Table 3. Multivariate analysis of 30-day infection-related mortality

<table>
<thead>
<tr>
<th>OR</th>
<th>p value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.098</td>
<td>0.031</td>
<td>1.176</td>
</tr>
<tr>
<td>3.038</td>
<td>0.281</td>
<td>0.403</td>
</tr>
</tbody>
</table>

Disclosures. All authors: No reported disclosures.

1779. Prevalence of and Factors Associated with *Clostridium difficile* Co-infection Among Patients with Candidemia, United States, 2014–2016

Sharon Tay, MD;2 Kai Lin, MD;1 Sharon G. Beldavs, MD;3 Monica M. Farley, MD, FIDSA;1 Lee H. Harrison, MD;3 William Schaffner, MD, FIDSA, FSHEA;3,4 Taryn Gross, MPH;1 Tom Chiller, MPH;1 Sohdiga Vallabhaneni, MD, MPH;1 Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia; Epidemiologic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia;3 Oregon Health Authority, Portland, Oregon;1 Oregon Emerging Infections Program, Portland, Oregon; Georgia Emerging Infections Program, Atlanta, Georgia;2 Department of Medicine, Emory University School of Medicine and Atlanta VA Medical Center, Atlanta, Georgia;1 Maryland Emerging Infections Program, Baltimore, MD; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD;1 Vanderbilt University School of Medicine, Nashville, Tennessee;2 Tennessee Emerging Infections Program, Nashville, Tennessee

Session: 216. The Fungus Among Us – Clinical Advances
Saturday, October 7, 2017: 8:30 AM

Background. Candidemia and *Clostridium difficile* infection (CDI) are two common healthcare-associated infections (HAIs) and share risk factors such as antibiotic use and prolonged hospitalization. CDI and CDI treatment disrupt gut microbial diversity; allowing *Candida* overgrowth and translocation to the bloodstream. We describe CDI co-infection among patients with candidemia.

Methods. Population-based surveillance for candidemia was conducted through CDC's Emerging Infections Program during 2014–2016. A case of candidemia was defined as a blood culture positive for *Candida* species collected from a surveillance area resident. Demographic and medical information, including occurrence of CDI was collected. We defined co-infection as CDI within 90 days of candidemia and performed bivariable analysis to assess factors associated with co-infection.

Results. Among 2129 cases of candidemia, 190 (9%) had CDI co-infection; 116 (61%) were male. The median age was 61 years and 100 (53%) were male. Compared with candidemia alone, the co-infection group had significantly more patients with cancer (54% vs. 40%), patients requiring mechanical ventilation (25% vs. 14%), renal failure (17% vs. 9%), and sepsis (74% vs. 62%). Those with co-infection was 61 years and 100 (53%) were male. Compared with candidemia alone, the co-infection group (8% vs. 13%) had a higher rate of CDI within 90 days of candidemia (OR 1.78, 1.20–2.66), and central venous catheter (CVC) at the time of candidemia (OR 1.57–3.28), hospital stay in the past 90 days (OR 1.9, 1.37–2.64), ICU admission in the past 14 days (OR 1.91, 1.01–3.61), or solid organ transplant (OR 4.15, 2.09–8.22). Those with co-infection were more likely to have documented diarrhea prior to symptomatic disease requiring prolonged hospitalization, it would be approximately cost neutral ($11.5 million), and even cost saving if above 80% of hospitalizations are averted. Alternatively stated, for every one hospitalization avoided, 425 persons could be CRAG screened for similar cost and likely better outcome. (Figure 1)

Conclusion. Assesment of the ability of routine screening to identify 75% of patients who would develop invasive cryptocciosis; CRAG screening every 3 months among SOT recipients likely would be at least cost neutral to the healthcare system. Antecedent duration of cryptococcal antigenemia prior to symptomatic disease in Non-HIV/SOT cohorts should validate this approach to save lives in a cost-effective manner. (Table 1)

Disclosures. All authors: No reported disclosures.

