Dividing a supercoiled DNA molecule into two independent topological domains

Fenfei Leng1, Bo Chen*, and David D. Dunlap

*Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199; and Department of Cell Biology, Emory University, Atlanta, GA 30322

Both prokaryotic and eukaryotic chromosomes are organized into many independent topological domains. These topological domains may be formed through constraining each DNA end from rotating by interacting with nuclear proteins; i.e., DNA-binding proteins. However, so far, evidence to support this hypothesis is still elusive. Here we developed two biochemical methods; i.e., DNA-nicking and DNA-gyrase methods to examine whether certain sequence-specific DNA-binding proteins are capable of separating a supercoiled DNA molecule into distinct topological domains. Our approach is based on the successful construction of a series of plasmid DNA templates that contain many tandem copies of one or two DNA-binding sites in different locations. With these approaches and atomic force microscopy, we discovered that several sequence-specific DNA-binding proteins; i.e., lac repressor, gal repressor, and λ O protein, are able to divide a supercoiled DNA molecule into two independent topological domains. These topological domains are stable under our experimental conditions. Our results can be explained by a topological barrier model in which nucleoprotein complexes confine DNA supercoils to localized regions. We propose that DNA topological barriers are certain nucleoprotein complexes that contain stable toroidal supercoils assembled from DNA-looping or tightly wrapping DNA around DNA-binding proteins. The DNA topological barrier model may be a general mechanism for certain DNA-binding proteins, such as histone or histone-like proteins, to modulate topology of chromosomal DNA in vivo.

The Escherichia coli chromosome is comprised of a 4.6 Mb circular, negatively supercoiled DNA molecule. A single-stranded nick or double-stranded break should release all superhelical tension and therefore relax the circular DNA molecule. However, early studies showed that multiple single-stranded nicks are required to fully relax the E. coli DNA molecule (1, 2). These studies also suggested that the E. coli chromosome consists of 40 to 100 independent topological domains in vivo (2). More recently, Postow, et al. (3) reassessed the size of the topological domains and demonstrated that the E. coli chromosome is segregated into 400 to 500 different topological domains; the sizes of the topological domains are dynamic and variable ranging from 2 to 66 kb. These studies coupled with genetic studies (4) strongly support the existence of topological barriers that divide the E. coli chromosome into different topological domains (5). One question arises from these studies: What forms topological barriers in DNA? Several models have been proposed to explain the DNA topological barriers (5, 6). For instance, because transcription by an RNA polymerase generates positive and negative supercoils (7), transcription of a gene, especially a gene producing a membrane insertion protein can induce the formation of a topological domain barrier in vivo (8). Another interesting model is that certain DNA-binding proteins especially DNA-looping proteins may constrain DNA loops to serve as topological barriers (5, 9–11). To support this model, we previously showed that certain nucleoprotein complexes, resulting from the binding of several sequence-specific DNA-binding proteins to their recognition sites, could form topological barriers that impede the diffusion and merger of independent chromosomal supercoils.

domains (12, 13). Nevertheless, conclusive evidence to support these hypothetical models is still required.

Although several attempts have been made to decipher the mechanism by which the E. coli chromosome is divided into independent topological domains (1–3), the nature of the topological barriers is still a mystery. A primary difficulty in determining the identity of the topological barriers in DNA is the lack of a simple, effective system to examine what property or properties of DNA or protein-DNA complexes can serve as topological barriers to divide a DNA molecule into different topological domains. A simple barrier might divide a small supercoiled DNA molecule into two independent topological domains. In this framework, it would be feasible to test whether certain nucleoprotein complexes function as topological barriers and divide a DNA molecule into distinct topological domains. In this report, we present our efforts to establish a simple, in vitro system to examine which nucleoprotein complexes are capable of serving as topological barriers to confine free DNA supercoils within a defined region. With this unique approach, we discovered that certain sequence-specific DNA-binding proteins, such as lac repressor, gal repressor, and λ O protein, are able to act as topological barriers that prevent supercoil diffusion.

