Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity

Dante Rotili, Sapienza Università di Roma
Domenico Tarantino, Sapienza Università di Roma
Biagina Marrocco, Sapienza Università di Roma
Christina Gros, CRDPF
Véronique Masson, CRDPF
Valérie Poughon, CRDPF
Fréderic Ausseil, CRDPF
Yanqi Chang, Emory University
Donatella Labella, Sapienza Università di Roma
Sandro Cosconati, Seconda Università di Napoli

Only first 10 authors above; see publication for full author list.

Journal Title: PLoS ONE
Volume: Volume 9, Number 5
Publisher: Public Library of Science | 2014-05-08, Pages e96941-e96941
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1371/journal.pone.0096941
Permanent URL: https://pid.emory.edu/ark:/25593/s5kgt

Final published version: http://dx.doi.org/10.1371/journal.pone.0096941

Copyright information:
This is an Open Access work distributed under the terms of the Creative Commons Universal : Public Domain Dedication License (http://creativecommons.org/publicdomain/zero/1.0/).

Accessed December 13, 2019 8:14 PM EST
Properly Substituted Analogues of BIX-01294 Lose Inhibition of G9a Histone Methyltransferase and Gain Selective Anti-DNA Methyltransferase 3A Activity

Dante Rotili1, Domenico Tarantino1, Biagia Marocco1, Christina Gros2, Véronique Masson2, Valérie Poughon2, Frédéric Ausseil2, Yanqi Chang3, Donatella Labella1, Sandro Cosconati4, Salvatore Di Maro5, Ettore Novellino5, Michael Schnekenburger5, Cindy Grandjenette5, Celine Bouvy5, Marc Diederich6,7, Xiaodong Cheng3, Paola B. Arimondo2, Antonello Mai1,8*

1 Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, IT, 2 USR3388 CNRS-Pierre Fabre EtA&C, CRDPP, Toulouse, France, 3 Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America, 4 DISTABIF, Seconda Università di Napoli, Caserta, Italy, 5 Dipartimento di Farmacia, Università di Napoli “Federico II”, Napoli, IT, 6 Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMC), Luxembourg, Luxembourg, 7 Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Korea, 8 Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Roma, IT

Abstract

Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP) inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV) promoter silenced by methylation (CMV-luc assay). Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl)-2-(4-phenylpiperazin-1-yl)quinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 μM, in agreement with its DNMT3A inhibitory potency.

Introduction

Epigenetics studies all regulatory mechanisms involving heritable changes in gene expression without alteration of the DNA coding sequence, determining cell fate and phenotype [1–5]. Among the epigenetic signals, the DNA methylation occurs at the CpG dinucleotides, and are highly expressed in early embryonic cells, downregulated after differentiation and in adult somatic tissues, and overexpressed in cancer [1,6].

During our investigation of small molecule epigenetic modulators, we described various series of compounds able to inhibit protein/histone methyltransferases, a subfamily of AdoMet-dependent methyltransferases catalyzing the (poly)methylation of arginine (Arg) or lysine (Lys) residues in both histone and non-histone proteins [8–13]. In particular, chemical manipulation of BIX-01294 [14] (Figure 1A), a specific G9a/G9a-like protein (GLP) histone H3 Lys9 (H3K9) methyltransferase inhibitor, led to E67 [2] (Figure 1B), bearing a 5-aminopentyloxy substituent at the C7 position of the quinazoline ring with enhanced G9a/GLP inhibitory activity in vitro and reduced toxicity in vivo. X-ray crystal structures of 1 and 2 complexed with GLP [15,16] showed that for both compounds the quinazoline scaffold, linked to the C4-[1-benzyl-piperidinylamino) and the C2-diazepane (1) or C2-[3-dimethylaminopropylamino] (2) moieties, resembles the bound conformation of histone H3 Lys4 to Arg8, while the C7-[3-
aminopentyl) chain of 2 mimics the target Lys9 of histone H3 in the substrate peptide binding groove. For both compounds, the C6-methoxy group is inserted into a shallow surface pocket mimicking the H3K7 side chain and is crucial for binding to H3K9 modification enzymes (methyltransferases as well as demethylases), discriminating them from other enzymes, such as for example H3K4 methyltransferases and demethylases [15–17]. Chemical changes performed by other authors on 1 led to UNC0630 [3] [19] (Figure 1A), a potent and selective G9a/GLP inhibitor featuring the 1-iso-propyl-4-piperidinylamino moiety at C4, the cyclohexyl group at C2, the 3-(1-pyrrolidino)propoxy chain at C7 and the methoxy group at C6 position of the quinazoline ring. Compound 3 showed nanomolar potency against G9a, excellent cell permeability and robust on-target activity in cells [10]. Interestingly, compound 3 was found to be inactive against other histone lysine methyltransferases, but displayed high micromolar activity against DNMT1 [18]. This observation suggested that the quinazoline moiety, used to develop lysine methyltransferase and demethylase inhibitors, could also be suitable to design, with appropriate substitutions, compounds able to inhibit DNMTs. In addition, we thought that such quinazoline-based compounds lacking the C6 methoxy group should not be able to bind H3K9 modifying enzymes. Thus, we prepared the series of 6,7-desmethoxy quinazolines 4–18 (Figure 1B) by maintaining the 1-benzyl-4-piperidinylamino moiety (typical of 1 and 2) at the C4 position of the quinazoline ring and changing the substituent at C2, spanning from differently sized cyclic amines (containing or not heteroatoms and/or lipophilic groups) to open-chain amines.

