuated platelet aggregation that occurred in strongly stimulating conditions (Fig. 5D). Furthermore, MDL treatment resulted in increased platelet accumulation in high shear conditions in CypD$^{+/+}$ blood (Fig. 5E). No additive effect of MDL treatment was observed in CypD$^{-/-}$ platelets, consistent with inhibition of a common pathway.

To test whether calpain acts upstream or downstream of mPTP formation to regulate integrin $\alpha_{\text{IIb}}\beta_3$ inactivation, loss of $\Delta\psi_{\text{m}}$ and platelet shape change were observed simultaneously in MDL-treated platelets. MDL treatment had no effect on mPTP formation (Fig. 5, A and F), and large numbers of spread platelets demonstrated loss of $\Delta\psi_{\text{m}}$, which, in untreated platelets, is almost invariably associated with a rounded platelet morphology. PS exposure was similarly unaffected by calpain inhibition (Fig. 5F). Together, these results demonstrate that calpain acts downstream of mPTP formation to mediate secondary integrin $\alpha_{\text{IIb}}\beta_3$ inactivation in platelets.

CypD-dependent Cytoplasmic Alkalinization Is Associated with Enhanced Calpain Activation and Integrin $\alpha_{\text{IIb}}\beta_3$ Inactivation—Ca$^{2+}$ is a key regulator of calpain protease activation. However, as we demonstrated recently, Ca$^{2+}$ transients in CypD$^{+/+}$ and CypD$^{-/-}$ platelets are virtually indistinguishable (26) despite their markedly different levels of calpain activity as assessed by substrate cleavage. Because calpain activity can also be regulated by intracellular pH (pH$_i$) (28), the effect of agonist stimulation on platelet pH$_i$, was investigated using the cell-permeable pH-sensitive dye SNARF-1. A rapid and pronounced increase in intracellular pH$_i$ was noted following Thr/Cvx stimulation (7.32 ± 0.07 to 7.92 ± 0.09). Stimulation with throb
resulted in a slight increase in pH₃ (7.51 ± 0.10), as has been reported previously (Fig. 6A) (29). Thr/Cvx-mediated cytoplasmic alkalinization was not observed in CypD⁻/⁻ platelets or in human platelets treated with the cyclophilin inhibitor cyclosporine (2 μM). Because the overlapping fluorescence of PE-JON/A and SNARF-1 AM precluded their simultaneous use, the association of cytoplasmic alkalinization with integrin inactivation was assessed using human platelets and the activation-dependent integrin α₂β₃ antibody PAC-1. In Thr/Cvx-stimulated platelets, integrin inactivation (PAC-1-negative) and cytoplasmic alkalinization were closely associated (Fig. 6B). These results demonstrate that, in strongly stimulated platelets, mPTP-dependent cytoplasmic alkalinization occurs and that this CypD-mediated change in pH₃ is closely associated with enhanced calpain activation and integrin inactivation.

DISCUSSION

Here we demonstrate a novel mitochondrial mechanism that initiates inactivation of integrin α₂β₃ in strongly stimulated platelets and limits thrombus formation in vivo. In strongly stimulated platelets, CypD and mitochondrially mediated events initiate cytosolic alkalinization and enhanced calpain activation that results in proteolytic cleavage of the integrin β₃ cytoplasmic domain, together with other integrin-regulatory proteins, and integrin α₂β₃ inactivation. Abrogation of mitochondrially mediated calpain activation, both in CypD⁻/⁻ platelets or using calpain inhibition, prevented secondary integrin α₂β₃ inactivation and accentuated platelet aggregation. Finally, using platelet-specific CypD⁻/⁻ mice, we directly demonstrate the physiologic importance of platelet-intrinsic mitochondrial events in limiting thrombus formation.

Previous studies have suggested that integrin α₂β₃ epitope modulation might be a relevant functional characteristic of the procoagulant platelet (7, 8, 14, 24), but various aspects of these studies have limited their applicability. Pharmacologic induction of a procoagulant platelet monolayer using ionomycin has been shown to result in a decreased ability to stably recruit platelets or using calpain inhibition, prevented secondary integrin α₂β₃ inactivation and accentuated platelet aggregation. Finally, using platelet-specific CypD⁻/⁻ mice, we directly demonstrate the physiologic importance of platelet-intrinsic mitochondrial events in limiting thrombus formation.

