Direct and Indirect Impact of 13-valent Pneumococcal Conjugate Vaccine (PCV13) on Invasive Pneumococcal Disease (IPD) Among Children and Adults in the U.S.

Tamara Pilishvili, Centers for Disease Control and Prevention
Ryan Gierke, Centers for Disease Control and Prevention
Monica Farley, Emory University
William Schaffner, Emory University
Ann Thomas, Oregon Public Health Division
Arthur Reingold, University of California
Lee Harrison, University of Pittsburgh
Ruth Lynfield, Minnesota Department of Health
Shelley M. Zansky, New York State Department of Health
Susan Petit, Connecticut Emerging Infections Program

Only first 10 authors above; see publication for full author list.

Journal Title: Open Forum Infectious Diseases
Volume: Volume 4, Number suppl_1
Publisher: Oxford University Press (OUP) | 2017-10-04, Pages S66-S67
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1093/ofid/ofx162.158
Permanent URL: https://pid.emory.edu/ark:/25593/s6f6c

Final published version: http://dx.doi.org/10.1093/ofid/ofx162.158

Copyright information:
© The Author 2017. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed December 29, 2018 4:19 AM EST
Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan; 3Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tokoku University Graduate School of Medicine, Sendai, Japan

Session: 277. Global Infections
Saturday, October 7, 2017: 2:00 PM

Background. The proportion of enteric fever cases caused by Salmonella enterica subspecies enterica serovar Paratyphi A (S. Paratyphi A) has recently been increasing in Asian counties, which is a public health concern. In 2015, an unusual increase in S. Paratyphi A infection among Japanese travelers returning from Myanmar was noted, while there is little information on this trend in Myanmar.

Methods. Isolates from travelers who returned with enteric fever from 2005 to 2015 were analyzed in order to determine country-specific notification rates (epidemiological investigation). The notification rate was defined as cases returning from each country per 100,000 Japanese travelers who visited to the country. S. Paratyphi A isolates collected from 2001 to 2015 were analyzed by whole-genome sequencing (microbiological investigation).

Results. Yearly notification trends indicated that enteric fever was potentially endemic to Myanmar (5–16 cases/100,000 travelers); the trends were similar to those observed in India (4–21 cases/100,000 travelers). A rapid increase in S. Paratyphi A infection occurred from 2012–2014 (2–4 cases/100,000 travelers) to 2015 (13 cases/100,000 travelers). A phylogenetic tree, constructed based on analysis of 105 S. Paratyphi A isolates (33 and 30 related to Myanmar and Cambodia, and 42 controls), revealed that most Myanmar- and Cambodia-related isolates formed clusters in the same lineage (Figure 1). Additionally, Myanmar-related isolates from 2015 harbored identical plasmid type 1 and were genetically closely related (each isolates had 0–10 single-nucleotide polymorphisms (SNPs), mostly within 6–7 SNPs (Figure 2)), yielding a wider SNP distance than outbreak-associated isolates from Cambodia in 2013 (within a SNP distance of 0–6).

Conclusion. Epidemiological trends and molecular subtyping suggested a possible outbreak of S. Paratyphi A infection occurred in Myanmar in 2015. The recent upsurge of S. Paratyphi A infection in Myanmar is important for travelers and clinicians since infection cannot be prevented by typhoid vaccination.

Figure 1. Polygenetic tree of 105 S. Paratyphi A isolates

Figure 2. SNP distances of S. Paratyphi A isolates from Myanmar in 2015 (A) and Cambodia in 2013 (B).

Disclosures. All authors: No reported disclosures.

Table: Symptoms, signs, laboratory findings

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Age < 18</th>
<th>Age ≥ 18</th>
<th>Total</th>
<th>P value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever (temperature >101°F)</td>
<td>36/36(100%)</td>
<td>53/54 (98%)</td>
<td>89/90 (99%)</td>
<td>< 1</td>
</tr>
<tr>
<td>Myalgia</td>
<td>15/20 (75%)</td>
<td>21/24 (88%)</td>
<td>36/44 (82%)</td>
<td>0.44</td>
</tr>
<tr>
<td>Headache</td>
<td>23/32 (72%)</td>
<td>37/48 (80%)</td>
<td>60/78 (77%)</td>
<td>0.38</td>
</tr>
<tr>
<td>Signs</td>
<td>10/17 (58%)</td>
<td>22/38 (58%)</td>
<td>32/48 (66%)</td>
<td>0.22</td>
</tr>
<tr>
<td>Rash</td>
<td>18/36 (50%)</td>
<td>6/15 (41%)</td>
<td>24/37 (39%)</td>
<td>0.12</td>
</tr>
<tr>
<td>Labs</td>
<td>WBC count < 6,000</td>
<td>11/36(31%)</td>
<td>10/54 (19%)</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>Platelets < 120,000</td>
<td>12/36(33%)</td>
<td>37/48 (69%)</td>
<td>< 0.01</td>
</tr>
<tr>
<td></td>
<td>Bilirubin ≥1.5</td>
<td>3/6(50%)</td>
<td>14/48 (29%)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>AST >50</td>
<td>25/58 (89%)</td>
<td>51/64 (82%)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*Comparing pediatric vs. adult cases.