Here we report the evaluation of the quinazolines 4–18 against human DNMT1 (hDNMT1) and the C-terminal catalytic domain of human DNMT3A (hDNMT3A). For selected derivatives, their effect on the H3K9 methyltransferase G9a was also assessed. Some quinazolines were then tested in a cytomegalovirus-luciferase (CMV-luc) construct in KG-1 cells, repressed by methylation, in order to detect their capability to reactivate gene expression in cells [19]. Docking studies have been performed to gain insight on the binding mode of the most potent compounds on hDNMT3A. For selected derivatives, their theoretical values (see Table S1 in File S1). All chemicals were purchased from Aldrich Chimica, Milan (Italy), or from Lancaster Synthesis GmbH, Milan (Italy), and were of the highest purity.

Preparation of N-(1-benzylpiperidin-4-yl)-2-chloroquinazolin-4-amine (20). See File S1.

General procedure for the preparation of 4-(1-benzylpiperidin-4-yl)-2-(cyclo/alkylamino)quinazolin-4-amines (4–18). Example: N-(1-benzylpiperidin-4-yl)-2-morpholinoquinazolin-4-amine (12). A mixture of N-(1-benzylpiperidin-4-yl)-2-chloroquinazolin-4-amine (20) (1 eq, 0.6 mmol, 0.2 g) and morpholine (5 eq, 2.8 mmol, 0.25 mL) was placed in a sealed tube and stirred at 110°C for 1 h. After cooling to room temperature, 5 mL of water was added and the resulting precipitate was filtered and washed with water. The obtained solid residue was recrystallized from petroleum ether to provide pure 12 as a white solid. Mp: 110–112°C (petroleum ether). Yield: 70%. 1H-NMR (CDCl3): δ 1.71–1.76 (m, 2H, CH-piperidine ring), 2.14–2.31 (m, 4H, CH-piperidine ring), 2.96 (m, 2H, CH-piperidine ring), 3.61 (s, 2H, CH2Ph), 3.80–3.87 (m, 8H, CH-morpholine ring), 4.18 (m, 1H, NHC6-H-piperidine), 5.56 (d, 1H, NH), 7.11 (m, 1H, C6-H quinazoline ring), 7.31–7.38 (m, 5H, C-H phenyl ring), 7.50–7.53 (m, 3H, C5,7,8-H quinazoline ring). 13C-NMR (CDCl3) δ 30.3, 48.7, 51.9, 56.8, 64.7, 66.3, 110.3, 120.0, 127.2, 127.7, 128.4, 128.8, 132.7, 152.3, 160.1, 184.6 ppm. HR-MS (ESI) calculated for C24H30N5O [M]+: 404.2450; found, 404.2446.

Chemical and physical data for compounds 4–11, 13–18 are reported in File S1.

