Activation of high and low affinity dopamine receptors generates a closed loop that maintains a conductance ratio and its activity correlate

Wulf-Dieter C. Krenz, Georgia State University
Ryan M. Hooper, Emory University
Anna R. Parker, Georgia State University
Astrid Prinz, Emory University
Deborah J. Baro, Georgia State University

Journal Title: Frontiers in Neural Circuits
Volume: Volume 7
Publisher: Frontiers Media | 2013-10-22, Pages 169-169
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.3389/fncir.2013.00169
Permanent URL: https://pid.emory.edu/ark:/25593/s5jt

Final published version: http://dx.doi.org/10.3389/fncir.2013.00169

Copyright information:
© 2013 Krenz, Hooper, Parker, Prinz and Baro.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/).

Accessed November 24, 2019 9:25 AM EST
Activation of high and low affinity dopamine receptors generates a closed loop that maintains a conductance ratio and its activity correlate

Wulf-Dieter C. Krenz1, Ryan M. Hooper2,3, Anna R. Parker1, Astrid A. Prinz2 and Deborah J. Baro1 *

Neuromodulators alter network output and have the potential to destabilize a circuit. The mechanisms maintaining stability in the face of neuromodulation are not well described. Using the pyloric network in the crustacean stomatogastric nervous system, we show that dopamine (DA) does not simply alter circuit output, but activates a closed loop in which DA-induced alterations in circuit output consequently drive a change in an ionic conductance to preserve a conductance ratio and its activity correlate. DA acted at low affinity type 1 receptors (D1Rs) to induce an immediate modulatory decrease in the transient potassium current (Ih) of a pyloric neuron. This, in turn, advanced the activity phase of that component neuron, which disrupted its network function and thereby destabilized the circuit. DA simultaneously acted at high affinity D1Rs on the same neuron to confer activity-dependence upon the hyperpolarization activated current (Ih) such that the DA-induced changes in activity subsequently reduced Ih. This DA-enabled, activity-dependent, intrinsic plasticity exactly compensated for the modulatory decrease in Ih to restore the Ih/Ih ratio and neuronal activity phase, thereby closing an open loop created by the modulator. Activation of closed loops to preserve conductance ratios may represent a fundamental operating principle neuromodulatory systems use to ensure stability in their target networks.

Keywords: activity-dependent intrinsic plasticity, metaplasticity, metamodulation, HCN channel, stomatogastric, pyloric network

INTRODUCTION
Neuromodulators reconfigure circuit output, but they must confer stability as well as flexibility in order to maintain the functionality of a target network. Our knowledge of modulatory stabilizing mechanisms is limited. We suggest that modulators stabilize circuits by activating feedback loops that preserve conductance ratios and their activity correlates. Many cells maintain conductance ratios (Linsdell and Moody, 1994; MacLean et al., 2003, Schul et al., 2006; Peng and Wu, 2007), and it is generally thought that a given conductance ratio sustains a specific activity parameter(s) (Marder and Goaillard, 2006; Hudson and Prinz, 2010; Scoll et al., 2012). A neuromodulator could establish a feedback loop if it modulated one of the conductances in the pair and conferred activity dependence on the other. In this case, modulation of the first current would contribute to changes in neuronal and circuit output that, in turn, would drive a change in the second current to restore the ratio and the activity feature. The work presented here establishes, for the first time, the existence of such a feedback loop.

