477. Comparison of Clinical Characteristics and Outcomes Between Community-Acquired and Healthcare-Associated Bacteremia Cases due to Bacteroides Species

Poster Abstracts

40.1 (53.5), B. ureolyticus species 0.78 11 (30.6) ureus 0.03 0.88 13 (33.3) - 6 (16.7) n = 22 (75.9) P-value 2 (7.4) (1 [1.5%]), and B 0.20 - P = 14 (37.8) 0.31 0.33 27 (72.2)

Disclosures. All authors: No reported disclosures.

478. Hospital Onset Staphylococcus aureus Bacteremia is a Better Measure than MRSA Bacteremia in Assessing Infection Prevention: Evaluation of 51 US Hospitals

Mohamed Fakhk, MD, MPH, Rebecca Batteas, MPH; Lisa Sturm, MPH, Lindsey Jones, BS; Clarject Groves, MS; Angelo Rufalino, PhD and Ann Hendrich, PhD, RN; Care Excellence, Ascension, St. Louis, Missouri

Session: 57. HA1: Surveillance + Reporting
Thursday, October 5, 2017: 12:30 PM

Background. Differences in clinical characteristics and outcomes between community-acquired (CA) and healthcare-associated (HCA) Bacteroides bacteremia cases are not well known.

Methods. We evaluated all positive blood cultures between March 2012 and December 2016 in a Japanese 781-bed acute hospital. Identification and susceptibility was performed based on CLSI criteria, and MALDI-TOF has been used since January 2015 in addition to conventional methods.

Results. Of 3611 bacteremia cases, 266 (7.4%) were due to obligately anaerobic bacteria, such as Clostridium species (n = 97 [36.5%]), Fusobacterium species (15 [7.5%]), and Bacteroides species (65 [24.4%]), of which 31 (47.7%) were HCA and 34 (52.3%) were CA. In 22 (33.8%) cases, > 2 blood cultures were positive. B. fragilis was most frequently isolated (n = 25 [38.5%]), then B. thetaiotaomicron (n = 9 [13.8%]), B. vulgatus (n = 5, [7.7%]), B. uniformis (n = 3 [4.6%]), B. dantisani (n = 2 [3.1%]), B. ruminicola (n = 2 [3.1%]), B. capillosus (n = 1 [1.5%]), and B. ovatus (n = 1 [1.5%]). After introducing MALDI-TOF, the number of unidentified Bacteroides species fell from 12 (18.5%) to 5 (7.7%). Sensitivity to ampicillin/sulbactam, cefmetazole, and clindamycin was 85.2%, 92.6%, and 59.3%, respectively. Most bacteremia (51 [78.5%]) were of intra-abdominal origin. Baseline characteristics and immunocompromised status of HCA and CA bacteremia bacteremia patients were similar except for diabetes, which was more frequent in HCA cases (Table). There was significantly higher 7- and 30-day mortality in HCA than in CA cases (P = 0.03).

Conclusion. The higher mortality in HCA Bacteroides bacteremia suggests the need for appropriate multidisciplinary management of these cases.

Comparison of HCA vs. CA bacteremia episodes due to Bacteroides species

<table>
<thead>
<tr>
<th>CA (n = 31)</th>
<th>HCA (n = 34)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (SD)</td>
<td>75.2 (11.9)</td>
<td>68.3 (17.5)</td>
</tr>
<tr>
<td>Male</td>
<td>22 (73.5)</td>
<td>27 (77.2)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3 (10)</td>
<td>13 (33.3)</td>
</tr>
<tr>
<td>Solid tumor</td>
<td>9 (31)</td>
<td>16 (45.7)</td>
</tr>
<tr>
<td>B. fragilis</td>
<td>8 (26.7)</td>
<td>15 (58.6)</td>
</tr>
<tr>
<td>B. thetaiotaomicron</td>
<td>5 (17.2)</td>
<td>4 (13.0)</td>
</tr>
<tr>
<td>7-day mortality</td>
<td>0 (0)</td>
<td>6 (16.7)</td>
</tr>
<tr>
<td>30-day mortality</td>
<td>11 (20.6)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mean length of stay</td>
<td>35.7 (26.5)</td>
<td>40.1 (51.5)</td>
</tr>
<tr>
<td>after bacteremia (SD)</td>
<td>14 (32.8)</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Disclosures. All authors: No reported disclosures.