DNMT1 Assay

His-DNMT1 (182 kDa, human) was cloned, expressed and purified as described by Lee et al. [20]. The DNMT1 assay was performed according to Gros et al. [21]. Briefly, the reaction was started by addition of 90 nM of DNMT1 on a mix containing the tested compound (up to 1% DMSO), 1 μM of a AdoMet/[methyl-3H]-AdoMet mix in a ratio of 3:1 (isotopic dilution 1:3) and 0.3 μM of biotinylated DNA duplex in 10 μL final volume. The reaction was incubated at 37°C for 2 h in reaction buffer (20 mM HEPES pH 7.2, 1 mM EDTA, 50 mM KCl, 25 μg/mL BSA). 8 μL were then transferred into a streptavidin-coated Flashplate PLUS (PerkinElmer) containing 190 μL of 20 μM AdoHcy (Sigma-Aldrich) in 50 mM Tris-HCl pH 7.4. The Flashplate was agitated at room temperature for 1 h, washed three times with 200 μL of 0.05% Tween-20 in 50 mM Tris-HCl pH 7.4 and read in 200 μL of 50 mM Tris-HCl pH 7.4 on TopCount NXT (PerkinElmer). Percentages of inhibition were calculated with the same formula as in DNMT3A assay.

DNMT3A Assay

DNMT3A enzyme inhibition was adapted from the restriction-based fluorescence assay protocol described in Ceccheddi et al. [22]. Briefly, a 5'-labelled biotin oligonucleotide is hybridized to its complementary strand labelled with 6-carboxyfluorescein at the 3'-end into a 384 well microplate (black Optiplates; Perkin Elmer) pre-coated with avidin. The duplex contains a unique CpG site overlapping with a restriction site of a methylation sensitive restriction enzyme. The C-terminal catalytic domain of human DNMT3A (residues 623–908), produced as described [7], was added in each well (200 ng/well) and mixed with the chemical compounds at desired concentrations and freshly prepared AdoMet (20 μM final concentration) to start the reaction in a total volume of 50 μL. After 1 hour incubation at 37°C each well was washed three times with PBS, 0.05% Tween-20, 500 mM NaCl and three more times with PBST. Specific fluorescent signals were detected with the methylation-sensitive restriction enzyme HpyCHH4IV (NEB) as described and measured on a Perkin Elmer Envision detector. The percentage of inhibition is reported. The
Figure 1. Quinazoline-based modulators of epigenetic targets. (A) Known quinazolines (1–3) as G9a/GLP inhibitors. (B) Novel 6,7-desmethoxyquinazolines 4–18. (C) Synthetic scheme for the preparation of 4–18.

doi:10.1371/journal.pone.0096941.g001

Table 1. Percent of inhibition of 4–18 against hDNMT1 and hDNMT3A.

<table>
<thead>
<tr>
<th>Compd</th>
<th>% inhibition ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hDNMT1 100 μM</td>
</tr>
<tr>
<td>4</td>
<td>47±1.7*</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>35±8</td>
</tr>
<tr>
<td>SGI-1027</td>
<td>100±0.1</td>
</tr>
</tbody>
</table>

Values are means of two to five experiments ± standard deviation.

*Percent of inhibition at 32 and 10 μM: 18±0.8 and 6.5±0.7%, respectively.

doi:10.1371/journal.pone.0096941.t001
The formula used to calculate the percentage of inhibition is $\frac{\left| X - Y \right|}{X} \times 100$, where X is the signal determined in the absence of the inhibitor and Y is the signal obtained in the presence of the inhibitor. The concentration at which 50% of efficacy of inhibition is observed (EC_{50}) was determined by analysis of a concentration range of the tested compound in triplets. The non-linear regression fittings with sigmoidal dose-response (variable slope) were performed with GraphPad Prism 4.03 (GraphPad Software).

CMV-luc Assay

KG-1 cell line, stably transfected with the luciferase Firefly (Luc+) from pGL3 by Promega) reporter gene under the control of the CMV promoter (from pEGFP-N1 by Clontech) partially methylated (50%), is seeded at 20,000 cell per well in a 96-well plate. After 24 h of incubation in the presence of the compounds or the solvent DMSO, the induction of the promoter is measured by quantification of luciferase with the Brite-lite assay system (Perkin Elmer) according to the manufacturer protocol. The luminescence is measured on EnVision Multilabel Plate Reader (Perkin Elmer) and the data are expressed in induction factor compared to the DMSO control condition. The mean of 2–4 experiments and its standard error is reported.