The 14-neuron circuit in the spiny lobster, Panulirus interruptus, is a small central pattern generator (CPG) that drives the striated muscles surrounding the pylorus to produce the repeated series of contractions (Marder and Bucher, 2007). One cycle of contractions is continuously repeated to produce constant filtering of the foregut contents. The repetitive cycle of muscle contractions is underpinned by the recurrent output of the pyloric CPG, which stems from a pacemaker kernel that rhythmically inhibits four follower neuron cell types. The follower neurons then display post-inhibitory rebound (PIR), and differences in their rates of PIR, together with the synaptic architecture, produce a tri-phasic motor pattern (Figure 1). The follower neuron cell types have specific activity phases, meaning that a given cell type fires a burst of action potentials at the same point in each reiteration of the cyclic network output. The timing of neuronal activity phases is determined, in part, by their rate of PIR. Ih and Ii are opposing subthreshold conductances whose ratio regulates the rate of PIR (Harris-Warrick et al., 1995). Population studies on other species of crustaceans showed that pyloric neuron activity phases (Bucher et al., 2005; Goaillard et al., 2009) and their Ih/Ih ratios (Temporal et al., 2012) were invariant across individuals and lifetimes, suggesting compensatory mechanisms may exist to maintain the Ih/Ih ratio and its activity correlates. Such a compensatory mechanism(s) was revealed by overexpressing the Kv4 channels mediating Ih throughout days in organ culture. Overexpression of Ih in pyloric neurons resulted in compensatory increases in Ih that maintained the rates of PIR (MacLean et al., 2003, 2005).
FIGURE 1 | Phase recovery in the pyloric network. (A) In situ preparation: the stomatogastric nervous system (STNS) is dissected and pinned in a dish. The commissural ganglia (CoGs) contain DA neurons that project to the STG (black) and lobes, which are the source of neurohormonal DA (purple). The well surrounding the STG (blue rectangle) is continuously superfused with saline (in/out arrows). There are ∼30 neurons in the STG. The pyloric network comprises 14 STG neurons; two are drawn: pyloric dilator (PD, red), lateral pyloric (LP, blue). Network neurons interact locally within the STG and can project axons to striated muscles surrounding the foragut. The diagram shows that PD and LP neurons project their axons through identified nerves to innervate muscles (rectangles). (B) Spontaneous pyloric network output from one experiment during a 1 h 5 μM DA application: one set of traces comprises two intra-cellular recordings (top) and two extra-cellular recordings (bottom) from the in situ preparation diagrammed in (A). The three sets of traces represent recordings from the indicated time points, in minutes, directly before and after the start of DA application. Red and blue dashed lines reveal how cycle period and LP-on delay change with time. The two red lines demarcate one cycle. Cycle period (a) is defined as the time between the last spike in one PD burst and the last spike in the subsequent PD burst. Note that for each time point the last spike in the first PD burst is aligned with the first red line; however, the last spike in the second PD burst is not aligned with the second red line except at t = 0. This is because 5 μM DA produces a sustained average 10% reduction in cycle period. Thus, for t = 10 and 60 min, the spike in the second PD burst occurs prior to the second red line. Within the indicated cycle, a blue line aligns with the first spike in LP at t = 0. The time between the last spike in PD and the first spike in LP represents LP-on delay, and LP-on phase is: b/a. Note that for the t = 10 min cycle, the first spike in LP occurs well before the blue line. This is because DA produces an average ∼20% LP-on phase advance. LP-on phase recovery can be seen in the cycle at t = 60 min because the first LP spike is again aligned with the blue line. Measures of pyloric output parameters can be obtained from either intra- or extracellular traces, and LP burst duration is indicated by (c) on the extracellular traces; scale bars: 20 mV and 500 ms. (C) The pyloric circuit: the diagram represents pyloric neuron interactions within the STG. Open circles represent the six cell types, numbers indicate more than one cell within a cell type: anterior burster (AB), inferior cardiac (IC), ventricular dilator (VD); filled circles, inhibitory chemical synapses; resistors and diodes, electrical coupling; red, pacemaker kernel and its output connections. (D) Phase recovery: the preparation shown in (A) was superfused with one of the two indicated treatments for 1 h and LP-on phase was measured every 10 min throughout the experiment (n ≥ 6/treatment). Average fold-changes in LP-on phase are plotted for each group; yellow asterisks, significantly different from t = 0; data taken from Rodgers et al. (2011a). Note that phase recovery in 5 μM DA was blocked by Cs.
Animals of both sexes were used in these experiments. TTX was differential AC amplifier (A-M Systems, Everett, WA, USA) and Damburg Devices, Foster City, CA, USA). Extracellular recordings of 3 M KCl connected to Axoclamp 2B or 900A amplifiers (Molecular Devices, Foster City, CA, USA). Extracellular recordings were analyzed using DataView v6.3.2 (Hedler, 2009) to determine cycle period, spike frequency, burst duration, LP-on/off delays, and LP activity phase as previously described (Rodgers et al., 2011a). Reported values for all parameters represent a 10 cycle average.

Experiments in TTX blocked action potential firing and slow voltage oscillations in STG neurons. Under these conditions, the resting membrane potential of most pyloric neurons is between \(-52\) and \(-62\) mV. Pyloric neuron input/output curves suggest that graded transmitter release will be minimal to non-existent at these voltages (Johnson et al., 1991, 1995). DA (100 \(\mu\)M) can shift the curves (Johnson and Harris-Warrick, 1990), but a 10-fold lower concentration has a minimal effect on the strength of graded release (Kvartia et al., 2012). Pyloric neurons can oscillate in TTX if bathed in 100 \(\mu\) M DA, but we do not observe pyloric oscillations in TTX at \(\leq 5\) \(\mu\)M DA.

MATERIALS AND METHODS

ANIMALS AND DRUGS

California spiny lobsters, *Panulirus interruptus*, were purchased from Catalina Offshore Products (San Diego, CA, USA) and Mar- inus Scientific (Long Beach, CA, USA) and housed at 16–18°C in saltwater aquaria at Georgia State University (Atlanta, GA, USA). Animals of both sexes were used in these experiments. TTX was from Tocris (Ellisville, MO, USA), all other reagents were from Sigma (St. Louis, MO, USA). Solutions containing DA were made from Tocris (Ellisville, MO, USA), all other reagents were from Sigma (St. Louis, MO, USA). Solutions containing DA were made fresh every 30 min in saline to prevent oxidation and reduced DA activity.

PHYSIOLOGICAL RECORDINGS

Lobsters were anesthetized for ice for at least 30 min, followed by dissection of the stomatogastric nervous system (Figure 1), as previously described (Panchin et al., 1993). A Vaseline well was constructed around the stomatogastric ganglion (STG) which was continuously superfused for the remainder of the experiment with *Panulirus* (P) saline (in mM: 479 NaCl, 12.8 KCl, 13.7 CaCl\(_2\), 39 Na\(_2\)SO\(_4\), 10 MgSO\(_4\), 2 glucose, 4.99 HEPES, 5 TES; pH 7.4). Experiments were conducted at room temperature (19–21°C). Temperature was continuously monitored with a miniature probe surrounded the STG was superfused with P. saline containing 100 nM TTX for \(\geq 5\) min. LP was clamped to a \(-50\) mV holding potential using pClamp software. \(I_h\) was elicited using a series of 4 s hyperpolarizing voltage steps, from \(-60\) to \(-120\) mV in 10 mV increments with 6 s between steps. Steady-state peak currents were measured by fitting the current trace back to the beginning of the hyperpolarizing voltage step using a single exponential equation. In some experiments small oscillations interrupted the current trace at \(t = 0\) (e.g., Figure 2) and prevented curve fitting. In those experiments, peak \(I_h\) was measured by subtracting the initial fast leak current from the slowly developing peak of \(I_h\) at the end of each negative voltage step. Currents were converted to conductance using \((G = I_{peak} / V_{in})\) and fitted to a first-order Boltzmann equation. \(V_{0.5}, I_{h} = -35\) mV (Kiehn and Harris-Warrick, 1992). For TEVC measurement of peak \(I_h\) the command potent- ial was stepped from \(-50\) to \(-90\) mV for 200 ms to remove resting inactivation. The deinactivating prepulse was immediately followed by an activation pulse to 60 mV for 400 ms to ensure that channels were maximally activated and observed changes could not be due to alterations in voltage dependence (Zhang et al., 2010). To subtract the leak current the hyperpolarizing pre- pulse was omitted and instead the prepulse was set to \(-40\) mV to remove \(I_h\) activation from the \(-30\) mV holding potential. For recordings to measure the LP \(I_h/I_s\) ratio in 5 \(\mu\)M DA, the saline also contained 20 \(\mu\)M TEA and 1 \(\mu\)M PTX to block DA-induced modulatory changes in other conductances that could interfere with measures of peak currents. Recurring voltage steps to mimic slow wave oscillations and action potentials were con- structed with pClamp software. When currents were not being measured, and recurring steps were not being implemented, LP was held at its initial resting membrane potential in TTX (on average, \(-59\) mV).
Dopamine activates a closed loop

