Molecular Characterization of Carbapenem-Resistant Enterobacteriaceae in the USA, 2011–2015

Uzma Ansari, Centers for Disease Control and Prevention
Adrian Lawsin, Centers for Disease Control and Prevention
Davina Campbell, Centers for Disease Control and Prevention
Valerie Albrecht, Centers for Disease Control and Prevention
Gillian McAllister, Centers for Disease Control and Prevention
Sandra Bulens, Centers for Disease Control and Prevention
Maroya Spalding Walters, Centers for Disease Control and Prevention
Jesse Jacob, Emory University
Sarah Satola, Emory University
Lucy E Wilson, Maryland Department of Health and Mental Hygiene

Journal Title: Open Forum Infectious Diseases
Volume: Volume 4, Number suppl_1
Publisher: Oxford University Press (OUP) | 2017-10-04, Pages S179-S179
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1093/ofid/ofx163.328
Permanent URL: https://pid.emory.edu/ark:/25593/s6g6g

Final published version: http://dx.doi.org/10.1093/ofid/ofx163.328

Copyright information:
© The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed December 14, 2017 11:24 AM EST
measures to minimize the economic impact of these infections and improve clinical outcomes in hospitalized patients.

Table 1. LOS and Hospital Cost

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD)</th>
<th>Median</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital LOS (days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDR PA</td>
<td>21 (19)</td>
<td>14</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-MDR PA</td>
<td>17 (16)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CR PA</td>
<td>22 (20)</td>
<td>14</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-CR PA</td>
<td>17 (16)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Hospital Costs (US $)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDR PA</td>
<td>91,178 (106,913)</td>
<td>51,845</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-MDR PA</td>
<td>11,178 (74,389)</td>
<td>39,973</td>
<td></td>
</tr>
<tr>
<td>CR PA</td>
<td>85,819 (101,457)</td>
<td>49,135</td>
<td></td>
</tr>
<tr>
<td>Non-CR PA</td>
<td>61,434 (62,717)</td>
<td>39,632</td>
<td></td>
</tr>
</tbody>
</table>

Janna L. Kerrins, VMD, MPH1; Angela Tang, MPH1; Stephanie Black, MD, MS2; Massimo Pacilli, MS MPH1; Michael Y. Lin, MD, MPH1; William E. Trick, MD1 and Sarah K. Kemble, MD2; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia, 1Chicago Department of Public Health, Chicago, Illinois, 2Illinois Department of Public Health, Chicago, Illinois, 3Cook County Health and Hospitals Systems, Chicago, Illinois

Session: 57. HAI: Surveillance + Reporting
Thursday, October 5, 2017: 12:30 PM

Background. Carbapenem-resistant Enterobacteriaceae (CRE) are a group of multidrug-resistant bacteria that cause ~9,000 infections annually; ~50% of CRE bloodstream infections are fatal. The use of contact precautions (CP) for CRE patients can prevent transmission. To improve CRE surveillance and interfacility communication about positive patients, Illinois implemented the extensively drug-resistant organism (XDRO) registry in 2013.

Methods. Chicago healthcare facilities must report a patient’s first CRE culture to reporting. Nine facilities (2 hospitals, 4 LTACHs and 3 SNFs) were in the registry; of these, 0/1 (0%) hospital, 3/27 (11%) LTACHs, and 8/24 (33%) SNFs reported CP for CRE but not reported to the registry, 11/12 (92%) were in LTACHs. Reported timeliness of reporting CRE patients to the XDRO registry varied significantly in identifying patients who should be on CP.

Results. Chicago facilities reported 2,469 CRE cases. Mean interval varied by facility type (hospitals: 8 days; SNFs: 10 days; LTACH: 55 days). Of patients on CP for CRE that were not reported to the registry, 11/12 were in LTACHs. Reported screening frequency was daily for 1 hospital and rarely for other facilities. Overall, 91 patients at 8 facilities were in the registry; of these, 0/1 (0%) hospital, 3/27 (11%) LTACH, and 28/43 (65%) SNF patients were not on CP.

Conclusion. Timeliness of reporting CRE patients to the XDRO registry varied by facility type and exceeded the 7-day timeframe. Routine registry querying can identify CRE patients who should be on CP. Querying was uncommon in surveyed facilities, identifying an opportunity to improve transmission precautions among CRE patients, particularly in SNFs.

Disclosures. M. Y. Lin, CareFusion Foundation: Grant Investigator, Research Grant

470. Antibiotic Resistance Increases with Local Temperature

Derek MacFadden, MD1; Sarah McGough, MSc2; David Fossum, MD3; Maurice Samillana, PhD1 and John Brownstein, PhD1; Infectious Diseases, University of Toronto, Toronto, ON, Canada, 1Harvard School of Public Health, Boston, Massachusetts, 2University of Toronto, Toronto, ON, Canada, 3Harvard Medical School, Boston, Massachusetts

Session: 57. HAI: Surveillance + Reporting
Thursday, October 5, 2017: 12:30 PM

Background. Antibiotic resistance is considered as one of our greatest emerging public health threats. Current understanding of the factors governing spread of antibiotic-resistant organisms and mechanisms among populations is limited.