G9a Assay

Human G9a (residues 786–1210; accession II NM_006709) was expressed as N-terminal GST fusion protein in E. coli. The reaction buffer was 50 mM Tris-HCl, pH 8.5, 50 mM NaCl, 5 mM MgCl2, 1 mM dithiothreitol (DTT), 1 mM PMSF, and 1% DMSO. Standard substrate concentrations were 5 mM biotinylated H3 (1–21) peptide (AnaSpec) substrate and 0.1 mM AdoMet. For control compound IC$_{50}$ determinations, the test compounds were diluted in DMSO and then added to the enzyme/substrate mixture in nanoliter amounts by using an acoustic technology (Echo 500; Lab-cyte). The reaction was initiated by the addition of 3H-AdoMet, and incubated at 30°C for 1 h. The reaction was detected by a filter-binding method. Data analysis was performed using Graph Pad Prism software for curve fits, and GraFit (Erithacus) for global fit of kinetic studies. To determine the effects of 4, 10, 13 and 14 against G9a, the quinazoline compounds were tested in a 10-dose IC$_{50}$ mode with 2-fold serial dilution starting at 400 μM. The results are summarized in Table S2 in File S1.

Docking Studies

Prior to docking calculations, the Epik software was used to calculate the most relevant ionization and tautomeric state of compounds 4 and 14 [23]. Then the Glide program of the Schrodinger package [24] was used to dock 4 and 14 to the...
Figure 3. Effect of selected compounds on the induction of the luciferase signal at the CMV-luc construct in KG-1 cells. (A) CMV-luc construct to detect changes in methylation at the CMV promoter in KG-1 cells. (B) Modulation of induction of luciferase expression of CMV-luc after treatment with different doses of 1, 4, 10, 13 and 14. SGI-1027 was used as a reference drug. Values are means of at least two experiments. Cytotoxicity of DNMT inhibitors in KG-1 cells causes a decrease or loss of luciferase induction.

doi:10.1371/journal.pone.0096941.g003

Figure 4. Docking studies of 4 and 14 into the DNMT3A active site. Experimental (A) and theoretical (B and C) binding mode of AdoHcy (A), 4 (B) and 14 (C) in the DNMT3A active site. Protein is depicted as light yellow ribbons and sticks while ligands are depicted as red sticks. Hydrogen-bonds are depicted as dashed blue lines.

doi:10.1371/journal.pone.0096941.g004
DNMT3A structure (PDB 2QRV). The receptor grid generation was performed for the box with a center in the putative binding site. The size of the box was determined automatically. The extra precision mode (XP) of Glide was used for docking. The ligand scaling factor was set to 1.0. The geometry of the ligand binding site of the complex between 10 and the receptor was then optimized. The binding site was defined as 10 and all amino acid residues located within 8 Å from the ligand. All the receptor residues located within 2 Å from the binding site were used as a shell. The OPLS2005 force field was used for energy minimization. Water was used as an implicit solvent, and a maximum of 5000 iterations of the Polak–Ribier conjugate gradient minimization method was used with a convergence threshold of 0.01 kJ mol–1 Å–1. All complex pictures were rendered employing the UCSF Chimera software [25].

Cellular Assays

U-937 and RAJI cell lines were purchased from Deutsche Sammlung für Mikroorganismen und Zellkulturen (DSZM). Cells were maintained in RPMI 1640 (Lonza) supplemented with 10% fetal calf serum (Lonza) and 1% antibiotic–antimycotic (Lonza). Cells were treated with compounds at the indicated concentrations in exponential growth phase. Proliferation and viability were assessed by trypan blue exclusion analysis at the indicated time points.

Results and Discussion

For the synthesis of the quinazolines 4–18, the 2,4-dichloroquinazoline 19 [26] was treated with 4-amino-1-benzylpiperidine at room temperature providing the 4-substituted intermediate 20, which underwent C2-chloro displacement at the quinazoline ring with the proper amines at 110 °C in a sealed tube to provide the desired 2,4-disubstituted quinazolines (Figure 1C).