1781. Galidesivir, a Direct-Acting Antiviral Drug, Abrogates Viremia in Rhesus Macaques Challenged with Zika Virus

So-Yon Lim, PhD;1 Christa Osuna, PhD;1 Jessica Lakritz, PhD;1 Elsa Chen, M.Sc.;1 Gyeol Yoon, M.Sc.;1 Ray Taylor, MBA;2 Steve MacLennan, PhD;2 Michael Leonard, PhD;2 Enzo Giuliano, PhD;3 Amanda Mathis, PhD;3 Elliott Berger, PhD;2 Ys Babu, PhD;2 William Sheridan, MB BS;2 and James Whitney, PhD;3 Beth Israel Deacoxs Medical Center, Boston, Massachusetts;3 BioCryst Pharmaceuticals Inc; Durham, North Carolina;3 Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts

Session: 217. Zika - A to Z
Saturday, October 7, 2017: 8:30 AM

Background. Zika virus (ZIKV) was first isolated from a sentinel rhesus monkey in 1947. ZIKV infection in humans is associated with serious neurological and reproductive complications. No antiviral or protective vaccine is yet available. Galidesivir an adenosine analog is a potent viral RNA-dependent RNA polymerase inhibitor with demonstrated broad-spectrum antiviral activity.

Methods. We have conducted four pre-clinical studies in rhesus macaques to demonstrate antiviral efficacy and dosing strategies of galidesivir against ZIKV infection. Collectively, we have evaluated seven ZIKV challenged rhesus macaques using a 10^10 TCID50 of a Puerto Rican ZIKV isolate. We have evaluated galidesivir therapy administered via IM injection as early as 90 minutes and up to 72 hours after subcutaneous (SC) ZIKV challenge, and as late as 5 days after intravaginal (IVAG) challenge. In these studies, we evaluated the efficacy of a range of loading and maintenance doses of galidesivir. The highest dose evaluated has been a loading dose of 100mg/kg BID followed by a maintenance dose of 25mg/kg BID for nine days. We followed multiple endpoints, including ZIKV RNA levels in plasma, urine, saliva, and cerebrospinal fluid. Immune activation, complete blood counts, chemistries and galidesivir pharmacokinetics were also monitored.

Results. Galidesivir was well-tolerated in all studies. All untreated controls developed high-level plasma viremia, and had readily detectable ZIKV RNA in CSF, saliva, and urine in the first 3 days after SC ZIKV challenge. These animals did not develop plasma viremia and were either negative or had significantly reduced ZIKV RNA in bodily fluids. Animals treated with galidesivir later (up to 72 hours) were partially protected; they had detectable ZIKV RNA plasma, but the onset was delayed and the magnitude significantly reduced compared with controls. Animals infected IVAG were protected by galidesivir treatment up until day 5 after infection, with no blood viremia and significant reductions in ZIKV RNA in the CSF as compared with controls.

Conclusion. Galidesivir dosing in rhesus macaques was well-tolerated and offered significant protection against ZIKV infection. These results warrant continued study and clinical evaluation.

1782. Outcomes of women with laboratory evidence of Zika infection in pregnancy

Naomichi Gomatare, BS;1 Michelle Barletta, BA;2 Anise Crane, BS;3 Samantha Greissman, BA, MPP;4 Jacklyn Kral, BA;5 Meghan Lardy, BS;6 Michelle Picon, MD;7 Rebecca Starke, BS;8 Colette Tse, BA;9 Patricia Rodriguez, MD;10 Ivan Gonzalez, MD;10 Christine Curry, MD, PhD;1; University of Miami Miller School of Medicine, Miami, Florida;1 Jackson Memorial Hospital, Miami, Florida

Session: 217. Zika - A to Z
Saturday, October 7, 2017: 8:30 AM

Background. Zika virus (ZIKV) infection in pregnancy is a global health concern. With onset of local transmission, obstetricians in Miami-Dade County, FL,