Results

A Unique Strategy to Study DNA Topological Barriers In Vitro. In this study, we developed a unique strategy to examine whether certain sequence-specific DNA-binding proteins can block supercoil diffusion along DNA. Our first step was to construct a series of plasmids that contain one copy or several tandem copies of one or two distinct DNA-binding sites in one or two different locations (Fig. 1, Fig. S1, and Table S1). The DNA-binding sites at two locations divide the plasmid into two regions of different sizes, ~2.9 and ~1.2 kb. We also placed nicking restriction endonuclease recognition sites for Nt.BbvC1 and Nb.BtsI into the plasmid, such that the Nt.BbvC1 site resides in the 1.2 kb region and the Nb.BtsI site in the 2.9 kb region (Fig. 1, Fig. S1). For this report, we made DNA templates that contain multiple DNA-binding sites for lac repressor (LacI), gal repressor (GalR), or λ O protein (Table S1). Our next step was to examine whether these sequence-specific DNA-binding proteins can divide a supercoiled DNA molecule into two independent topological domains. For this purpose, we developed two methods: the DNA-nicking and gyrase methods (Fig. 2). In the DNA-nicking method (Fig. 24), one DNA-binding protein; e.g., LacI, will bind to the two groups of DNA-binding sites on the supercoiled DNA template. If the DNA-binding protein stably blocks supercoil diffusion, a nick generated by either Nt.BbvC1 or Nb.BtsI should not fully release the superhelical stress of the DNA molecule. After the single nick

www.pnas.org/cgi/doi/10.1073/pnas.1109854108

PNAS | December 13, 2011 | vol. 108 | no. 50 | 19973–19978

Author contributions: F.L. and D.D.D. designed research; F.L., B.C., and D.D.D. performed research; F.L. analyzed data; and F.L. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

To whom correspondence should be addressed. E-mail: lengf@fiu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109854108/-/DCSupplemental.
is sealed by T4 DNA ligase, a partially supercoiled DNA molecule will be generated. In the DNA-gyrase assay (Fig. 2B), the DNA template has a nick in either the 1.2 kb or 2.9 kb region. Upon binding by a sequence-specific DNA-binding protein, the plasmid DNA molecule is divided into two regions. If the DNA-binding protein prevents supercoil diffusion, DNA gyrase should be able to supercoil the region without the nick. After ligation, (−) supercoiled DNA templates should result. Agarose gel electrophoresis and atomic force microscopy (AFM) were used to examine the topological status of our DNA molecules.

