Myocardial fibrosis is associated with subsequent death and hospitalization for heart failure in obese adults

Yaron Fridman, University of Pittsburgh Medical Center
Timothy C. Wong, University of Pittsburgh Medical Center
Kayla M. Piehler, University of Pittsburgh Medical Center
Karolina M. Zareba, University of Pittsburgh Medical Center
James Moon, University College of London
Martin Ugander, Karolinska University Hospital
Daniel Messroghli, Deutsches Herzzentrum Berlin
John M. Jakicic, University of Pittsburgh
Uma Valeti, University of Minnesota Twin Cities
Chung-Chou Chang, University of Pittsburgh Graduate School of Public Health

Only first 10 authors above; see publication for full author list.

Conference Name: 18th Annual SCMR Scientific Sessions Nice, France.
Publication Date: 2015-02-03
Type of Work: Poster
Publisher DOI: 10.1186/1532-429X-17-S1-M8
Permanent URL: https://pid.emory.edu/ark:/25593/s6ncp

Final published version:
https://jcmr-online.biomedcentral.com/articles/10.1186/1532-429X-17-S1-M8

Copyright information:
© 2015 Fridman et al; licensee BioMed Central Ltd.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

Accessed April 15, 2020 10:26 AM EDT
Myocardial fibrosis is associated with subsequent death and hospitalization for heart failure in obese adults

Yaron Fridman1,2, Timothy C Wong1,2, Kayla M Piehler1,2, Karolina M Zareba1,2, James Moon3, Martin Ugander4, Daniel Messroghli5, John M Jakicic13*, Uma Valeti6, Chung-Chou Chang7, Sanjeev G Shroff8, Christopher A Miller9, Matthias Schmitt9, Peter Kellman10, Javed Butler11, Mihai Gheorghiade12, Erik B Schelbert1,2

From 18th Annual SCMR Scientific Sessions
Nice, France. 4-7 February 2015

Background
Cardiac imaging in obese adults poses significant technical challenges, yet the prognostic value of diffuse myocardial fibrosis in obese adults quantified with cardiovascular magnetic resonance (CMR) extracellular volume fraction (ECV) measures is unknown. This issue is important because obesity increases the risks of death and hospitalization for heart failure (HHF). Myocardial fibrosis measured in obese adults with ECV may indicate vulnerability to death and HHF.

Methods
We enrolled 480 consecutive obese patients with a BMI >30 referred for cardiovascular magnetic resonance (CMR) without amyloidosis, stress cardiomyopathy, or hypertrophic cardiomyopathy. We quantified myocardial fibrosis with CMR ECV measures in noninfarcted myocardium. Patient data, BMI, hematocrit, were collected on the day of CMR, and we tracked outcomes prospectively.

Results
Median BMI was 35 (IQR 32-41), and median ECV was 27.7% (IQR 25.6%-30.9%, range). BMI and ECV were not related (p=0.90). Over a median 1.5 years (IQR 0.9-2.5yrs), 27 HHF events and 28 deaths occurred after CMR in 50 individuals. Adjusting for age, gender, renal function, myocardial infarction size, ejection fraction, hospitalization status, and heart failure stage, ECV in obese adults was associated with HHF (HR1.92 95%CI 1.40-2.65 for every 5% increase in ECV (ECV range: 16.6-45.8), death (HR 2.50 95%CI 1.59-3.95) or both (HR1.97 95%CI 1.44-2.70). ECV improved the classification of obese adults at risk and improved model discrimination for the composite outcome: e.g., HHF or death [continuous net reclassification improvement (NRI) 0.429, 95%CI 0.063-0.758; p=0.02; integrated discrimination improvement (IDI) 0.069, 95% CI 0.016-0.132; p=0.02].

Conclusions
Despite the challenges of cardiac imaging in obese adults, diffuse myocardial fibrosis quantified by ECV is associated with HHF, death, or both. Myocardial fibrosis may represent a principal marker of cardiac vulnerability that improves risk stratification even in the setting of obesity. Since myocardial fibrosis can be reversible, myocardial fibrosis and the fibroblast that regulates it may be attractive therapeutic targets in obese patients.

Funding
Dr. Schelbert was supported by a grant from The Pittsburgh Foundation,Grant M2009-0068, and an American Heart Association Scientist Development grant (09SDG2180083) including a T. Franklin Williams Scholarship Award; funding provided by: Atlantic Philanthropies, Inc., the John A. Hartford Foundation, the Association of Specialty Professors, and the AHA. Dr. Wong was supported by a grant K12 HS19461-01 from the AHRQ. Dr. Shroff’s research was supported by the McGinnis Endowed Chair funds. This work was also supported by Grant Number UL1 RR024153 from the National Center for Research Resources (NCRR), NIH.

1Health and Physical Activity, University of Pittsburgh, Pittsburgh, PA, USA
Full list of author information is available at the end of the article

© 2015 Fridman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Table 1: In multivariable models, EC in noninfarcted myocardium in obese patients remained associated with the combined endpoint of HHF/death. The addition of ECV improved the classification of individuals at risk (new reclassification improvement, NRI) and the discrimination of the model (integrated discrimination improvement, IDI).

<table>
<thead>
<tr>
<th>Multivariable Cox regression model</th>
<th>Hazard Ratio for every 5% increase in ECV (95% CI; p value)</th>
<th>Category free NRI (95% CI; p value)</th>
<th>Categorical NRI 0.05, 0.10 risk categories (95% CI; p value)</th>
<th>IDI (95% CI; p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling composite of HHF or death, stratified by heart failure stage and hospitalization status, adjusted for EF, age, glomerular filtration rate, myocardial infarction size, and gender</td>
<td>1.97 (1.44-2.70; p<0.001)</td>
<td>0.43 (0.06-0.76; p=0.02)</td>
<td>0.04 (0.005-0.079; p=0.02)</td>
<td>0.069 (0.016-0.132; p=0.02)</td>
</tr>
</tbody>
</table>