MR-based calf muscle perfusion index correlates with treadmill exercise test parameters in patients with peripheral arterial disease

Stephanie Clement-Guinaudeau, Emory University
Matthew L. Topel, Emory University
Arshad Ali, Emory University
Joseph C. Poole, Emory University
Elizabeth Rocco, Emory University
Shafaat A. Khan, Emory University
Xiaodong Zhong, Siemens Healthcare
Frederick H. Epstein, University of Virginia
Christopher M. Kramer, University of Virginia
Arshed Quyyumi, Emory University

Only first 10 authors above; see publication for full author list.

Presentation Place: 16th Annual SCMR Scientific Sessions San Francisco, CA, USA.
Publication Date: 2013-01-31
Type of Work: Presentation
Publisher DOI: 10.1186/1532-429X-15-S1-O58
Permanent URL: https://pid.emory.edu/ark:/25593/s6nr6

Final published version: http://dx.doi.org/10.1186/1532-429X-15-S1-O58

Copyright information:
©2013 Clement-Guinaudeau et al; licensee BioMed Central Ltd.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/).

Accessed April 11, 2019 4:39 AM EDT
ORAL PRESENTATION
Open Access

MR-based calf muscle perfusion index correlates with treadmill exercise test parameters in patients with peripheral arterial disease

Stephanie Clement-Guinaudeau1*, Matthew L Topel1, Arshad Ali1, Joseph C Poole1, Elizabeth Rocco1, Shafaat A Khan1, Xiaodong Zhong4, Frederick H Epstein3, Christopher M Kramer3, Arshed A Quyyumi1, John N Oshinski1,2

From 16th Annual SCMR Scientific Sessions
San Francisco, CA, USA. 31 January - 3 February 2013

Background
The functional impairment caused by peripheral arterial disease (PAD) is difficult to evaluate objectively and quantitatively. Current methods used to assess the efficacy of therapeutic interventions in patients with PAD are limited by variability and changes representing the placebo effect. Recently, Gadolinium-enhanced first-pass (FP) MRI has emerged as a new method to assess perfusion in peripheral muscles at peak exercise. We seek to demonstrate that calf muscle perfusion index measured with FP MRI at peak exercise correlates with treadmill exercise measures of ischemia in patients with PAD.

Methods
82 patients with PAD were included in the study. Patients exercised until fatigue inside the 1.5T MR scan using an MR-compatible plantar-flexion ergometer. Images were acquired at peak exercise using a dynamic, first-pass, dual-contrast sequence. The dual contrast sequence acquires two interleaved slices; an inversion-prepared slice in the calf muscle, and a saturation-prepared slice in the popliteal artery (8 cm superior). Time-intensity curves (TIC) were acquired from the dynamic images by placing ROI’s in the popliteal artery on the saturation-prepared slices in the brightest calf muscle group on the inversion-prepared slice (Figure 1). The perfusion index (PI) = calf muscle TIC upslope / popliteal artery TIC upslope. Graded treadmill exercise testing was performed using the Gardner protocol. Claudication onset time (COT) and total walking time (TWT) were recorded for each patient, as well as resting ABI.

Results
62 patients were able to complete both the MRI and treadmill test. The PI measured by MRI correlated significantly with both times measured during the treadmill exercise test, the TWT and the COT (r =0.33 p<0.01, r=0.29 p=0.01, respectively). The PI was not correlated with resting ABI.

Conclusions
MR-based calf muscle PI correlates significantly with treadmill exercise parameters. MRI PI could be a valuable tool to objectively and quantitatively assess improvement in exercise perfusion in response to therapeutic intervention in patients with PAD.

Funding
Funding was provided by a grant from the National Institutes of Health (RC2HL101515 to Arshed Quyyumi, MD).

© 2013 Clement-Guinaudeau et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://www.jcmr-online.com/content/15/S1/O58

Figure 1 Analysis of FP MRI images

Author details
1Emory University, Atlanta, GA, USA. 2Georgia Institute of Technology, Atlanta, GA, USA. 3University of Virginia, Charlottesville, VA, USA. 4Siemens Healthcare, Atlanta, GA, USA.

Published: 30 January 2013

Cite this article as: Clement-Guinaudeau et al. MR-based calf muscle perfusion index correlates with treadmill exercise test parameters in patients with peripheral arterial disease. Journal of Cardiovascular Magnetic Resonance 2013 15(Suppl 1):O58.