E. coli LacI Blocked Supercoil Diffusion and Divided a Supercoiled DNA Molecule into Two Independent Topological Domains. *E. coli* LacI, a homotetramer (14) was chosen as the first DNA-binding protein for this study. As demonstrated previously, LacI simultaneously binds to two of three potential chromosomal sites; i.e., *lac O1*, *O2*, or *O3* operators to form a DNA loop (15). A DNA template, pCB115 (Fig. 1) that contains two pairs of *lac O1* operators in two different locations was used in our assays. The space between the two *lac O1* operators in each location is 25 bp (Table S1). Because *lac O1* site is a 21 bp DNA sequence and the head-to-tail distance of the *lac O1* operators is 46 bp, it is reasonable to assume that both LacI tetramer cannot simultaneously bind to the neighboring *lac O1* operators of pCB115 which face in opposite directions. Instead, two LacI tetramers are able to simultaneously bind to the four *lac O1* operators to form two highly stable LacI-*lac O1* nucleoprotein complexes. In this case, two stable DNA loops are formed. Fig. 3 shows results of the DNA-nicking and gyrase assays, which clearly demonstrate that LacI successfully blocked supercoil diffusion and divided the DNA molecule into two independent topological domains. In the absence of LacI, Nb.BtsI, or Nb.BstSI fully relaxed the plasmid pCB115 (Fig. S4, lanes 1, 4, and 7). In the presence of LacI, however, neither Nb.BbvCI nor Nb.BstSI alone could remove all supercoils from the (−) supercoiled DNA molecule (Fig. 3B, compare lane 2 to lane 1 and lane 5 to lane 4). Nb.BbvCI removed ~7 (−) supercoils that equal to supercoils constrained in the 1.2 kb region where Nb.BbvCI recognition site is located [Fig. 1; the supercoiling density of pCB115 was determined to be ∼0.06; i.e., it has ∼26 (−) supercoils. Fig. S42 was also used to calculate the constrained supercoils]. Nb.BstSI removed ~17 (−) supercoils that correspond to those constrained in the 2.9 kb region in which it nicks the plasmid. As expected, Nb.BbvCI and Nb.BstSI together removed all (−) supercoils from the DNA template (Fig. 3C, lane 8). Interestingly and also as expected, the constraining of DNA supercoils in defined regions by LacI is sensitive to the presence of its inducer, isopropyl-β-D-thiogalactoside (IPTG), which lowers the affinity of LacI for its operators (Fig. 3D, lanes 3 and 6). Similar results were obtained when the DNA-gyrase method was used (Fig. 3B, Fig. S2B). In this assay, we first digested the DNA template using Nb.BbvCI to yield a nicked plasmid for the following reactions. In the absence of LacI and DNA gyrase, the DNA template was fully relaxed (Fig. 3B, lane 1). DNA gyrase was able to supercoil the DNA region confined by LacI (Fig. 3B, lane 6), which is also sensitive to the presence of IPTG (Fig. 3B, lane 7). These results demonstrated that LacI, upon binding to *lac O1* operators, formed a topological barrier to block supercoil diffusion and divide the DNA molecule into two independent topological domains. Control experiments indicated that the division of plasmid DNA templates into two topological domains requires the presence of *lac O1* operators in two different locations. LacI cannot divide the DNA molecule into two topologically independent...
In this article, we also demonstrated that the LacI-mediated DNA looping is required for the formation of topological barriers. For this purpose, we constructed a similar plasmid DNA template, pCB152 that contains four lac 01 operators equally distributed between two different locations. Because the space between the two lac 01 operators in each location is 20 bp (Table S1) and the head-to-tail distance of the lac 01 operators is 41 bp, each LacI tetramer is able to simultaneously bind to the neighboring lac 01 operators of pCB152 due to these DNA-binding sites locating on the same side. In this case, LacI is not capable of mediating the formation of DNA loops. This arrangement of lac 01 operators should not support the formation of the topological barriers on pCB152. Indeed, our results showed that LacI did not block supercoil diffusion and divide the plasmid into two stable topological domains (Fig. S3 C and D), suggesting that DNA looping is required for the formation of LacI-mediated topological barriers. Furthermore, our results show that the protein-DNA-looping complex resulting from one LacI tetramer binding to two lac 01 operators is sufficient to form a topological barrier to block supercoil diffusion, although the topological barrier is much less stable comparing with those containing multiple LacI-lac 01 nucleoprotein complexes.

DNA-Wrapping Proteins, such as λ O Protein and E. coli GalR also Divided a Supercoiled DNA Molecule into Two Independent Topological Domains. Due to availability and the biological importance of λ O protein and GalR, we decided to examine whether these DNA-wrapping proteins are also able to divide a supercoiled DNA molecule into two independent topological domains. As demonstrated previously (16), λ O protein specifically binds to the four repeating sequences (iterons) of λ DNA replication origin and forms a unique nucleoprotein complex, the “O-some” to initiate DNA replication. GalR is a dimer and specifically binds to the O2 and O1 operators of E. coli galactose operon to form a loop in the presence of HU protein (17), which inhibits transcription from two gal promoters P1 and P2 (18). Both proteins are capable of inducing DNA wrapping upon binding to their recognition sites (19). In order to test whether λ O protein is able to divide a supercoiled DNA molecule into two distinct topological domains, we made a DNA template, pCB138 containing eight λ DNA replication origins (a total of 32 λ O-binding sites) equally distributed between two locations (Fig. 1). In this scenario, the nucleoprotein complexes, which built from the DNA replication origins wrapping around λ O proteins, should divide the plasmid into two independent topological domains. Indeed, our results shown in Fig. 4A and B, Fig. S4C demonstrated that λ O protein was able to divide the plasmid into two distinct, stable topological domains. In the absence of λ O protein, a nick introduced by Nt.BbvCI or Nb.BtsI fully relaxed the DNA template (Fig. 4A, lanes 1, 3, and 5). In the presence of λ O protein, Nt.BbvCI or Nb.BtsI alone could not completely remove all (−) supercoils from the DNA template (Fig. 4A, lanes 2 and 4). These results suggested that λ O protein upon binding to its recognition sites served as DNA topological barriers to block supercoil diffusion. Consistent with our previous results (19), the binding of λ O protein to the multiple λ O-binding sites on pCB138 caused DNA wraping and introduced about eight (−) supercoils into the DNA template (Fig. 4A, lane 6). Nevertheless, our control experiments showed that two barriers are required to divide the DNA template into two independent topological domains (Fig. 1, Fig. S4B). Similar results were also obtained by using the DNA-grase assay (Fig. 4B, lane 6).

