Socioeconomic Status Factors Associated with Increased Incidence of Community-Associated Clostridium difficile Infection

Kimberly Skrobarcek, Centers for Disease Control and Prevention
Yi Mu, Centers for Disease Control and Prevention
Lisa G. Winston, University of California
Geoff Brousseau, Colorado Department of Public Health and Environment
Carol Lyons, Yale School of Public Health
Monica Farley, Emory University
Rebecca Perlmutter, Maryland Department of Health and Mental Hygiene
Stacy Holzbauer, Minnesota Department of Health
Erin C. Phipps, University of New Mexico
Ghinwa Dumyati, University of Rochester

Only first 10 authors above; see publication for full author list.

Journal Title: Open Forum Infectious Diseases
Volume: Volume 4, Number suppl_1
Publisher: Oxford University Press (OUP) | 2017-10-04, Pages S381-S381
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1093/ofid/ofx163.944
 Permanent URL: https://pid.emory.edu/ark:/25593/s6fzd

Final published version: http://dx.doi.org/10.1093/ofid/ofx163.944

Copyright information:
© The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed December 1, 2019 10:52 AM EST
Background. Recurrent Clostridium difficile infection (rCDI) poses major challenges to healthcare providers and patients. Fecal Microbiota Transplantation (FMT) is an effective therapy for rCDI, but the exact mechanism of its efficacy is unknown. Current metagenomics literature indicates that abundance of Bacteroidetes and Firmicutes may protect against CD proliferation and recurrence. However, this is too broad to be useful for developing refined and targeted microbial-specific therapy for rCDI, because the long-term safety of FMT remains unknown. We examined the phylogeny of bacteria pre- and post-FMT to determine the key organisms associated with successful FMT to the genera level.

Methods. A subset of patient stool samples (n = 35) from a phase 2 study comparing fresh vs. frozen FMT for rCDI was sequenced at four time points: pre-FMT; at day 10; at week 5; and at week 13, following the last FMT. The matching donor stool was sequenced simultaneously with the corresponding patients’ pre- and post-FMT samples.

Results. Using the binary outcome to a single FMT as the response, we developed an in-house machine learning algorithm, Φ-LASSO, to isolate key genera using the bacterial phylogenetic structure. Engraftment was defined as: newly detected operational taxonomic unit (OTUs) in the patient post-FMT, which were present in the donor but undetected in the patient pre-FMT. Augmentation was defined as: non-donor OTUs whose levels substantially increased post-FMT. Figure 1 (below) displays the distribution of engrafted and augmented OTUs at varying thresholds. We observed increases over time points within each threshold level.

Figure 1: Observed (a) engraftment of distinct donor OTUs on patients and (b) augmentation of distinct OTUs in patients for day 10 (D10), week 5 (W5), and week 13 (W13) post-treatment.

Conclusion. In this preliminary study, using Φ-LASSO, we have shown that specific microbes to the genera level are uniformly present in successful FMT. This information may lead to developing refined and targeted microbial-therapy for rCDI.

Disclosures. All authors: No reported disclosures.

1247. Lyophilized Fecal Microbiota Transplantation Capsules for Recurrent Clostridium difficile Infection
Hebert Dupont, MD1; Zhi-Dong Jiang, MD, DrPH2; Ashley Alexander, MHS3; Nadim Ajami, PhD4; Joseph F. Petrosino, PhD1; Andrew W. DuPont, MD, MS5; Shi Ke, MD1; Goo Jun, PhD3 and Craig Hanis, PhD3; UT School of Public Health, Houston, Texas, 1Texas A&M University, College Station, Texas, 2Baylor College of Medicine, Houston, Texas, 3Department of Molecular Virology and Immunology, Baylor College of Medicine, Houston, Texas, 4Internal Medicine, University of Texas Medical School, Houston, Texas, 5Center for Infectious Diseases, The University of Texas School of Public Health, Houston, Texas, 6University of Texas School of Public Health, Houston, Texas

Session: 148. C. difficile: From the Bench to Bedside
Friday, October 6, 2017: 12:30 PM

Background. Fecal microbiota (FM) transplantation (FMT) is a highly effective treatment of recurrent C. difficile infection (rCDI). We have published data showing efficacy of fresh, frozen and lyophilized donor microbiota administered by colonoscopy. Most groups are moving toward use of frozen product given by enema and in evaluating encapsulated product for oral delivery.

Methods. This was a prospective, randomized study of subjects with rCDI (≥ 3 episodes) treated with encapsulated lyophilized FM 100 g given once or 100 g given on two successive days (total 200 g) vs. frozen FM product 100 g given by single enema by 100 g of frozen product (P = 0.239). In the second phase of the study cure rate for oral capsules 200 g FM was 17/19 (91%) vs. 20/21 (94%) for the subjects treated by enema by 100 g of frozen product (P = 0.782). No side effects were felt to be related to the procedure or the FMT products were recorded during 6 months follow-up. Two subjects died during follow-up between 3 and 6 months after study due to underlying medical conditions felt to be unrelated to FMT. Microbiota analysis were performed on 40 subjects of which 19/40 (48%) had received capsules. Figure 1 showed that restoration of the intestinal microbiome diversity and Taxa began apparent by 2 days after FMT in both groups and resembled the donor product by 2 weeks with stabilization of the microbiota diversity and Taxa persisting for the 90 days of observation.

Conclusion. Administration of encapsulated, lyophilized FM resulted in durable restoration of intestinal microbiome diversity comparable to results seen with frozen product given by enema.

Disclosures. All authors: Submitted P-10845.