Socioeconomic Status Factors Associated with Increased Incidence of Community-Associated Clostridium difficile Infection

Kimberly Skrobarcek, Centers for Disease Control and Prevention
Yi Mu, Centers for Disease Control and Prevention
Lisa G. Winston, University of California
Geoff Brousseau, Colorado Department of Public Health and Environment
Carol Lyons, Yale School of Public Health
Monica Farley, Emory University
Rebecca Perlmutter, Maryland Department of Health and Mental Hygiene
Stacy Holzbauer, Minnesota Department of Health
Erin C. Phipps, University of New Mexico
Ghinwa Dumyati, University of Rochester

Only first 10 authors above; see publication for full author list.

Journal Title: Open Forum Infectious Diseases
Volume: Volume 4, Number suppl_1
Publisher: Oxford University Press (OUP) | 2017-10-04, Pages S381-S381
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1093/ofid/ofx163.944
Permanent URL: https://pid.emory.edu/ark:/25593/s6fzd

Final published version: http://dx.doi.org/10.1093/ofid/ofx163.944

Copyright information:
© The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed June 17, 2018 11:33 PM EDT
Background. Recurrent Clostridium difficile infection (rCDI) poses major challenges to healthcare providers and patients. Fecal Microbiota Transplantation (FMT) is an effective therapy for rCDI, but the exact mechanism of its efficacy is unknown. Current metagenomics literature indicates that abundance of Bacteroides and Firmicutes may protect against CD proliferation and recurrence. However, this is too broad to be useful for developing refined and targeted microbial-specific therapy for rCDI, because the long-term safety of FMT remains unknown. We examined the phylogeny of bacteria pre- and post- FMT to determine the key organisms associated with successful FMT to the genera level.

Methods. A subset of patient stool samples (n = 35) from a phase 2 study comparing fresh vs. frozen FMT for rCDI was sequenced at four time points: pre-FMT; at day 10; at week 5; and at week 13, following the last FMT. The matching donor stool was sequenced simultaneously with the corresponding patients' pre- and post-FMT samples.

Using the binary outcome to a single FMT as the response, we have developed an in-house machine learning algorithm, Φ-LASSO, to isolate key genera using the bacterial phylogenetic structure.

Engraftment was defined as: newly detected operational taxonomic unit (OTU) in the patient post-FMT, which were present in the donor but not detected in the patient pre-FMT. Augmentation was defined as: non-donor OTUs whose levels substantially increased post-FMT.

Figure 1 (below) displays the distribution of engrafted and augmented OTUs at varying thresholds. We observed increases over time points within each threshold level.

Results. Akkermansia, Blautia and Roseburia appear to be key genera for successful FMT. The Φ-LASSO fits with consistently positive coefficients, see Figure 2.

Conclusion. In this preliminary study, using Φ-LASSO, we have shown that specific microbes to the genera level are uniformly present in successful FMT. This information may lead to developing refined and targeted microbial-therapy for FMT.

124. Lyophilized Fecal Microbiota Transplantation Capsules for Recurrent Clostridium difficile Infection

Hiberti Dupont, MD1; Zhi-Dong Jiang, MD, DrPH2; Ashley Alexander, MHSA3; Nadim Ajami, PhD4; Joseph P. Petrosino, PhD4; Andrew Wu-DuPont, MD, MS5; Shi Ke, MD6; Goo Jun, PhD3 and Craig Hais, PhD7; 1UT School of Public Health, Houston, Texas, 3Kelsey Research Fundation, Houston, Texas, 4Baylor College of Medicine, Houston, Texas, 6Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 7Minnesota Department of Health, St. Paul, Minnesota, University of New Mexico, New Mexico Emerging Infections Program, Albuquerque, New Mexico, 8University New York Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, 9Oregon Health Authority, Portland, Oregon, 10Mississippi Department of Health, Jackson, Mississippi

Session: 148. C. difficile: From the Bench to Bedside Friday, October 6, 2017: 12:30 PM

Background. Fecal microbiota (FM) transplantation (FMT) is a highly effective treatment of recurrent C. difficile infection (rCDI). We have published data showing efficacy of fresh, frozen and lyophilized donor microbiota administered by colonoscopy. Most groups are moving toward use of frozen product given by enema and in evaluating encapsulated product for oral delivery.