Methods. We explored the roles of local temperature, population density, and additional factors on the distribution of antibiotic resistance across the United States, using a database of regional antibiotic resistance that incorporates over 1.6 million bacterial pathogen isolates from human clinical isolates over the years 2013–2015.

Results. We identified that increasing local temperature as well as population density were associated with increasing antibiotic resistance in common pathogens. An increase in temperature of 10°C was associated with increases in antibiotic resistance of 4.2%, 2.2%, and 3.6% for the common pathogens Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. The effect of temperature on antibiotic resistance was robust across almost all classes of antibiotics and pathogens and strengthened over time.

Conclusion. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and warming planet.

Figure 1. Antibiotic resistance increases with increasing temperature. (A) A heatmap of mean normalized antibiotic resistance for E. coli for all antibiotics across the USA. (B) A heatmap of 30-year average minimum temperature (°C) across the USA.

Disclosures. All authors: No reported disclosures.

Uzma Ansari, MS1; Adrian Lawsin, MS2; Davina Campbell, MPH1; Valerie Albrecht, MPH1; Gillian McAllister, BS1; Sandra Bulens, MPH1; Maroya Spalding Walters, PhD3; Charles Schleifer, MD4; Jesse T. Jacob, MD4; Sarah W. Satola, PhD4; Ruth Lynfield, MD5; Paula M Snippes Vagnone, MT (ASCP)1; Sarah J. Janelle, MPH6; CIC2; Karen Xavier, MT (ASCP)3; Gihwina Dumaty, MD6; FSHEA6; Dwight Hardy, PhD6; Erin C. Phipps, DVM, MPH1; Karissa Culbreath, PhD2,3,7; Zuntas Beldavs, MS7; Karim Mokbel, MS7; Marion A. Kainer, MBBS, MPH1,8; Sheri Roberts, MT1,9; Alexander Kallen, MD, MPH1,9; J. Kamile Rasheed, PhD1,9; and Maria S. Karlsson, PhD1,9; Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, 1Georgia Emerging Infections Program, Decatur, Georgia, 2Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, 3Georgia Emerging Infections Programs, Atlanta, Georgia, 4Maryland Department of Health and Mental Hygiene, Baltimore, MD, 5Minnesota Department of Health, St. Paul, Minnesota, 6Colorado Department of Public Health and Environment, Denver, Colorado, 7New York Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, 8New Mexico Emerging Infections Program, University of New Mexico, Albuquerque, New Mexico, 9TriCore Reference Laboratories, Albuquerque, New Mexico, 10University of New Mexico School of Medicine, Albuquerque, New Mexico, 11Oregon Health Authority, Portland, OR, 12Tennessee Department of Public Health, Nashville, TN

Session: 57. HAI: Surveillance + Reporting
Thursday, October 5, 2017: 12:30 PM

Background. Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as an important cause of healthcare-associated infections. We characterized the molecular epidemiology of CRE in isolates collected through the Emerging Infections Program (EIP) at the Centers for Disease Control and Prevention (CDC).

Methods. From 2011–2015, 8 U.S. EIP sites (CO, GA, MD, MN, NY, TN and OR) collected CRE (Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae complex, Klebsiella pneumoniae, and Klebsiella oxytoca) isolated from a normally sterile site or urine. Isolates were sent to CDC for reference antimicrobial susceptibility testing and real-time PCR detection of carbapenemase genes (blaKPC, blaNDM, blaOXA-48).

Results. Among 639 Enterobacteriaceae evaluated, 414 (65%) were phenotypically confirmed as CRE using CDC’s current surveillance definition (resistant to cefepime, imipenem, doripenem, or meropenem). Among isolates confirmed as CRE, 303 (73%) were carbapenemase-producers (CP-CRE). The majority of CP-CRE originated from GA (39%), MD (35%) and MN (11%); most non-CR CREs originated from MN (27%), CO (25%) and OR (17%). K. pneumoniae was the predominant carbapenemase-producing species (78%) followed by E. cloacae complex spp (12%), E. coli (7%), E. aerogenes (0.9%) and K. oxytoca (0.6%). The most common carbapenemase genes detected were blaKPC (76%) and blaNDM (19%); blaOXA and blaOXA-like genes were detected in 1.6% and 0.3% of isolates, respectively. For carbapenemase-producing K. pneumoniae, Enterobacter spp, and E. coli, the predominant sequence types (ST) were ST258 (65%), ST171 (35%) and ST131 (29%), respectively.

Conclusion. The distribution of CP and non-CP-CRE varied across the catchment areas. Among CRE-CRE, KPC-producing K. pneumoniae predominated; other carbapenemases were rarely identified in the locations under surveillance. Strain types known to have increased epidemic potential (ST258 and ST131) were common among carbapenemase-producing K. pneumoniae and E. coli isolates, respectively.

Disclosures. All authors: No reported disclosures.

472. Instituting Public Health Laboratory Surveillance for Methicillin-resistant Staphylococcus aureus (MRSA), Extended-Spectrum B Lactamase producing Enterobacteriaceae (ESBL), and Carbapenem-resistant Enterobacteriaceae (CRE) in a Large Metropolitan County