We also cloned a few plasmids to test whether GalR is capable of dividing a supercoiled DNA molecule into two independent topological domains. Among them are pCB132 and pCB155 that carry 36 gal O2 operators equally distributed between two locations (Fig. S1, Table S1). As described under Materials and Methods, the difference between these two plasmids is the space
separating the neighboring O_E operators: pCB155, 20 bp and pCB132, 25 bp (the head-to-tail distance of the O_E operators are 36 and 41 bp, respectively). Because the O_E operator is a 16 bp DNA sequence, it is reasonable to assume that GalR binds to the neighboring gal O_E operators of pCB155 on the opposite side; in contrast, GalR binds to the neighboring gal O_E operators of pCB132 on the same side. In this case, we were able to examine whether the operator phasing affected the ability of GalR to induce the formation of DNA topological barriers. Our results are summarized in Fig. 4 C and D, Fig. S5. These results clearly demonstrated that GalR is capable of dividing a supercoiled DNA molecule into two distinct topological domains and the operator phasing does not affect GalR as a topological barrier. Similar to O protein, the binding of GalR protein to the OE sites on pCB155 and pCB132 also caused DNA wrapping and introduced a few (−) supercoils into the DNA template, which is consistent with our previous results (19). Intriguingly, galactose did not completely abolish GalR as a topological barrier (Fig. 4 C and D, Fig. S5) although it showed some inhibitory effects on the formation of the DNA topological barriers in the DNA-nicking assay. Control experiments indicated that two barriers of GalR-O_E complexes are required to divide the plasmid DNA template into two independent topological domains (Fig. S6).

In this article, we made three additional plasmids, pCB160, pCB162, and pCB163 that carry multiple tandem copies of two types of DNA-binding sites in two different locations (Table S1). pCB160 contains 18 gal O_E operators in one location and 16 lac $O1$ operators in another location; pCB162 carries 16 O-binding sites in one location and another 16 lac $O1$ sites in a different location; and pCB163 has 16 O-binding sites in one location and 18 gal O_E operators in another location. These plasmids were used to test whether two topological barriers deriving from unrelated DNA-binding proteins were able to divide a DNA molecule into two distinct topological domains. Our results summarized in Fig. S6 unambiguously demonstrated that two topological barriers resulting from different DNA-binding proteins are able to divide a supercoiled DNA molecule into two independent topological domains. In the absence or presence of only one DNA-binding protein; i.e., either O protein or GalR or LacI, a nick introduced by Nt.BbvCI fully relaxed the DNA templates (Fig. S6, lanes 1–3). However, in the presence of a combination of two DNA-binding proteins; i.e., O protein and GalR for pCB163, O protein and LacI for pCB162, and GalR and LacI for pCB160, Nt.BbvCI could not completely remove all (−) supercoils from these DNA templates (Fig S6, lanes 4). These results suggest that the topological barriers derived from the two unrelated DNA-binding proteins are able to confine free supercoils in a defined region and separate the supercoiled DNA molecules into two independent topological domains. As expected, galactose or IPTG had some inhibitory effects on the formation of the topological barriers (Fig. S6, lanes 5 and 6).