Methods. This was a prospective, randomized study of subjects with rCDI (≥ 3 episodes) treated with encapsulated lyophilized FM 100 g given once or 100 g given on two successive days (total 200 g) vs. frozen FM product 100 g given by single retention enema, between March 2015 and February 2017. The clinical outcome was absence of CDI during the 60 days after FMT. The subjects were followed for 90 days of observation.

Results. Of 9686 CA-CDI cases, 9417 (97%) had addresses geocoded to a CT; of these, 62% were female, 82% were white, and 35% were aged ≥65 years. Annual CA-CDI incidence was 42.9 per 100,000 persons. After adjusting for age, sex and race, CT-level clustering effects, separate generalized linear mixed models with negative binomial distribution were used to evaluate the association between each SES factor and CA-CDI incidence, adjusted by age, sex and race.

Results. No reported disclosures.

Disclosures. All authors: No reported disclosures.

124. Socioeconomic Status Factors Associated with Increased Incidence of Community-Associated Clostridium difficile Infection

Kimberly Skrobark, MD1; Yi Mu, PhD2; Lisa G. Winston, MD3; Geoff Broussard, MPH4; Carol Lyons, MS5; MPH1; Monica Farley, MD, FIDSA1; Rebecca Perlmutter, MPH7; Stacy Holzbauer, DVM, MPH, DACVPM1; Erin C. Phelps, DVM, MPH2; Ghinwa Dunyati, MSc, FSHEA3; Zintars G. Beldavs, MS10; Marien Kainer, MBBS, MPH, FSHEA7 and Alice Gul, MD, MPH8; 1Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, 2Medicine, University of California, San Francisco and Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California, 3Colorado Department of Public Health and Environment, Denver, Colorado, 4Yale School of Public Health, Connecticut Emerging Infections Program, New Haven, Connecticut, 5Department of Medicine, Emory University School of Medicine and Atlanta VA Medical Center, Atlanta, Georgia, 6Maryland Department of Health and Mental Hygiene, Baltimore, MD, 7Minnesota Department of Health, St. Paul, Minnesota, 8University of New Mexico, New Mexico Emerging Infections Program, Albuquerque, New Mexico, 9New York Emerging Infections Program at the University of Rochester Medical Center, Rochester, New York, 10Oregon Health Authority, Portland, Oregon, 11Tennessee Department of Health, Nashville, Tennessee

Session: 148. C. difficile: From the Bench to Bedside Friday, October 6, 2017: 12:30 PM

Background. Traditionally a hospital-acquired pathogen, Clostridium difficile is increasingly recognized as an important cause of diarrhea in community settings. Health disparities in C. difficile infection (CDI) have been reported, but little is known about the social determinants of health that influence community-associated (CA) CDI incidence. We sought to identify socioeconomic status (SES) factors associated with increased CA-CDI incidence.

Methods. Population-based CDI surveillance is conducted in 35 U.S. counties through the Centers for Disease Control and Prevention’s Emerging Infections Program. A CA-CDI case is defined as a positive C. difficile stool specimen collected as an outpatient or within three days of hospitalization in a person aged ≥ 1 year who did not have a positive test in the prior 8 weeks or an overnight stay in a healthcare facility in the prior 12 weeks. ArcGIS software was used to geocode 2014–2015 CA-CDI case addresses to a 2010 census tract (CT). Incidence rate was calculated using 2010 Census population denominators. CT-level SES factors were obtained from the 2011–2015 American Community Survey 5-year estimates and divided into deciles. To account for CT-level clustering effects, separate generalized linear mixed models with negative binomial distribution were used to evaluate the association between each SES factor and CA-CDI incidence, adjusted by age, sex and race.

Results. No reported disclosures.

Disclosures. All authors: No reported disclosures.

124. Prevalence of Clostridium difficile and Multidrug Resistant Gram-negative Rods in the Soil from Southeastern Wisconsin

Angela Lon, NA1; Cathy Tran, N/A1; Annette Jenson, BSMT/ASCP/SM, CIC2; Jennifer Caldwell, BS3; Curtis Donosky, MD3 and J. Silva Munoz-Price, MD, PhD2; 2Divine Savior Holy Angels High School, Milwaukee, Wisconsin, 3Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 3Research Service, Cleveland VA Medical Center, Cleveland, Ohio, 4Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 5Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin

Session: 148. C. difficile: From the Bench to Bedside Friday, October 6, 2017: 12:30 PM

Background. Preliminary data suggests that community-onset Clostridium difficile might be more common in rural areas. Thus, farms—specifically livestock