FIGURE 2 | DA-enables activity-dependent alterations in LP I_h. (A) The protocols used to measure DA- and/or activity-induced changes in LP I_h are diagramed in the top two panels. Asterisks indicate points where TEVC measures of LP I_h were made. Bottom panels show typical LP I_h recordings at $t=0$ and $t=10$ min for each of the four indicated treatment groups; scale bars: 500 ms and 5 nA. Note that distal compartments of LP neurons are not completely space clamped and oscillatory activity at $t=0$ was observed in all treatment groups in ~20% of the experiments due to the short exposure to TTX (example seen in TTX group); nevertheless, I_h could be measured from the traces. (B,C) Plots of the fold-changes in LP I_h G_{max} in each treatment group at $t=10$ min. Each symbol represents one experiment; solid lines indicate the means; *p < 0.05, t-tests. (D) Typical LP I_h recordings for additional experiments in 5 nM DA. (E) Plots of the fold-changes in LP I_h G_{max} in each treatment group in 5 nM DA at $t=10$ min. Each symbol represents one experiment; solid lines represent means *p < 0.05, t-tests.

DYNAMIC CLAMP

We used the dynamic clamp to introduce an artificial injection current (I_{inj}) specified to counteract the metaplastic (DA modulation of activity dependent (AD) intrinsic plasticity) change in I_h in LP neurons during ongoing rhythmic pyloric activity following bath application of 5 μM DA (Sharp et al., 1993a,b; Prinz et al., 2004a). The membrane potential of the LP soma was amplified, fed into a PCI-6052E DAQ board (National Instruments, Austin, TX, USA), and digitized at 20 kHz. The dynamic clamp program was written in the C programming language and designed to use the real time Linux dynamic controller (Dorval et al., 2001). This dynamic clamp software calculated the I_{inj} that would be active at the measured membrane potential (V_{m}) given a set of model parameters as follows:

$$I_{inj} = G_{max} m (V_{m} - E_{rev})$$

where

$$m = \frac{m_{\infty} - m}{1 + \exp((V_{m} - V_{\frac{1}{2}})/V_{slope})}$$

m_{∞} was computed numerically using the first-order forward Euler method, and $V_{\frac{1}{2}}$ was given by $V_{\frac{1}{2}} = 1/(1 + \exp((V_{m} - V_{\frac{1}{2}})/V_{slope}))$. E_{rev} was set to -35 mV (Kiehn and Harris-Warrick, 1992). Values for I_h, V_{m}, $V_{\frac{1}{2}}$, and V_{slope} were determined from a Boltzmann fit as described above. The predicted metaplastic change in LP I_h G_{max} was determined using the activity-dependence curve in Figure 3 and the measured change in LP burst duration after a 10 min application of 5 μM DA. The predicted metaplastic change in I_h conductance was subtracted with the dynamic clamp, which calculated and continuously injected current according to
the above model, where $G_{\text{extr}} = \text{measured LP } I_h \times \text{predicted metabolic change in LP } I_h$.

Intracellular and extracellular recordings of LP activity throughout the experiment were obtained using a separate computer equipped with Axoscope and Clampex 9.2 software (Axon Instruments).

STATISTICAL ANALYSIS

Data were checked for normal distribution and analyzed using parametric statistical tests with Prism software package v5.01 (GraphPad, La Jolla, CA, USA). Significance was set at $p < 0.05$ in all cases. Individual samples that were more than 2 standard deviations from the mean were excluded from the analyses after determining the mean. This eliminated two experiments. ANOVAs are followed by post hoc tests that make all possible comparisons between columns (Tukey’s) or that compare all columns to a single column, usually $t = 0$ (Dunnett’s). Means are followed by standard errors.

RESULTS

THE EXPERIMENTAL MODEL

The pyloric circuit is located in the crustacean STG (Figure 1A), and it produces a rhythmic motor output in vivo. Each pyloric cell type displays repetitive oscillations in membrane potential with a burst of spikes riding on the depolarized plateau (Figure 1B). The circuit comprises six oscillatory cell types coupled by fast inhibitory synapses and/or gap junctions (Figure 1C). The pacemaker kernel (anterior burster (AB)+ 2 PD neurons) rhythmically inhibits the four follower neuron cell types, which then display different rates of PIR. The different rates of PIR are due, in part, to differences in the expression of I_h in each follower neuron (Baron et al., 1997, 2000). I_h delays pyloric neuron PIR (Tierney and Harris-Warrick, 1992): the hyperpolarizing phase of the membrane potential oscillation removes resting inactivation from the Kv4 channels mediating the subsequent depolarization that mimics slowwave activity at $t = -10$ min, except the length of the depolarizing step varied across experiments to alter burst duration. Examples are shown for how the length of the step corresponded to no change, a reduction or an increase in burst duration. There was no change in cycle period. In this way, the ratio of I_h can influence when LP activity phase begins (termed LP-on phase).