Atomic Force Microscope Images Revealed that LacI Divided a Supercoiled DNA Molecule into Two Distinct Topological Domains. AFM is a powerful technique that has provided high-resolution images for a variety of protein-DNA complexes (20–25). Here we used AFM to visualize whether LacI divides a supercoiled DNA molecule into distinct topological domains. Two plasmids, pCB115 and pCB109 were used. As described under Materials and Methods and also in Table S1, pCB115 and pCB109, respectively, contain 4 and 32 lac $O1$ operators equally distributed between two locations (Fig. 1). In addition, the neighboring lac $O1$ operators were cloned on the opposite directions such that LacI cannot simultaneously binds to the neighboring lac $O1$ sites. Instead, LacI tetramer binds to the lac $O1$ sites of the two different locations and divides the plasmids into two loops. We used the DNA-nicking method for our AFM imaging studies (Fig. 2). After supercoiled pCB115 and pCB109 were digested by Nt.BbvCI in the presence of LacI (step c of Fig. 2.4), the LacI-plasmid complexes were deposited on freshly cleaved mica surface and visualized using an AFM microscope. Our results are summarized in Fig. 5, Fig. S7. These results clearly demonstrated that LacI divided a supercoiled DNA molecule into two distinct topological domains. For plasmid pCB115, in the absence of LacI, the average contour length of the DNA molecules was measured to be 1,437.6 ± 42.4 nm (Table S2). For B-form DNA with 0.34 nm per base pair, this length was calculated to be 4,228 ± 125 bp, which is almost equivalent to the plasmid sequence length, 4,350 bp. Fig. 5 also shows that two LacI molecules bound to the specific DNA-binding sites and separated the plasmid into one relaxed and one supercoiled domain. Interestingly, the contour lengths of the relaxed and supercoiled domains were measured to be 423.9 ± 18.1 nm (1,247 ± 53 bp) and 983.1 ± 44.5 nm (2,891 ± 131 bp), respectively. These lengths are consistent with the DNA sequence lengths of the two topological domains (Table S2). For pCB109, LacI also divided the plasmid into one relaxed and one supercoiled domain (Fig. S7). The measured contour lengths of the relaxed and supercoiled domains are 413.5 ± 30.4 nm (1,216 ±

Fig. 4. DNA-wrapping proteins O protein and GalR divided supercoiled DNA molecules, pCB138, and pCB155 into two independent topological domains, respectively. (A) The DNA-nicking assays were performed as described under Materials and Methods, and Fig. 2. In addition to 0.156 nM of plasmid pCB138, as indicated at the top of the image, the reaction mixtures also contained O protein (20 nM), Nt.BbvCI (4 units), and Nb.BstI (4 units). After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis in the absence of chloroquine as described under Materials and Methods. (B) The DNA-gyrase assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of plasmid pCB155, as indicated at the top of the image, the reaction mixtures also contained GalR (22.5 nM), Nt.BbvCI (4 units), and Novobiocin (3 μM). After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis. (C) The DNA-nicking assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of plasmid pCB155, as indicated at the top of the image, the reaction mixtures also contained GalR (22.5 nM), Nt.BbvCI (4 units), and Novobiocin (3 μM) and galactose. After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis. (D) The DNA-gyrase assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of Nt.BbvCI-nicked pCB155, as specified at the top of the image, the reaction mixtures also contained GalR (22.5 nM), E. coli DNA gyrase (5 units), and Novobiocin (3 μM) and galactose. After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis. (E) DNA-nicking assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of Nt.BbvCI-nicked pCB155, as specified at the top of the image, the reaction mixtures also contained GalR (22.5 nM), E. coli DNA gyrase (5 units), and Novobiocin (3 μM) and galactose. After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis. (F) DNA-gyrase assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of Nt.BbvCI-nicked pCB155, as specified at the top of the image, the reaction mixtures also contained GalR (22.5 nM), E. coli DNA gyrase (5 units), and Novobiocin (3 μM) and galactose. After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis. (G) DNA-nicking assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of Nt.BbvCI-nicked pCB155, as specified at the top of the image, the reaction mixtures also contained GalR (22.5 nM), E. coli DNA gyrase (5 units), and Novobiocin (3 μM) and galactose. After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis. (H) DNA-gyrase assays were performed as described under Materials and Methods and Fig. 2. In addition to 0.156 nM of Nt.BbvCI-nicked pCB155, as specified at the top of the image, the reaction mixtures also contained GalR (22.5 nM), E. coli DNA gyrase (5 units), and Novobiocin (3 μM) and galactose. After the assay, the DNA molecules (topoisomers) were isolated and subjected to agarose gel electrophoresis.
looping protein as a model protein for our studies. Our results showed that two types of DNA-binding proteins, DNA-looping proteins, we used LacI, the best-characterized DNA-binding protein to its recognition sites in two different locations on the DNA molecule into two loops and also into two topological domains. (Scale bar represents 100 nm).