249. Murine Typhus: a Common Cause of Acute Febrile Illness with Potential for Serious Complications

Zeehan Azaal, MD1, Sundun Kallumadanda, MD2, Feng Wang, MD3, Vagish S. Hemmige, MD4 and Daniel Musher, MD, FIDSA5. 1Department of Family and Preventive Medicine, McAllen Family Medicine Residency Program, The University of Texas Rio Grande Valley, McAllen, Texas; 2Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas; 3Baylor College of Medicine, Houston, Texas

Session: 277. Global Infections
Saturday, October 7, 2017: 2:00 PM

Background. Individual cases and outbreaks of murine typhus have been documented in South Texas. We report 90 cases from Hidalgo County, Texas, enumerating complications and comparing results in children and adults.

Methods. We reviewed records of 101 patients in three hospitals in Hidalgo County, Texas, who had positive typhus serology (IgG or IgM titer ≥1:128) during June 2016. Isolates were serotyped by Quellung, PCR, or whole genome sequencing and classified as PCV13 or non-vaccine type (NVT). Incidence changes were estimated as percent changes (one minus rate ratio) and 95% confidence intervals (95% CI) between pre-PCV13 (2007–2009) and two post-PCV13 periods (July 2014–June 2015 and July 2015–June 2016).

Results. Case definitions in PCV13-type IPD incidence were observed for all age groups during both post-PCV13 periods, with incidence 84% (95% CI 78, 88%) and 68% (95% CI 63, 73%) lower in 2015–2016 among children < 5 years and adults ≥65 years, respectively. PCV13-type IPD reductions were driven by serotypes 19A and 7F. IPD due to non-vaccine types also declined significantly among children < 5 years (-27%, 95% CI -42, -9%) and adults ≥65 years (-24%, 95% CI -34, -14%). PCV13-type IPD incidence did not differ significantly between the two post-PCV13 periods.

Conclusion. IPD incidence declined among children and adults in the U.S. following PCV13 introduction among children. The lack of difference in PCV13 rates between 2014–2015 and 2015–2016 suggests no measurable early impact of PCV13 introduction among adults ≥65 years. To date, we found no evidence of significant replacement disease with non-PCV13 types. Further work is needed to explain reductions in non-vaccine-type disease observed in the post-PCV13 era.
2493. Invasive Pneumococcal Disease in Massachusetts Children 6 Years Following Introduction of PCV13

Inci Yildirim, MD MSc1; Brent Little, PhD2; Stephen I. Pelton, MD3; Pediatric Infectious Diseases, Emory University, Atlanta, Georgia; 3Pediatric Infectious Diseases, Boston University, Boston, Massachusetts and, 3Boston University Schools of Medicine and Public Health, Boston, Massachusetts

Session: 278. Pneumococcal and Pertussis Vaccines
Saturday, October 7, 2017: 2:00 PM

Background. A second generation 13-valent-pneumococcal conjugate vaccine (PCV13) replaced PCV7 in the childhood immunization schedule in Massachusetts (MA) beginning in April 2010

Methods. Cases of invasive pneumococcal disease (IPD) in children <18 years of age were detected through an enhanced surveillance system in MA since 2001. All cases in children and Streptococcus pneumoniae (SP) isolates, when available, are submitted to Department of Public Health (MDPH) and parents/physicians are interviewed for confirmation of demographic and clinical data. All available isolates are confirmed as SP serotyped by Quellung reaction.

Results. Three-hundred thirty-seven IPD cases have been identified in MA children between 4January 4, 2010 and 03.31.2017(Figure). Thirty-five (10.4%) were in children >5 years old. Among children under 2; incidence of IPD declined to 6.8/100,000 in 2014 compared with 2010/11; the numbers for 19F increased slightly (3, 8, 10).

Conclusion. Four to 6 years after PCV13 was introduced, PCV13 ST (especially ST 3, 19A and 19F) accounted for about 25% of IPD in children. For all of the PCV13 ST, over half of these IPD cases occurred in children who had received ≤2 doses of the recommended PCV schedule; 25% of cases occurred in children who had not received any IPD doses but were of the age at diagnosis that at least 2 PCV doses should have been received. Additional PCV13 ST IPD may be preventable if the PCV13 schedule is followed as recommended.

Disclosures. S. L. Pelton, Pfizer: Grant Investigator and Speaker at PCV13 Launch Meeting in China, Research grant and Speaker honorarium; J. S. Bradley, Merck & Co., Inc.: Investigator, Research support