Figure 1B shows intra- and extra-cellular recordings from a typical experiment where the STG was superfused with 5 μM DA for 1 h. DA was applied after the initial recording at $t = 0$. By 10 min, DA increased pyloric network cycle frequency by reducing the inherent period of the pacemaker AB neuron (Harris-Warrick et al., 1996; Rodgers et al., 2011a). DA application also reduced LP burst duration and advanced LP firing phase. The traces indicate that by 60 min in DA, network cycle frequency was still increased and LP burst duration was still decreased, but LP-on phase was restored. In previous experiments we clearly demonstrated that phase recovery was AD: if the experiment shown in Figure 1B was repeated with continuous injection of a depolarizing bias current into LP to block the DA-induced decrease in LP burst duration, then the LP phase advance occurred, but phase recovery did not (Rodgers et al., 2011a). We also showed that phase recovery in the presence of 5 μM DA could be blocked by bath application of CoCl$_2$ to reduce I_h (Figure 1D).

DA- AND ACTIVITY-DEPENDENT (DAD) REGULATION OF LP I_h IN 5 μM DA

We first tested the idea that DA conferred activity-dependence upon LP I_h by measuring I_h in LP neurons that showed different activity patterns. In these experiments, LP neurons have one of two activity patterns: either LP activity is completely blocked (TTX), or LP displays normal slow wave but not spike activity (TTX + Osc). LP I_h is measured in each of these two groups in the presence and absence of DA resulting in four treatment groups. The experiment, which is diagrammed in Figure 2A, was as follows: after dissection and cell identification, the STG was superfused with TTX for 5 min to block spike and slow wave activity, and the TTX was present throughout the remainder of the experiment. Next, at $t = 0$, LP I_h was measured with somatic TEVC. After the first measure of LP I_h, DA was or was not added to the superfuse and LP I_h was re-measured after 10 min. The voltage of LP was continuously controlled with TEVC throughout the experiment.

![Error](Image 89x952 to 583x1083)

Figure 1 The pyloric circuit is located in the crustacean STG (Figure 1A), and it produces a rhythmic motor output in vivo. Each pyloric cell type displays repetitive oscillations in membrane potential with a burst of spikes riding on the depolarized plateau (Figure 1B). The circuit comprises six oscillatory cell types coupled by fast inhibitory synapses and/or gap junctions (Figure 1C). The pacemaker kernel (anterior burster (AB)+ 2 PD neurons) rhythmically inhibits the four follower neuron cell types, which then display different rates of PIR. The different rates of PIR are due, in part, to differences in the expression of I_h in each follower neuron (Baron et al., 1997, 2000). I_h delays pyloric neuron PIR (Tierney and Harris-Warrick, 1992): the hyperpolarizing phase of the membrane potential oscillation removes resting inactivation from the Kv4 channels mediating the subsequent depolarization that mimics slowwave activity at $t = -10$ min, except the length of the depolarizing step varied across experiments to alter burst duration. Examples are shown for how the length of the step corresponded to no change, a reduction or an increase in burst duration. There was no change in cycle period. In this way, the ratio of I_h can influence when LP activity phase begins (termed LP-on phase).
Between measures of LP \(I_h \), a recurrent step mimicking LP slow oscillatory activity at \(t = -10 \text{ min} \) was (TTX + OSC) or was not (TTX) implemented. Frequency, duration, and amplitude of the recurrent steps were chosen for each preparation individually depending upon measured activity at \(t = -10 \text{ min} \): frequency and duration of the recurrent step corresponded to average cycle frequency and LP burst duration at \(t = -10 \text{ min} \), respectively; the step and holding potentials corresponded to the average peak and nadir of the LP oscillation at \(t = -10 \text{ min} \), respectively. In the absence of the recurring voltage step, LP was held at its initial resting membrane potential in TTX (-59 mV on average). Typical LP \(I_h \) recordings for each treatment group are shown in Figure 2A.

The results indicated that DA conferred activity dependence upon LP \(I_h \), in the presence of DA, the fold-change in LP \(I_h \) \(\Delta_{G_{max}} \) varied according to LP activity (Figure 2B, t-test, \(p < 0.004 \)) by 10 min in 5 \(\mu \text{M} \) DA average LP \(I_h \) \(\Delta_{G_{max}} \) was significantly decreased in preparations with the slow wave LP activity pattern (paired t-test, \(t = 0 \text{ vs. } 10 \text{ min} \), \(p = 0.0491 \)) and significantly increased in preparations showing no LP activity (paired t-test, \(p = 0.0285 \)). In the absence of DA the fold-change in LP \(I_h \) \(\Delta_{G_{max}} \) was not significantly different between treatment groups (Figure 2C, t-test, \(p = 0.256 \)) and there was no significant change in LP \(I_h \) \(\Delta_{G_{max}} \) by \(t = 10 \text{ min} \) relative to \(t = 0 \text{ min} \) in preparations where slow wave activity was mimicked (paired t-test, \(p = 0.1166 \)) or activity was completely blocked (Wilcoxon matched pairs signed rank test, \(p = 0.2969 \)). We previously demonstrated that 5 \(\mu \text{M} \) DA acting at high affinity LP DRs permitted a decrease in LP burst duration to produce an increase in LP \(I_h \) \(G_{max} \) that persisted well beyond DA washout (Rodgers et al., 2011a). This suggested that perhaps high affinity DRs receptors might also mediate the more rapid DA-mediated regulation of LP \(I_h \) \(G_{max} \) observed in Figure 2B. To test this hypothesis, we repeated the experiments diagrammed in Figure 2A, but applied 5 \(\mu \text{M} \) rather than 5 \(\mu \text{M} \) DA (Figure 2D).

