24 Common and Rare Variation in the T Helper 2 Gene Pathway Predicts Allergic Asthma Phenotypes

Anne Fitzpatrick, Emory University
R Slager
W Moore
H Li
W Busse
M Castro
S Erzurum
S Wenzel
D Meyers
ER Bleecker

Journal Title: World Allergy Organization Journal
Volume: Volume 5, Number
Publisher: (publisher) | 2012-02, Pages S8-S9
Type of Work: Article
Publisher DOI: 10.1097/01.WOX.0000411769.14940.76
Permanent URL: https://pid.emory.edu/ark:/25593/s5nnq

Final published version:
http://dx.doi.org/10.1097/01.WOX.0000411769.14940.76

Accessed December 31, 2017 9:40 PM EST
Results: EXPB1, an *Arabidopsis* protein (belonging to the beta expansin multi gene family), showed significant sequence and structural similarity to Cyn d 1. This protein was expressed in *E. coli* and the recombinant protein did not react with serum IgE from grass pollen allergic patients, suggesting that EXPB1 represented a non-allergenic homologue of grass group 1 allergens. It is proposed that differences in the amino acid sequence are responsible for the difference in the allergenicity profile of the *Arabidopsis* and grass pollen proteins.

Conclusions: Our study provides valuable data for further investigations of the molecular basis of allergenicity and cross-reactivity of grass group 1 allergens.

22

Protein-Protein Interactions Determine IgE Reactivity to Polygalacturonase From *Cupressus sempervirens* Pollen

Yousef Shahali,1 Jean-Pierre Sutra, PhD,2 Sylvie Chollet-Martin,2 Imán Haddad,3 Joëlle Vinh, PhD,3 Adriano Mari, MD,4 Denis Charpin,5 Hélène Sénéchal, PhD,6,7 and Pascal Poncet, PhD,1,7

1UMR 7195 LSABM, ESPCI-ParisTech, Paris, France; 2Unity of ImmunologyAutoimmunity and Hypersensitivity, Bichat Hospital, Paris, France; 3USR 3149 SMBP, ESPCI-ParisTech, Paris, France; 4CMA, Rome, Italy; 5Hospital Nord de Marseille, Marseille, France; 6CSS 5, INSERM, Paris, France; 7Infection and Epidemiology, Institut Pasteur, Paris, France.

Background: In a recent proteomic study, we identified in Italian cypress (*Cupressus sempervirens*, Cups) pollen grains, 2 proteins at 43 and 60 kDa, homologous to already known Cupressaceae polygalacturonase (PG) proteins. The 60-kDa PG is suspected to be a multi-protein complex including the 43-kDa PG and one or more proteins with lectin-like properties

Objective: In the present study, cypress pollen PGs were further characterized and the molecular basis of their allergenicity including the presence of specific IgE directed against cross-reactive carbohydrate determinants (CCDs) were investigated.

Methods: Cups pollen PBS extracts were characterized using 2- and double one-dimensional electrophoresis followed by IgE immunoblotting. The IgE reactivity to carbohydrate- versus peptide-specific determinants was investigated using both bromelain inhibition and Con A binding assays. Pooled proteins were also prefractionated in their native forms using size exclusion chromatography. The presence of multi-protein complexes were investigated by using 2-D blue native (BN)-PAGE/SDS-PAGE electrophoresis.

Results: Upon bromelain inhibition assay, we revealed that 70% of tested patients displayed CCD-specific IgE to the 43-kDa PG while its isozyme of 60 kDa appeared to be exclusively recognized for its peptide-specific determinants. The specific binding of the Con A lectin to the 43-kDa PG, and not to the 60-kDa isozyme, demonstrated the presence of exposed mannosic-containing oligosaccharides only on the 43-kDa protein. This fact reflects fundamental differences between specific IgE-binding epitopes involved in the recognition of the 43-kDa and 60-kDa proteins making these 2 cypress pollen PGs immunologically distinguishable. The present results suggest that in the 60-kDa protein complex, the CCDs of the 43-kDa PG are not exposed due to the binding of a lectin-like protein exhibiting peptidic IgE reactive epitopes recognized by 25% of tested patients.

Conclusion: The current study demonstrates that the sensitization to the Cups pollen PG is mainly due to CCD bromelain-type epitopes and directly associated with an increased prevalence of IgE reactivity to cypress pollen extracts due to CCD interference. However, the Cups pollen PG and its carbohydrate-specific determinants seem to play a key role in the dynamics of protein-protein interaction in cypress pollen and may confer to protein complexes a higher allergenicity.

23

Grafting of BET V 1 Epitopes onto its Homologue API G 1 Reveals Patient-Specific IgE Recognition Profiles

Barbara Gepp,1 Nina Balazs,3 Wolfgang Hemmer,2 Christian Radauer, PhD,1 and Heimo Breiteneder, PhD.3 1Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; 2Florida Allergy Allergyzentrum, Vienna, Austria.

Background: Up to 70% of birch pollen-allergic individuals show adverse reactions to certain plant foods. This cross-reactivity is caused by sensitisation to the major birch pollen allergen Bet v 1 and binding of Bet v 1-specific IgE antibodies to homologous plant food allergens. We aimed to assess the importance of selected conformational epitopes for IgE binding to Bet v 1.