FIGURE 4. Calpain-mediated cleavage of the cytoplasmic domain of integrin β₃ is dependent on CypD. A and B, washed CypD⁺/⁺ or CypD⁻/⁻ platelets were stimulated for 5 min with the indicated agonist(s) with or without MDL28170 (50 μM) or Q-VD-Oph (QVD) (50 μM), and cleavage of the integrin β₃ cytoplasmic tail (C-20) and talin was assessed by Western blot analysis (0.5 units/ml Thr, 100 ng/ml Cvx, and 1 μM Iono). B, quantification of integrin β₃ cleavage. Intensity of C-20 binding was assessed relative to unstimulated platelets. *p < 0.05 compared with untreated platelets; #, p < 0.05 relative to CypD⁻/⁻. n = 3. C, washed CypD⁻/⁺ or CypD⁻/⁻ platelets were stimulated for 5 min with the indicated agonist(s) ± MDL and assessed by Western blot analysis using antibodies specific to the integrin β₃ cytoplasmic tail (C-20) and integrin α₂, extracellular domain (N-20). *, p < 0.05 relative to unstimulated; †, p < 0.05. D, kinetics of integrin β₃ cleavage in CypD⁻/⁺ and CypD⁻/⁻ platelets stimulated with thrombin and convulxin. *, p < 0.05. n = 3. Intensity of C-20 binding was assessed relative to unstimulated platelets.
Calpain acts downstream of mPTP formation to mediate secondary integrin αIIbβ3 inactivation. In strongly stimulated CypD+/+ platelets, rounding and lamellipodial retraction occurred subsequent to initial platelet spreading. Platelet aggregation was disrupted, and platelet accumulation in flow conditions was blunted. These limiting responses, all consistent with functional inactivation of integrin αIIbβ3, were impaired in CypD−/− platelets. Rounding and integrin αIIbβ3 inactivation were delayed, aggregation proceeded without disruption, and platelet accumulation and adherence were enhanced markedly.

These epitope and functional changes led us to more closely examine integrin αIIbβ3 in strongly stimulated platelets. Calpain- and CypD-dependent cleavage of both talin and the integrin β3 cytoplasmic tail were found to occur in strongly stimulated platelets within minutes of activation. Proteolytic cleavage of integrin β3 and talin were closely correlated with integrin αIIbβ3 inactivation, and these events were mutually abrogated in CypD−/− and calpain-inhibited platelets. However, the precise calpain-mediated event(s) resulting in integrin αIIbβ3 inactivation remains to be established. Besides integrin β3 and talin, kindlin 3 is cleaved in ionomycin-stimulated platelets (31). Additionally, within integrin β3, there are multiple potential calpain cleavage sites (19). Truncation of integrin β3 at the more membrane distal site Tyr359 selectively effects outside-in integrin signaling, whereas more membrane-proximal truncation disrupts integrin activation (19). However, because calpain cleavage of integrin β3 both eliminates the ability of the talin head domain to activate αIIbβ3 in a purified system (20) and removes the kindlin 3 binding site (32), proteolysis of integrin β3 is likely to contribute in some way to integrin αIIbβ3 inactivation in strongly stimulated platelets.

mPTP formation is an important upstream mediator of both calpain-mediated secondary integrin αIIbβ3 inactivation and PS exposure (26). In this as in other studies (33, 34), PS exposure was impaired in CypD−/− platelets stimulated with Thrombin/Cvx. *, p < 0.05 compared with unstimulated (Unstim.) platelets; #, p < 0.05 to relative to CypD+/+ platelets. β, pHi and integrin αIIbβ3 activation in strongly stimulated platelets. PAC-1 was used to evaluate integrin αIIbβ3 in human platelets. The dark peak indicates PAC-1(−) platelets and the light gray peak PAC-1(+) platelets. A pHi increase using the SNARF-1 AM indicator is associated with an increase in the 640/580 nm fluorescence ratio. The drawn gate encompasses the fluorescent ratio associated with a pHi of 7.2 (left panel) to 7.4 (right panel). n = 3.
Platelet Mitochondria and Integrin Inactivation