Compounds 4–18 were tested against human DNMT1 (hDNMT1) and the C-terminal catalytic domain of human DNMT3A (hDNMT3A) to assess their inhibitory activities. Compound 1 and SGI-1027, a known non-nucleoside DNMT inhibitor [27,28], were used for comparison purposes.

The majority of the tested compounds, when evaluated against DNMT1, were inactive at 100 μM, with the sole exception of the N-(1-benzylpiperidin-4-yl)-2-(pyrrolidin-1-yl)quinazolin-4-amine 10, that showed a dose-dependent DNMT1 inhibition (% inhibition at 100, 32 and 10 μM: 47 ± 1.7, 18 ± 0.8 and 6.5 ± 0.7, respectively)

Table 2. Effect of selected quinazoline analogues 4, 10, 13 and 14 on human lymphoma U-937 and RAJI cell viability at 48 h*.

<table>
<thead>
<tr>
<th>compd</th>
<th>IC50 (mean ± SD, μM)</th>
<th>U-937</th>
<th>RAJI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16.6±3.8</td>
<td>21.1±2.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.7±3.8</td>
<td>18.7±4.3</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>18.8±1.2</td>
<td>19.7±1.4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.4±1.4</td>
<td>3.4±0.3</td>
<td></td>
</tr>
<tr>
<td>SGI-1027</td>
<td>1.7±1.1</td>
<td>9.1±0.8</td>
<td></td>
</tr>
</tbody>
</table>

*Data represent the mean (± SD) of at least three independent experiments.

doi:10.1371/journal.pone.0096941.t002
hDNMT3A, the relative EC 50 values were determined, as well as (CMV-luc assay) [19] (Figure 3A). The structurally related cytomegalovirus (CMV) promoter, which inhibits its expression luciferase reporter system under the control of a methylated their ability to reactivate gene expression, through an integrated drugs at the indicated concentrations, and normalized to the value 5

significantly induced the luciferase signal at 10

cytotoxicity of the compounds (data not shown). Compound 4 and 14 were also tested against G9a- show IC50 values from 0.76 to 8.3

For compounds 4, 10, 13, and 14, the most potent against hDNMT3A, the relative IC50 values were determined, as well as for 10 against hDNMT1 (Figure 2). In addition, when possible their IC50 values against G9a were calculated, to assess their DNMT3A-selectivity and to ascertain if the absence of the C6/C7 dimethoxy substitution effectively abolishes the inhibitory effect of such derivatives against H3K9 methyltransferases (10-dose IC50 mode with 2-fold serial dilution starting at 400 μM for G9a inhibition in Table S2 in File S1). Compound 1, AdoHcy, sinetfungin and chaetocin were used as reference drugs (see File S1). Compounds 1, 4, 10, 13 and 14 were also tested against G9a-like protein (GLP), a related H3K9 methyltransferase, to determine the percent of inhibition at 8 μM (see File S1). As expected, among the tested compounds, only 10 was able to inhibit also DNMT1 and G9a, however it being 4- and 10-fold more selective for DNMT3A. The other compounds 4, 10, 13 and 14 were inactive against DNMT1 (0% of inhibition at 100 μM) and showed >40-fold selectivity for DNMT3A over G9a inhibition (Figure 2). In the G9a assay, the reference compounds showed IC50 values from 0.76 to 0.5 μM (see File S1). Against GLP, the tested compounds showed a percent of inhibition ranging from 0 to 10%, whereas the corresponding value for 1 was 91.7% (see File S1).

Compounds 4, 10, 13 and 14 were tested in KG-1 cells for their ability to reactivate gene expression, through an integrated luciferase reporter system under the control of a methylated cytomegalovirus (CMV) promoter, which inhibits its expression (CMV-luc assay) [19] (Figure 3A). The structurally related 1 was added for comparison. The fold-induction of the luciferase signal was measured in cells incubated for 24 h in the presence of the drugs at the indicated concentrations, and normalized to the value of the non-treated cells. SGI-1027 was used as a reference drug. At 5 μM the quinazolines 10, 13 and 14 furnished 2/3-fold induction of the luciferase signal, this effect increasing at 10 μM. At 25 μM 14 showed 7.5-fold increase of the CMV-luc signal, whereas 10 and 13 were not effective because of loss of cells due to the cytotoxicity of the compounds (data not shown). Compound 4 significantly induced the luciferase signal at 10 μM (2.3-fold) and reached its highest value at 25 μM (12.5-fold). Both compounds 4 and 14 at 50 μM were ineffective to reactivate CMV-luc because of cytotoxicity (not shown). SGI-1027 displayed 17-fold of induction of the signal at 5 μM, but at 10 and 25 μM suffered from cytotoxicity giving a decrease to 10-fold and no induction, respectively (Figure 3B).