479. Preventability of Hospital Onset Bacteremia and Fungemia: A Pilot Study of a Potential New Indicator of Healthcare-Associated Infections

Raymund Daniels, MD, MPH1,2; Clare Rock, MD MS3; Aaron M. Milstone, MD, MHS; FIDSA, FSHEA1, Jesse T. Jacob, MD, MS1; Sheri Chernetsky-Tejedor, MD3; Anthony D. Harris, MD, MPH1 and Surbhi Leekha, MBBS, MPH1; Emory University Hospital, Atlanta, Georgia, 1Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, 2Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 3Pediatrics, The Johns Hopkins Medical Institutions, Baltimore, Maryland, 4Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, 5Division of Hospital Medicine, Emory University Hospital, Atlanta, Georgia, 6Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland

Session: 57. HA1: Surveillance + Reporting
Thursday, October 5, 2017: 12:30 PM

Background. Central-line associated bloodstream infections (CLABSI) are a subset of hospital-onset bacteremia and fungemia (HOB), a potential indicator of healthcare-associated infections (HAIs) that can be objectively and directly obtained from electronic health records. We undertook a pilot study to elucidate the causes and determine the preventability of HOB.

Methods. HOB was defined as growth of a microorganism from a blood culture obtained ≥3 calendar days after admission in a hospitalized patient. A random sampling of HOB events across 2 academic hospitals and a pediatric intensive care unit in a third academic hospital were identified between October 1, 2014 and September 30, 2015. Medical records were reviewed to identify potential risk factors and sources of bacteremia. Two physicians used underlying patient factors, microorganism, and other clinical data to rate the preventability of each HOB event in an “ideal hospital” on a 6-point Likert scale.

Results. Medical records for 60 HOB events (20 in each hospital) were reviewed. The most common organisms were coagulase-negative Staphylococcus (28%) and Candida spp. (17%) (Figure 1). The most likely sources of bacteremia and fungemia included CLABSI (28%) and skin contaminants/commensals (17%) (Figure 2). Forty-nine percent of HOB events not associated with skin commensals were rated as potentially preventable (Figure 3). Fifty percent of HOB events randomly sampled across 2 hospitals occurred in an intensive care unit. Central venous catheters, urinary

Results. 340 HO S. Aureus bacteremia events (1.22 per 10,000 patient-days) occurred during calendar year 2016 (MSAA n = 218, 64%; MRSA n = 122, 36%). 14/15 small hospitals did not have any HO S. Aureus bacteremia events during the study period. HO MSSA bacteremia rates were 0.58 and 0.77 per 10,000 patient-days for medium size and large-size hospitals respectively (P = 0.094). In contrast, HO MRSA bacteremia rates were 0.71 and 0.47 per 10,000 patient-days for medium size and large-size hospitals respectively (P = 0.045). There was no correlation between HO MSSA and MRSA bacteremia for large and medium size hospitals (Figure).

Conclusion. By measuring only HO MRSA, a significant portion of patients with increased morbidity and mortality are overlooked. HO S. Aureus bacteremia may provide a better measure to use to evaluate invasive S. aureus risk in the hospital setting, and would mitigate the MRSA prevalence factor. These findings are important when we evaluate policy-related to what is considered a hospital acquired condition.

Figure: Relation between HO MSSA and MRSA Bacteremia for Based on Hospital Size.

Disclosures. All authors: No reported disclosures.
catheters, and mechanical ventilation were present in the previous 2 days among 73%, 20%, and 25% of all HOB events, respectively. Only 10% of all HOB events occurred in a patient without an indwelling device. Only 20% of HOB events resulted in a National Healthcare Safety Network (NHSN) reported CLABSI.

Conclusion. Half of HOB events are potentially preventable in this pilot study. HOB may be an indicator for a large number of preventable HAIs not currently measured by NHSN. Larger studies across a variety of hospital settings are needed to assess the generalizability of these results the implications of HOB surveillance for infection prevention practices and patient outcomes.