The results were consistent with the hypothesis; in the presence of 5 \(\mu \text{M} \) DA, the fold-change in LP \(I_h \) \(\Delta_{G_{max}} \) at \(t = 10 \text{ min} \) varied according to activity (Figure 2E, t-test, \(p = 0.0321 \)). Interestingly, LP \(I_h \) \(\Delta_{G_{max}} \) did not change over time in 5 \(\mu \text{M} \) DA preparations where slow wave activity was mimicked (paired t-test, \(t = 0 \text{ vs. } 10 \text{ min} \), \(p = 0.5962 \)); however, a complete block of activity produced a clear trend toward an increase in LP \(I_h \) \(\Delta_{G_{max}} \) (paired t-test, \(p = 0.0356 \)) and the magnitude of the increase was similar to that observed in 5 \(\mu \text{M} \) DA (compare Figures 2B vs. 2E). The difference in the TTX + OSC treatment groups in 5 \(\mu \text{M} \) DA (no change in \(\Delta_{G_{max}} \)) vs. 5 \(\mu \text{M} \) DA (decrease in \(\Delta_{G_{max}} \)) may be due to the fact that micromolar DA can regulate calcium dynamics during oscillations in membrane potential (Johnson et al., 2003; Kadiri et al., 2011).

For all treatment groups the voltages of half activation changed by \(\geq 5 \text{ mV} \) on average, and LP \(I_h \) voltage dependence was not considered further here. In sum, \(>5 \text{ mM} \) DA permitted activity to differentially regulate LP \(I_h \) \(\Delta_{G_{max}} \) but, neither 5 \(\mu \text{M} \) DA alone nor changes in activity alone significantly altered LP \(I_h \) \(\Delta_{G_{max}} \), i.e., DA did not modulate LP \(I_h \), but conferred activity-dependence upon LP \(I_h \).

DAD REGULATION OF LP \(I_h \) IS NECESSARY FOR PHASE RECOVERY

Our previous study suggested that LP phase recovery during sustained DA modulation was triggered by a change in LP burst duration (Rodgers et al., 2011a). In order to understand if and how DAD regulation of LP \(I_h \) restored the timing of the LP activity phase in 5 \(\mu \text{M} \) DA, it was necessary to determine how LP \(I_h \) varied according to changes in LP burst duration. An LP \(I_h \) activity-dependence curve for changes in burst duration was constructed by repeating the previous experiments in 5 \(\mu \text{M} \) DA for the TTX + OSC treatment group, except that the length of the depolarizing step varied across experiments to mimic a change in burst duration (Figure 3A). A plot of the fold-change in LP \(I_h \) \(G_{max} \) vs. percent change in LP burst duration at \(t = 10 \text{ min} \) was best fitted with a Boltzmann sigmoidal equation. DA (5 \(\mu \text{M} \)) produced an average 30% decrease in LP burst duration (Rodgers et al., 2011a), and so, according to the activity-dependence curve, LP \(I_h \) \(G_{max} \) should be reduced by \(\sim 4\% \) in 5 \(\mu \text{M} \) DA during on-going activity (Figure 3B, dashed line). This decrease in LP \(I_h \) is consistent with our hypothesis that DAD regulation of LP \(I_h \) compensates for the DA-induced modulatory decrease in LP \(I_h \) to restore the \(I_h / G_h \) ratio and the timing of LP activity phase.

In order to determine if DAD regulation of LP \(I_h \) was necessary for phase restoration, we used the activity-dependence curve in conjunction with dynamic clamp experiments to abrogate DAD regulation of LP \(I_h \) (Figure 4). The experimental preparation was as shown in Figure 1A. After dissection and cell identification the STG was superfused with TTX for 5 min; LP \(I_h \) was measured with TEVC and values for \(G_{max} \), \(V_{1/2} \), and \(V_{dipole} \) were subsequently incorporated into the dynamic clamp model for \(I_{sek} \) (see Section "Materials and Methods"). TTX was immediately washed out with saline for 90 min. LP burst duration was measured at the end of the wash followed by application of 5 \(\mu \text{M} \) DA from \(t = 0 - 60 \text{ min} \). The predicted fold-change in LP \(I_h \) \(G_{max} \) due to DAD regulation was determined using the activity-dependence curve in Figure 3.
and the measured change in LP burst duration from $t = 0$ to $t = 10$ min, and was subsequently incorporated into the dynamic clamp model for I_{Na}. From $t = 10$ to 60 min, dynamic clamp was used to remove the predicted DAD regulation of LP I_{h}, i.e., to add back, in the form of dynamic clamp current, the same amount of I_{Na} that was predicted to have been lost because of DAD regulation. LP-on phase was subsequently measured every 10 min from $t = 0$ to 60 min. Plots of the fold-change in LP-on phase over the course of the experiment demonstrated that 5 μM DA-induced the usual phase advance, but removing DAD regulation of LP I_{h} prevented LP-on phase recovery (compare Figures 4 vs. 1D). It also prevented LP-off phase recovery (repeated measures ANOVA, $F(6,4) = 3.119$, $p = 0.0210$). However, it should be noted that the recovery of LP-off phase may be complicated by the PY cell activity phase. The PY-LP synapse contributes to the timing of LP-off phase, especially in DA; thus, any change in LP-on phase that subsequently alters the timing of PY activity through the LP-PY synapse may also indirectly affect LP-off phase (Johnson et al., 2011). From these experiments we conclude that DAD regulation of LP I_{h} is necessary for LP-on phase restoration.