Discussion

In this article, we demonstrated that the binding of a DNA-binding protein to its recognition sites in two different locations on a supercoiled DNA molecule can confine free supercoils to a defined region and divide the DNA molecule into two distinct topological domains: a relaxed and a supercoiled domain. The AFM imaging experiments were performed as described under Materials and Methods. Arrows indicate two LacI tetramers binding to four lac O1 operators in two different locations and dividing the DNA molecule into two loops and also into two topological domains. (Scale bar represents 100 nm).

89 bp) and 986.5 ± 66.7 nm (2,901 ± 196 bp), respectively (Table S2). These lengths are also consistent with the DNA sequence lengths of the two topological domains calculated from the DNA map (Table S2). Intriguingly, our AFM images show that multiple LacI tetramers (up to 16 molecules) bound to the DNA molecule in a zigzag manner and formed a long filament between two DNA domains (Fig. S7). It is likely that this long filament represents LacI binding to the 32 lac O1 operators of the two locations on the plasmid. The length of the LacI-DNA filament was measured to be 196.7 ± 22.0 nm, significantly shorter than the length of the 16 lac O1 operators cloned in one location of pCB109. These results indicate that LacI binding to the lac O1 operators caused the wrapping of lac O1 operators around the LacI molecules. These results are consistent with our results of gel electrophoresis and also with our previous interpretation of LacI-induced ΔLk (model D of Fig. S8 of ref. 19).

Fig. 5. AFM images to demonstrate that LacI divided a supercoiled DNA molecule, plasmid pCB115 into two independent topological domains: a relaxed and a supercoiled domain. The AFM imaging experiments were performed as described under Materials and Methods. Arrows indicate two LacI tetramers binding to four lac O1 operators in two different locations and dividing the DNA molecule into two loops and also into two topological domains. (Scale bar represents 100 nm).

We favor models depicted in Fig. 6 to explain our results. Model (I) is for DNA-looping proteins that are able to bring two or two groups of the DNA-binding sites together to fold into a topologically constrained nucleoprotein complex. This nucleoprotein complex serves as a DNA topological barrier or divider to block supercoil diffusion. This model represents the most likely way for LacI to divide a supercoiled DNA molecule into two independent topological domains. Our AFM images strongly support this interpretation (Fig. 5, Fig. S7). Model (II) is for DNA-wrapping proteins, such as λ O protein and GalR. Specific DNA sequences wrap around these DNA-wrapping proteins to form a unique nucleoprotein structure, such as the O-some (26). These nucleoprotein structures form a topological barrier that slow or prevent diffusion of supercoils past the nucleoprotein complex. In this scenario, it requires two such nucleoprotein complexes to divide a circular DNA molecule into two topological domains. This model also provides a reasonable explanation for a transcribing RNA polymerase to serve as a topological barrier (8, 27). First, RNA polymerases cause DNA wrapping (28). In addition, a transcribing RNA polymerase generates a (+) supercoil domain in front of the RNA polymerase and a (−) supercoil domain behind it (7). These topological structures should be able to block supercoil diffusion along DNA.

The discoveries presented here have great biological ramifications. Previously we showed that certain sequence-specific DNA-binding proteins strongly stimulate transcription-coupled DNA supercoiling (12, 13). We used the “twin-supercoiled-domain” model to explain these results where nucleoprotein complexes, especially those containing stable toroidal supercoils assembled two proteins are able to form distinct, stable DNA loops under our experimental conditions. Second, our results show that a combination of two unrelated DNA-binding proteins; e.g., λ O protein and GalR also confined free supercoils to a defined region and separated the DNA molecules into two distinct topological domains (Fig. S6). These results suggest that DNA wrapping, rather than looping, is the main reason for these two DNA-wrapping proteins to divide the DNA molecules into different topological domains. Nevertheless, although our AFM images showed that λ O protein and GalR are able to divide the supercoiled plasmids into distinct topological domains (Fig. S8), we cannot fully exclude the role of protein-protein interactions of λ O-DNA complexes and GalR-DNA complexes in the formation of the two distinct topological domains.