Methods: Chimeras of Bet v 1.0101 and its homologue Api g 1.0101 were constructed. In each of the 4 chimeras, roughly one fourth of the surface residues of Api g 1.0101 were replaced by corresponding residues of Bet v 1.0101. The proteins were expressed in *Escherichia coli* and purified by chromatographic methods. Secondary structures were checked by CD-spectroscopy. IgE ELISA with Bet v 1.0101, Api g 1.0101 and the chimeras were performed with sera of 63 Bet v 1-sensitized birch pollen allergic patients. For inhibition ELISAs, chimeras were coated and inhibition was performed with the chimeras or Api g 1.0101.

Results: IgE binding to Api g 1.0101, Api-Bet-1, -2, -3 and -4 was observed for 22, 81, 79, 70 and 38% of the sera, respectively. To assess the relevance of the grafted regions for IgE binding to Bet v 1, the amounts of IgE binding to the chimeras were compared with those to Api g 1.0101. Most of the sera recognised either 3 chimeras (39%) or all 4 chimeras (21%) better than Api g 1.0101. Only a minority of the sera showed increased binding to a single chimera. Inhibition ELISAs confirmed the presence of IgE specific for the grafted regions.

Conclusions: Our study indicates that the epitope recognition profile of Bet v 1-specific IgE is highly patient specific. Given the different IgE binding patterns to Bet v 1, determined by binding of IgE to different chimeras, the existence of a single major IgE epitope on Bet v 1 can be excluded. Moreover, the Bet v 1-specific IgE repertoire is polyclonal and the IgE epitopes are distributed over the whole surface of Bet v 1.

This study was supported by grants P2259-B11 (CR) and SFB-F01802 (HB) from the Austrian Science Fund.

ALLERGIC MODELS OF INFLAMMATION

24

Common and Rare Variation in the T Helper 2 Gene Pathway Predicts Allergic Asthma Phenotypes

Rebecca Slager, PhD, MS,1 Wendy Moore, MD,2 Huashi Li, MS,2 William Busse, MD,3 Mario Castro, MD, MPH,7 Serpil Erzurum, MD,5 Anne Fitzpatrick, PhD,6 Sally Wenzel, MD,7 Deborah Meyers, PhD,1 and Eugene R. Bleecker, MD.1 1Center for Genomics and Personalized Medicine Research, Wake Forest University Health Sciences, Winston-Salem, NC; 2Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine, Winston Salem, NC; 3Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI; 4Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO; 5Department of Pathobiology, Lerner Research Institute, Cleveland, OH; 6Department of Pediatrics, Emory University, Atlanta, GA; 7Medicine, University of Pittsburgh, Pittsburgh, PA.

Background: The T helper 2 (Th2) inflammatory pathway, including the Th2-activating cytokine interleukin 33 and its receptor interleukin 1 receptor-like 1 have been strongly implicated in asthma susceptibility (Moffatt MF, et al NEJM 2010). However, the role of Th2 pathway genetic variation in asthma progression and severity is not well understood. Our research group recently developed a clustering algorithm based on comprehensive phenotype information to assign subjects with asthma in the Severe Asthma Research Program (SARP) to 5 primary clusters; 3 of which represent increasing severe
Role of Myeloid Derived Suppressor Cells in Asthma

Allison Nelson, Jim Parkerson, DO, Richard F. Lockey, MD, Subhra Mohapatra, PhD, Shyam Mohapatra, PhD, and Sринivas Nagaraj, PhD

1 Nanomedicine Research Center and Divisions of Translational Medicine and Allergy and Immunology, Department of Internal Medicine, University of South Florida, Tampa, FL; 2 Division of Allergy & Immunology, University of South Florida and James A. Haley Veterans’ Hospital, Tampa, FL; 3 Nanomedicine Research Center and Division of Translational Medicine, Departments of Molecular Medicine and Internal Medicine, University of South Florida and James A. Haley Veterans’ Hospital, Tampa, FL; 4 NanoMedicine Research Center and Division of Translational Medicine, University of South Florida College of Medicine & VA Hospital, Tampa, FL.

Abstract: We know that a heterogeneous group of myeloid cells termed myeloid derived suppressor cells (MDSC) accumulate in almost all pathological conditions, which elicits an inflammatory signal. The exact role played by these cells in asthma is not known. In this study we investigated the function and role of these cells in asthma.

Methods: Accumulation of MDSC and other subsets of myeloid cells were analyzed from peripheral blood mononuclear cells from patients with non-severe asthma (FEV1 >60) and severe asthma (FEV1 <60) by flowcytometry and compared to healthy controls. Allergic mouse models were used to determine the role of microRNA-142 (miR-142) in regulation and expansion of MDSC.

Results: There is a significant increase in the proportion of MDSC in severe versus non-severe asthmatics and controls, corresponding to a decrease in myeloid dendritic cells. Allergic mice had significant increased levels of MDSC expansion which were associated with increased levels of IL-6 and downregulation of miR-142, miR-142 overexpression induced MDSC differentiation.

Conclusions: An accumulation of MDSC is associated with severe asthma in humans and mice. In an allergic mouse model, IL-6 levels increase. miR-142 may play an important role in regulation and differentiation of MDSC, leading to altered immunity.