DAD REGULATION OF I_{Na} COMPENSATES FOR MODULATORY CHANGES IN I_{Na} TO RESTORE I_{Na}

Thus far the data are consistent with our working model for how phase advance and recovery occur in 5 μM DA: 5 μM DA initially alters the LP I_{Na} ratio by decreasing LP I_{Na}, and this creates a phase advance (Harris-Warrick et al., 1995; Zhang et al., 2010). DA (5 μM) also produces a 30% reduction in LP burst duration, and this subsequently initiates a process that generates a compensatory decrease in LP I_{h} to restore the LP I_{Na}/I_{h} ratio and produce phase recovery. In order to further test this hypothesis, we repeatedly measured the LP I_{Na}/I_{h} ratio during a 1 h 5 μM DA application accompanied by a recurrent step that mimicked a 30% reduction in LP burst duration. At $t = 0$, peak LP I_{h} was measured at +60 mV and peak LP I_{Na} was measured at −120 mV. DA (5 μM) was immediately applied for 1 h and peak currents were re-measured at $t = 30$, 60, and 10 min. During the DA application, when peak currents were not measured, LP received a recurring step. Plots of the average fold-changes in the peak I_{Na}/I_{h} ratio (Figure 5A) and average peak I_{h} and I_{Na} (Figure 5B) suggested that our hypothesis was incorrect or incomplete. The average I_{Na}/I_{h} ratio significantly decreased over time (Figure 5A) because the decreases in peak LP I_{Na} did not fully compensate for the decreases in peak LP I_{h} (Figure 5B).

It is noteworthy that DA-induced a change in both LP burst duration and cycle period (Rodgers et al., 2011a), but our step only mimicked the change in burst duration. We next asked if the DA-induced increase in cycle frequency contributed to DAD regulation of LP I_{h} G_{Na} by repeating the experiments to measure the LP I_{Na}/I_{h} ratio but using a recurring voltage step that mimicked both the average 30% decrease in LP burst duration and the 10% increase in cycle frequency. In this case, the average I_{Na}/I_{h} ratio did not change significantly throughout the experiment (Figure 5C, repeated measures ANOVA, $F(3,4) = 2.161$, $p = 0.1457$), despite the fact that by 10 min, average peak LP I_{h} was significantly and stably reduced to 81 ± 4% of its initial value (Figure 5D).

SPIKE ACTIVITY DELAYS THE EFFECT OF CHANGES IN SLOW WAVE ACTIVITY

Overall, the data supported our hypothesis: in the presence of 5 μM DA and average DA-induced changes in LP slow wave activity, the DA-induced fold-change in LP I_{h} was compensated by a similar fold-change in LP I_{Na}. However, one aspect of the data did not fit with our working model. The ratio could be restored by 10 min (Figure 5B), but phase recovery required 60 min on average (Figures 1B, D). It is possible that restoration of the LP I_{Na}/I_{h} ratio was necessary (Figure 4) but not sufficient for phase recovery, and that one or more unidentified slower processes were also involved. Alternatively, one major difference between the experiments shown in Figures 1 vs. 3 was the presence vs. absence of spike activity. If a Ca2+ sensor participated in this homeostatic mechanism to maintain the LP I_{Na}/I_{h} ratio (Guanay and Prinz, 2010), then spike activity and DA-induced changes in slow wave activity might have opposing effects on steady-state Ca2+. And spike activity could delay the compensatory decrease in LP I_{h} by slowing the rate of change of steady-state Ca2+. To investigate this idea, we repeated experiments to measure the LP I_{Na}/I_{h} ratio using a recurring step that mimicked not only slow wave activity, but also, spike activity.

During normal LP activity, spikes passively spread to the soma and neuropil from a distal spike initiation zone (siz). We mimicked spike activity generated at the siz with depolarizing current injections into the soma. We reasoned that LP HCN channels, which are located in the neuropil (Goeritz et al., 2011), will experience a similar depolarization regardless of whether the spikes initiate at the soma or siz, because the two structures are roughly equidistant from the neuropil. This logic rests on the untested assumption that the electrotonic properties and protein composition of the entire primary neurite membrane between soma and spike initiation zone are homogeneous and that electronic potentials spread with similar efficiency in both directions. We also made untested assumptions about LP spike amplitude and duration. Peak voltage (+40 mV) and duration (2 ms) of PD spikes have been directly measured from intrasynaptic recordings (Ballo et al., 2012). We assumed LP and PD spikes would be similar and used these values here.

Previous work suggested that activity-dependent regulation can be coded by the pattern of spike activity and not simply the total amount of depolarization (Gorbunova and Spitzer, 2002). We performed two series of experiments to determine if spike activity influenced the LP I_{Na}/I_{h} ratio either by the total amount of depolarization produced or by the pattern of depolarization. The total amount of depolarization was mimicked with a step to +40 mV whose duration equaled the average number of spikes per burst multiplied by 2 ms. Patterned spike activity was mimicked by 2 ms depolarizations to +40 mV separated by the average interspike...
changes in slow wave activity upon LP peak mimicked a 30% decrease in LP burst duration and a 10% increase short depolarization on top of the usual recurrent voltage step that change in LP peak during a 1 h superfusion with 5 μM DA and implementation of a recurring voltage step that mimicked the DA-induced 30% decrease in LP burst duration, but no change in cycle frequency. The ratio significantly decreased with time; repeated measures ANOVA with Dunnett’s post hoc tests that compare all time points to t = 0 (F(6,57) = 23.2, p < 0.0002). (B) Plots of the fold-changes in peak LP i_h and i_L (mean ± SEM) from the same experiments as in (A). Repeated measures ANOVA with Dunnett’s post hoc tests that compare all time points to t = 0 indicate that only LP i_L was significantly decreased (LP i_L, F(3,41) = 19.66, p < 0.0001; LP i_h, F(3,41) = 12.18, p = 0.0004). (C) Plots of the fold-changes in the LP i_A ratio (mean ± SEM) throughout a 1 h superfusion with 5 μM DA and implementation of a recurring voltage step that mimicked the DA-induced 30% decrease in LP burst duration and a 10% increase in cycle frequency. The ratio did not change significantly over time (repeated measures ANOVA, see text). (D) Plots of the fold-changes in peak LP i_A, i_L, and i_L (mean ± SEM) from the same experiments as in (A) include patterned spike activity also (Student’s t-test, p = 0.0014; interaction, F(3,28) = 3.33, p = 0.0865). We next asked if we could delay, but not abolish the compensatory decrease in LP i_h G_max by better mimicking the spike pattern (Figure 6F). To do this, we included an ISI in between each 2 ms depolarization to +40 mV that was equal to the average ISI at t = −10 min multiplied by 0.66, because a 1 h 5 μM DA application reduced the mean ISI to 66% of its initial value (repeated measures ANOVA, F(6,4) = 4.02, p = 0.0065, data not shown). Including patterned spike activity in the recurrent voltage step delayed the compensatory reduction in LP i_h G_max (Figure 6F). By 10 min in 5 μM DA, the compensatory reduction in LP peak i_h was significantly smaller for protocols that did not mimic spike activity along with DA-induced changes in slow wave activity (two-way ANOVA: treatment, F(1,28) = 0.98, p = 0.3799; time, F(5,28) = 6.83, p = 0.0014; interaction, F(5,28) = 3.33, p = 0.0865).