Fig. 6. The DNA topological barrier models. (I) A DNA-looping protein, such as LacI, upon binding to its recognition sites in two different locations, forms a DNA topological barrier to block DNA supercoil diffusion and therefore divides the circular DNA molecule into two independent topological domains. (II) A DNA-wrapping protein, such as λ O protein and GalR, wraps DNA around itself in two different locations. In this case, two topological barriers are formed to divide the circular DNA molecule into two independent topological domains. Blue circle and red cylinder represent, respectively, the DNA recognition sequence of a site-specific DNA-binding protein and the site-specific DNA-binding protein.
from DNA looping or tightly wrapping DNA around these DNA-binding proteins, can form topological barriers that impede the diffusion and merger of independent chromosomal supercoil domains (12). Our results in this report demonstrated that these nucleoprotein complexes are indeed able to form topological barriers to block supercoiled diffusion (Figs. 3, 4, 5, Figs. S5 and S7). In addition, our results can be used to explain transcription activation of bacterial phage λ, a hallmark of λ DNA replication control in vivo (29). Our recent results showed that transcription-coupled DNA supercoiling is responsible for the activation of λ DNA replication. Specifically, the O-some (26) assembled from wrapping DNA around O protein in the replication origin boxes, confines, and captures transcription-coupled DNA supercoiling, which causes structural changes in λ DNA replication origin (30). In this case, the DNA replication origin is unwound and DNA replication is initiated. This mechanism can also be used to explain transcriptional dependence of E. coli DNA replication initiation (31). In this scenario, DnaA, the E. coli replication initiator coupled with HU protein, binds to specific DnaA boxes in the oriC replication origin to form a nucleoprotein complex to unwind the AT-rich DNA sequence in the origin. Transcription-coupled DNA supercoiling should greatly stimulate this process.

Our topological barrier model also provides unique insights into how the E. coli chromosome is divided into many different topological domains. As demonstrated previously (32, 33), the E. coli chromosomal DNA is associated with several abundant histone-like proteins, such as HU, H-NS, FIS, and IHF and folded into a compact nucleoid structure (1, 34). These histone-like DNA-binding proteins also wrap and loop DNA, which constrain DNA supercoils in vitro and in vivo (35–38). It is possible that the nucleoprotein complexes generated from these histone-like proteins serve as general DNA topological barriers to modulate localized DNA supercoiling. Indeed, our recent results showed that HU and H-NS are able to confine supercoils to a defined region. Nevertheless, the topological barriers stemming from nonspecific binding of HU or H-NS to DNA were less stable, which is consistent with the dynamic nature of E. coli chromosome topological domains (3, 39). Furthermore, nucleosomes may use the same mechanism to modulate DNA topology of eukaryotic chromosome (40).

Materials and Methods
Details of the preparation of purified proteins and the construction of plasmid DNA templates are described in SI Materials and Methods. The DNA-nicking and DNA-gyrase methods are summarized in Fig. 2. Details of the procedures are also described in SI Materials and Methods. For AFM, the LacI-DNA samples were prepared according to the DNA-nicking method. After the supercoiled DNA templates were digested by Nt.BbvCI, the LacI-DNA complexes were deposited on freshly cleaved mica and visualized with a NanoScope MultiMode AFM microscope. Details of the AFM procedure are described in SI Materials and Methods.

Acknowledgments
We thank Drs. Roger McMackin and Sankar Adhya for providing us with λ O protein and E. coli GaR, respectively. We thank Kathleen S. Matthews for providing us with an E. coli strain overexpressing E. coli LacI. We also thank Drs. James C. Wang, Roger McMackin, W. David Wilson, and Geraldine Fulcrand for critically reading the article before submission and for helpful discussion. We thank Dr. Wilma K. Olson for suggestions and encouragement. This work was supported by National Institutes of Health Grant S51HD063509-02 (to F.L.) and Human Frontier Science Program Grant RGPO051 (to D.D.D.).