Molecular modeling studies were performed to explain the reasons behind the hDNMT3A inhibitory activity of the newly discovered analogues of 1. In particular, the most potent and structurally diverse hDNMT3A inhibitors 4 and 14 were docked into the active site of the enzyme using the Glide software which has been already successfully used to suggest a binding conformation for other DNMT3A inhibitors [29]. To this end, the 2.09 Å resolution X-ray crystal structure of the catalytic hDNMT3A-hDNMT3L tetrameric complex bound to S-adenosyl-l-homocysteine (AdoHcy) was used (PDB code 2QRV) [7].

Docking simulations achieved for 4 placed the ligand in the enzyme’s binding cleft of AdoHcy with a calculated docking score of −7.232 kcal/mol (Figure 4). In this conformation, the quinazoline core scaffold is embedded in a rather lipophilic and narrow cleft made up by I639, S665, and L864 (herein referred to as L1, Figure 4B). Indeed, the limited room available in the aforementioned cleft would not allow hosting of the C6- and C7-methoxy groups of 1 thus explaining why the latter compound is inactive against DNMT3A.

The achieved binding pose also allowed explaining the contribution to ligand binding of the C2- and C4-substituents. In particular, the C2-diazepane moiety takes favorable hydrophobic contact with T641 and I701 residues (herein referred to as L2) explaining why substitution of the C2 position with neutral azacycloalkane rings (6–10) favors the L2 cleft and still results in effective DNMT3A inhibitors. Interestingly, unlike 6–10, 4 bears a protonated nitrogen (N4 of the diazepane ring) that is able to engage with the adjacent W889 forming a cation–π interaction, which was also detected, through X-ray studies [7], for the terminal positively charged nitrogen atom of AdoHcy in the interaction with DNMT3A (Figure 4A). In agreement with this binding orientation, the absence of hydrophobic and/or cation–π interactions in this region is detrimental for enzyme inhibition (11, 12, 16–18).

Regarding the C4 substituent, the 1-benzyl-4-piperidinylamino group is optimally oriented to engage a long-range ionic interaction with E660 so that the terminal aromatic ring is able to form a well-oriented T-shaped charge-transfer interaction with F636 and additional hydrophobic contacts in the cleft made up by V661, C662, V683, and L726 (herein referred to as L3). Also in this case, the same contacts were already detected for the adenine ring of AdoHcy in its interaction with the enzyme (Figure 4A) [7].

Interestingly, docking results achieved for 14 (docking score = 6.353 kcal/mol) placed the ligand in a reverted binding pose in which the C2 and C4 substituents are now lodged in the L1 and L2 pockets, respectively. Such a binding position places the conformationally rigid C2-phenylpyrrolidinyl moiety of 14 so as to recapitulate the interaction pattern established by the C4-substituent of 4 and the adenine ring of AdoHcy with the enzyme (Figures 4C, 4B and 4A, respectively). Accordingly, increasing of the steric demands of the C2-substituent (15–18) should disrupt the interactions with the L1 pocket thus being detrimental for the ligand inhibitory potency. Moreover, the L2 pocket is now favorably contacted by the C4-1-benzyl-4-piperidinylamino moiety of 14 through a parallel displaced π-π interaction with W869 aromatic ring. In this position, the above mentioned L1 pocket does not seem to be contacted by the ligand quinazoline ring that is now forming a hydrogen-bond between its N1 atom and R397 side chain; the latter residue is also forming an additional hydrogen-bond through its backbone carbonyl oxygen with the ligand exocyclic NH in C4.
To rationalize the lack of inhibition potency of the analogues of 1 against G9a/GLP, compound 4 was docked into the X-ray structure of the GLP enzyme obtained in complex with 1 [PDB code 3EPD] [16]. Glide results indicated that 4 is able to recapitulate the experimental binding position of 1 (Figure S1a in File S1). Interestingly, in the latter compound the G6- and G7-methoxy groups are demonstrated to play a critical role in the ligand inhibition as they provide further interactions to better mimic the substrate/GLP recognition [16] (Figure S1b in File S1), thus explaining the lack of GLP inhibition by 4 in their absence.