In the first set of experiments a depolarizing step to +40 mV was superimposed upon the recurrent voltage step that mimicked LP slow wave activity in 5 μM DA (Figure 6A). The duration of the step to +40 mV corresponded to the average number of spikes per burst at t = −10 min multiplied by 2 ms. Note that the average number of spikes per burst does not change significantly during a 1 h 5 μM DA application [repeated measures ANOVA, F(6,8) = 0.8920, p = 0.5083; data not shown]. Surprisingly, this short depolarization on top of the usual recurrent voltage step that mimicked a 30% decrease in LP burst duration and a 10% increase in cycle frequency completely abolished the effect of DA-induced changes in slow wave activity upon LP peak i_h. The LP i_L/i_h ratio significantly decreased under these conditions (Figure 6C; repeated measures ANOVA, F(3,3) = 6.114, p = 0.0149) because, there was no reduction in LP i_L (Figure 6D, mean ± SEM fold-change in LP peak i_L at 10 min = 1.008 ± 0.010). The insignificant change in LP i_L throughout the 1 h 5 μM DA application could not compensate for the significant decrease in LP i_h (Figure 6D; repeated measures ANOVA, F(3,4) = 1.8001, p = 0.0976; i_h, F(3,3) = 5.251, p = 0.0228). Note that the change in LP i_h was not significantly different between experiments that did (Figure 6D) vs. did not (Figure 6D) include patterned spike activity along with DA-induced changes in slow wave activity (two-way ANOVA: treatment, F(1,28) = 0.98, p = 0.3799; time, F(5,28) = 6.83, p = 0.0014; interaction, F(5,28) = 3.33, p = 0.0865).
The principal finding of our study is that 5 μM DA simultaneously generates flexibility and stability in a rhythmically active neural network by activating a closed loop (Figure 7). DA acts at both low and high affinity D1Rs to alter activity and enable AD intrinsic plasticity, respectively. The feedback loop re-established a conductance ratio that was modified by DA, and thereby restored a neuronal phase relationship during a sustained increase in cycle frequency. The generation of closed loops via modulator-enabled AD intrinsic plasticity may represent a fundamental organizing principle used by modulatory systems to preserve conductance ratios and their associated activity correlates, while at the same time altering other aspects of circuit output.

DISCUSSION

The principal finding of our study is that 5 μM DA simultaneously creates flexibility and stability in a rhythmically active neural network by activating a closed loop (Figure 7). DA acts at both low and high affinity D1Rs to alter activity and enable AD intrinsic plasticity, respectively. The feedback loop re-established a conductance ratio that was modified by DA, and thereby restored a neuronal phase relationship during a sustained increase in cycle frequency. The generation of closed loops via modulator-enabled AD intrinsic plasticity may represent a fundamental organizing principle used by modulatory systems to preserve conductance ratios and their associated activity correlates, while at the same time altering other aspects of circuit output.

DA SIMULTANEOUSLY GENERATES FLEXIBILITY AND STABILITY BY ACTIVATING HIGH AND LOW AFFINITY D1Rs

Like most systems, DA transmission takes two forms in the stomatogastric nervous system, tonic, and phasic. DA neurons in the commissural ganglia project to the STG and release DA into open synapses, DA then diffuses to its sites of action before re-uptake (Oginsky et al., 2010). To the best of our knowledge, DA levels have not been measured in the STG, but in other systems that use volume transmission, DA is tonically present at μM levels near the release sites of bursting DA neurons (Zoli et al., 1998; Schultz, 2007; Fuxe et al., 2010). In addition, the STG is located in a blood vessel and is bathed by neurohormonal DA (Sullivan et al., 1977; Marder and Bucher, 2007). Generally
speaking, high affinity receptors respond to 5 μM DA (tonic) and low affinity receptors respond to 0.05 μM DA (phasic). We have previously shown that LP possesses both high and low affinity D1Rs that mediate different effects on LP. High affinity receptors were activated by a tonic 1 h application of 0.5 μM but not 0.05 μM DA and produced a persistent (i.e., non-reversible) increase in LP phase by altering its biophysical properties (Zhang et al., 2010). In this study we showed that high affinity D1Rs do not simply act through slow mechanisms (hours) to produce persistent changes in ionic currents, but can also rapidly (seconds to minutes) confer activity-dependence upon an ionic conductance to generate a feedback loop.