Methods. The project was conducted at a 120-bed hospital within the Central Texas Veterans Healthcare System (CTVHCS). Rooms selected for inclusion were marked with a fluorescent marker in predetermined locations by a member of the research team. When the EMS staff person completed the routine cleaning process, member of the research team recorded the fluorescent score and obtained microbiological samples from the room. The aerobic bacterial colony (ABC) count for pre-cleaning and post-manual cleaning was also categorized into “clean” and “not-clean” categories, where clean was defined as ABC counts <2.5 CFU/cm².

Results. A chi-squared test of independence revealed that there was no association between surfaces considered “clean” according to ABC criteria and “clean” according to fluorescent marker score, chi-square = 1.6167, df = 1, P = 0.20. A mixed effects logistic regression model showed that fluorescent clean score was not a significant predictor of a clean surface as defined by the <2.5 CFU/cm² criteria (P = 0.96).

Conclusion. While the fluorescent marker has been shown to be useful for determining if a surface has been wiped, our results show that fluorescent marker score may not be a good proxy for assessing surface disinfection. Our results suggest that fluorescent markers only determine if the manual process of wiping has been conducted without taking into account other variables that play a role in disinfecting the surface.

Disclosures. C. Jinadatha, Xenex healthcare Services: CRADA, Research support

481. How Clean Are the Clinics? Assessment of Environmental Cleanliness in Ambulatory Care

Mark E. Rupp, MD; Courtney Olson, BS; R. Jennifer Cavalieri, RN; Elizabeth Lyden, MS; and Philip Carling, MD; Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska; Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska; University of Nebraska Medical Center, Omaha, Nebraska; College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Medicine, Boston University School of Medicine, Boston, Massachusetts

Session: 58. HAI: The Environment Thursday, October 5, 2017: 12:30 PM

Background. The patient care environment plays an important role in the transmission of potential pathogens. Efforts to improve the thoroughness of environmental cleaning and disinfection have largely concentrated on ICUs and other inpatient units. The purpose of this study was to ascertain baseline data on the thoroughness of cleaning in ambulatory care clinics.

Methods. High touch surfaces (exam tables, chair arms, light switches, etc.) in patient rooms, waiting rooms, and clinic common areas were marked with an invisible, UV-tagged gel (DAZO® Ecolab) in the AM and PM to assess thoroughness of cleaning process. A mixed methods approach was used to gauge effectiveness of cleaning activities. These methods include visual inspection, Adenosine Triphosphate (ATP) bioluminescence markers, fluorescent markers, and microbiological sampling. Although microbiological sampling is considered the “gold standard,” it is expensive and time consuming; therefore, alternative methods such as fluorescent markers are more commonly used. The purpose of this study was to determine whether fluorescent clean score was associated with a clean surface as determined by microbiological sampling.

Results. Half of HOB events are potentially preventable in this pilot study. HOB may be an indicator for a large number of preventable HAIs not currently measured by NHSN. Larger studies across a variety of hospital settings are needed to assess the generalizability of these results the implications of HOB surveillance for infection prevention practices and patient outcomes.

Methods. The project was conducted at a 120-bed hospital within the Central Texas Veterans Healthcare System (CTVHCS). Rooms selected for inclusion were marked with a fluorescent marker in predetermined locations by a member of the research team. When the EMS staff person completed the routine cleaning process, member of the research team recorded the fluorescent score and obtained microbiological samples from the room. The aerobic bacterial colony (ABC) count for pre-cleaning and post-manual cleaning was also categorized into “clean” and “not-clean” categories, where clean was defined as ABC counts <2.5 CFU/cm².

Results. A chi-squared test of independence revealed that there was no association between surfaces considered “clean” according to ABC criteria and “clean” according to fluorescent marker score, chi-square = 1.6167, df = 1, P = 0.20. A mixed effects logistic regression model showed that fluorescent clean score was not a significant predictor of a clean surface as defined by the <2.5 CFU/cm² criteria (P = 0.96).

Conclusion. While the fluorescent marker has been shown to be useful for determining if a surface has been wiped, our results show that fluorescent marker score may not be a good proxy for assessing surface disinfection. Our results suggest that fluorescent markers only determine if the manual process of wiping has been conducted without taking into account other variables that play a role in disinfecting the surface.

Disclosures. C. Jinadatha, Xenex healthcare Services: CRADA, Research support