Docking studies were also attained for compounds 4 and 14 in the X-ray structure of DNMT1 crystallized in complex with sinfungin (PDB 3SWR, Hashimoto and Cheng, unpublished data), to clarify why these two ligands are inactive against the aforementioned enzyme. Comparison of the DNMT3A and DNMT1 methyltransferase domains reveals that the room available for ligand binding is similar and, for the latter enzyme, the presence of three distinct clefts (L1, L2 and L3) can be also detected. Moreover, experimental data allowed to postulate that, in the case of DNMT1, the inhibitors should interact with the so-called CXXC [29] and autoinhibitory linker [29] domains (residues 646–692 and 699–733, respectively) to induce efficient inhibition. According to Glide calculations, both 4 and 14 should be able to occupy the DNMT1 methyltransferase site (Figure S2a and S2b in File S1). Nevertheless, the residue composition of this region (i.e. negatively charged residues in the L2 pocket) should result in low binding affinity. Also, no tight contacts are established with the CXXC and autoinhibitory domains. This should explain why, despite the overall binding site similarities between the two enzymes, 4 and 14 are potent DNMT3A inhibitors without displaying any activity against DNMT1.

Moreover, we investigated the effects of 4, 10, 13 and 14 on proliferation and viability of U-937 and RAJI lymphoma cells (Figure 5). Globally, all compounds were cytotoxic in the low micromolar range as they decreased cell proliferation as a result of the antiproliferative and cell death inducing effects, consistently with its DNMT3A inhibitory potency, 14 displayed the highest antiproliferative effect in the tested cancer cell lines, it being, when compared to SGI-1027, 2.6-fold less efficient against U-937 but 3-fold more potent against RAJI cells.

Conclusion

Starting from the quinazolines 1–3, previously reported as H3K9 methyltransferase/demethylase inhibitors, we explored the possibility to design new related derivatives 4–18 as novel DNMT inhibitors maintaining the C4-substitution typical of 1, varying the substituent at C2 position and deleting the C6/C7 dimethoxy groups, crucial for the interaction with the H3K9 modifying enzymes. When tested against hDNMT1 and the catalytic domain of hDNMT3A, the majority of 4–18 displayed high potency against DNMT3A and no inhibiting activity against DNMT1, with the only exception of 10. The most potent compounds against DNMT3A, i.e. 4, 10, 13 and 14, were up to 40-times selective for DNMT3A over G9a. The same compounds, tested below their cytotoxic dose, increased the luciferase signal of an integrated reporter system in KG-1 cells silenced by a methylated cytomegalovirus (CMV) promoter (CMV-luc assay). In human lymphoma U-937 and RAJI cells, 14 displayed the highest antiproliferative and cell death inducing effects, consistently with the highest inhibitory potency showed against DNMT3A.

Supporting Information

File S1

File S1 contains: Preparation of N-[(1-benzylpiperidin-4-yl)-2-chloroquinazolin-4-amine (20). Chemical and physical data for compounds 4–11, 13–18. **Table S1.** Elemental analyses of compounds 4–18. **Table S2.** Percentages of G9a inhibition with 4, 10, 13 and 14 tested in a 10-dose IC 50 mode with 2-fold serial dilution starting at 400 µM. IC 50 graphic data for compound 10. **GLP assay.** **Figure S1.** Binding mode of 4 (yellow sticks) in the GLP binding site (green ribbons) as predicted by Glide. **Figure S2.** Predicted binding mode of 4 (a) and 14 (b) in the DNMT1 X-ray structure.

Author Contributions

Conceived and designed the experiments: SC EN MS MD XC PBA AM. Performed the experiments: DR DT BM C. Gros FA SC MS SDM C. Grandjenette CB. Analyzed the data: DR C. Gros FA SC MS MD XC PBA AM. Contributed reagents/materials/analysis tools: DR MD XC PBA AM. Wrote the paper: DR SC MS MD XC PBA AM.

References