was unaffected by calpain inhibition. These results are consistent with two distinct pathways regulating events downstream of mPTP formation, one that initiates PS exposure and a second calpain-dependent pathway that initiates integrin $\alpha_{IIb}\beta_3$ inactivation and platelet rounding. The dependence of calpain activation on calcium is firmly established (35). However, because cytoplasmic calcium fluxes do not differ in CypD$^{+/+}$ and CypD$^{-/-}$ platelets (26), differences in calcium flux alone cannot explain the activation of calpain subsequent to mPTP formation. One potential mechanism is that mitochondrial matrix contents released as a consequence of mPTP formation might further up-regulate calpain activity analogous to the effects of cytochrome c as a mediator of apoptosis (36). pH elevation has been demonstrated to enhance calpain activity (28). Here we demonstrate the association of mPTP-mediated cytoplasmic alkalinization and integrin inactivation. A potential mechanism that could account for this alkalinization is equilibration of the alkalotic mitochondrial matrix (37) with the cytoplasm. Alternatively, activation of the Na$^+$/H$^+$ exchanger could facilitate cytosolic alkalization. Interestingly, multiple studies have suggested the involvement of Na$^+$/H$^+$ exchanger activity in mediating procoagulant activity and, presumably, procoagulant platelet formation (38, 39).

The prothrombotic effects of the absence of CypD on in vivo thrombosis have been demonstrated previously (8). Whether this prothrombotic effect of the absence of CypD was intrinsic to the platelet could not be determined in those initial experiments because of the ubiquitous expression of CypD. Using mice with a platelet-specific deficiency of CypD, we conclusively demonstrate that CypD-mediated events intrinsic to the platelet limit thrombus formation in vivo. We propose that integrin $\alpha_{IIb}\beta_3$ inactivation is the primary CypD-mediated mechanism down-regulating thrombus formation in vivo. However, an alternative hypothesis is suggested by an in vivo study that demonstrated the formation of a fibrin cap on the formed thrombus in a laser-induced model (40). Impaired PS exposure in CypD$^{-/-}$ platelets, by preventing formation of the limiting fibrin cap (41), might allow thrombus growth to proceed unabated.

Interestingly, the phenotype of CypD$^{-/-}$ and CypD$^{wt/-}$ mice differs markedly from that of organisms with Scott syndrome in which a bleeding, not a prothrombotic phenotype, is observed (42–44). This is despite their mutual abrogation of PS exposure in vitro. Loss of $\Delta\psi_m$ is unaffected in Scott syndrome, indicating that the effects of TMEM116F are mediated downstream of mPTP formation (45, 46). Because different mPTP-dependent pathways mediate PS exposure and integrin $\alpha_{IIb}\beta_3$ inactivation, it is likely that preservation of integrin $\alpha_{IIb}\beta_3$ inactivation in Scott syndrome is responsible for the observed bleeding defect. Future studies examining the in vivo effects of specific inhibition of each of the pathways downstream of CypD, namely PS exposure and integrin $\alpha_{IIb}\beta_3$ inactivation, would be expected to provide exciting new mechanistic insights.

Together, the results presented here indicate the central role of platelet mPTP formation in regulating both integrin $\alpha_{IIb}\beta_3$ function and arterial thrombosis. Strongly stimulating conditions in which multiple soluble or adherent agonists are present promote mPTP formation and secondary integrin $\alpha_{IIb}\beta_3$ inactivation. Together, this dependence on strongly stimulating conditions and the prothrombotic effect of the absence of CypD suggest that CypD-dependent integrin $\alpha_{IIb}\beta_3$ inactivation could act as a negative feedback mechanism limiting thrombus growth in vivo. Interestingly, use of the cyclophilin D inhibitor, cyclosporine, is associated with thrombotic complications (47). Modulation of procoagulant platelet formation and integrin $\alpha_{IIb}\beta_3$ function using agents that favor mPTP formation may offer a novel alternative for the prevention of thrombosis.

Acknowledgments—We thank Keith Neeves (Colorado School of Mines) and Jorge Di Paola (University of Colorado, Denver) for the microfluidic system, David R. Archer (Emory University) for providing β-actin-GFP transgenic mice, and the Emory and Children’s Pediatric Research Flow Cytometry Core.

REFERENCES

Platelet Mitochondria and Integrin Inactivation