Concomitant stimulation of both low and high affinity LP D1Rs (Figure 7A) altered pyloric network activity (Rodgers et al., 2011a); therefore, DA acts at low affinity receptors to modulate circuit output. At least three key aspects of pyloric network output are modulated by DA (Rodgers et al., 2011a): on average, cycle frequency is increased by ~10%, LP burst duration is decreased by 30%, and LP firing phase is advanced by ~20%. The LP phase advance is largely due to a DA-induced reduction in LP burst duration, and potentially altered LP input-output gain (Burdakov, 2005). It should also restore the initial phasing of rhythmic pyloric muscle contractions, but at an increased cycle frequency. Interestingly, burst duration and on/off-delays scale with cycle period in the natural population throughout development and over a wide range of temperatures (Bucher et al., 2005; Gaillard et al., 2009; Tang et al., 2010). Thus, the closed loop uncovered here may be part of a more extensive control system that synchronizes these network characteristics over multiple time scales and through multiple mechanisms.

DOPAMINERGIC TONE MIGHT MAINTAIN THE lp/Ip RATIO DURING NON-DOPAMINERGIC PERTURBATIONS TO ACTIVITY

Landmark studies from the Marder group demonstrated equivalent neuronal and network firing patterns can arise from different sets of intrinsic and synaptic conductances (Godown, 1999; Frizzi et al., 2006; Schulz et al., 2006, 2007). This work led to the idea that conductances co-vary over time in order to maintain a particular activity feature, an idea that was supported by existing ion channel overexpression studies (MacLean et al., 2003, 2005). These findings were unexpected and caused the Selverston group to ask: can the output of a network made up of disparate components be robust to perturbation (Szucs and Selverston, 2006)? Within a population, peak PD Ip/Jp ratio (Zhang et al., 2010). Thus, the closed loop uncovered by the DA-induced increase in cycle frequency driven by DA actions on the pacemaker and stabilize circuit performance at the increased network cycle frequency, decreased LP burst duration, and potentially altered LP input-output gain (Burdakov, 2005). It should also restore the initial phasing of rhythmic pyloric muscle contractions, but at an increased cycle frequency. Interestingly, burst duration and on/off-delays scale with cycle period in the natural population throughout development and over a wide range of temperatures (Bucher et al., 2005; Gaillard et al., 2009; Tang et al., 2010). Thus, the closed loop uncovered here may be part of a more extensive control system that synchronizes these network characteristics over multiple time scales and through multiple mechanisms.

DOPAMINERGIC TONE MIGHT MAINTAIN THE lp/Ip RATIO DURING NON-DOPAMINERGIC PERTURBATIONS TO ACTIVITY

Landmark studies from the Marder group demonstrated equivalent neuronal and network firing patterns can arise from different sets of intrinsic and synaptic conductances (Godown, 1999; Frizzi et al., 2006; Schulz et al., 2006, 2007). This work led to the idea that conductances co-vary over time in order to maintain a particular activity feature, an idea that was supported by existing ion channel overexpression studies (MacLean et al., 2003, 2005). These findings were unexpected and caused the Selverston group to ask: can the output of a network made up of disparate components be robust to perturbation (Szucs and Selverston, 2006)? Within a population, peak PD Ip/Jp ratio (Zhang et al., 2010). Thus, the closed loop uncovered by the DA-induced increase in cycle frequency driven by DA actions on the pacemaker and stabilize circuit performance at the increased network cycle frequency, decreased LP burst duration, and potentially altered LP input-output gain (Burdakov, 2005). It should also restore the initial phasing of rhythmic pyloric muscle contractions, but at an increased cycle frequency. Interestingly, burst duration and on/off-delays scale with cycle period in the natural population throughout development and over a wide range of temperatures (Bucher et al., 2005; Gaillard et al., 2009; Tang et al., 2010). Thus, the closed loop uncovered here may be part of a more extensive control system that synchronizes these network characteristics over multiple time scales and through multiple mechanisms.
Both intrinsic and synaptic mechanisms can operate over different time scales to maintain pyloric neuron phase relationships when cycle frequency varies. Synaptic depression rapidly promotes phase maintenance by proportionately delaying neuronal firing as synapses increasingly recover from depression with longer cycle periods (Nadim et al., 1999, 2003; Manor et al., 2003). DA can modulate synaptic dynamics to promote phase maintenance: 18 μM DA decreased the time constants of short-term depression and its recovery at the PD–LP graded synapse, thus contributing to phase maintenance with changing network frequency (Kvart et al., 2012). It is also worth noting that PV inhibition onto LP plays an important role in determining LP off-phase and this impact et al., 2012). It is also worth noting that PY inhibition onto LP plays to phase maintenance with changing network frequency (Kvart et al., 2012). It is also worth noting that PY inhibition onto LP plays an important role in determining LP off-phase and this impact on cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goaillard et al. (2010) showed the presence of altered cycle period. Goailla...
Dopamine activates a closed loop
Dopamine activates a closed loop cacophony channels: a major mediator of neuronal Ca$_{2+}$ current. Front. Neural Circuits 27, 1072–1081. doi: 10.3389/fncir.2013.00169

Zhang, H., Rodgers, E. W., Krenz, W. D., Clark, M. C., and Burs, D. J. (2010). Cell-specific dopamine-mediated regulation of the transient potassium currents in the pyloric network by the canonical D1 receptor signal transduction cascade. J. Neurophysiol. 104, 875–884. doi: 10.1152/jn.00715.2010

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 14 August 2013; accepted: 27 September 2013; published online: 22 October 2013.

Citation: Kiren W-D, Hooper RMR, Parker AR, Prinz AA and Baro DJ (2013) Activation of high and low affinity dopamine receptors generates a closed loop that modulates a conductance ratio and its activity correlates. Front. Neural Circuits 7:106. doi: 10.3389/fncir.2013.00169

This article was submitted to the journal Frontiers in Neural Circuits. Copyright © 2013 Kiren, Hooper, Parker, Prinz and Baro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.