fMRI correlates for low frequency local field potentials appear as a spatiotemporal dynamic under multiple anesthetic conditions

Garth J. Thompson, Emory University
Wenju Pan, Emory University
Matthew E. Magnuson, Emory University
Shella Keilholz, Emory University

Journal Title: BMC Neuroscience
Volume: Volume 13, Number Suppl 1
Publisher: BioMed Central | 2012-07-16, Pages O19-O19
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/1471-2202-13-S1-O19
Permanent URL: https://pid.emory.edu/ark:/25593/s5h5c

Final published version: http://dx.doi.org/10.1186/1471-2202-13-S1-O19

Copyright information:
©2012 Thompson et al
This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/).

Accessed April 5, 2019 10:20 PM EDT
In the previous decade, interest in the “functional connectivity” of the brain has greatly increased, but the nature of the signal underlying derived predictive metrics remains poorly understood [1]. A typical study uses functional magnetic resonance imaging (fMRI) and calculates regions of correlated low-frequency activity or “functional networks” when no task is being performed, the “resting state”. However, unlike traditional block/event based fMRI, the spontaneous fluctuations that determine such networks may not relate to a standard “hemodynamic response” to neural activity [2] and may be task and brain region dependent [1]. Ten rats were anesthetized with either isoflurane (iso) or dexmedetomidine (med). Each rat had simultaneous local field potentials (LFP) [3] recorded from implanted electrodes in bilateral primary somatosensory cortex (SI) simultaneously with single-slice fMRI of SI [4]. After preprocessing, signals were filtered to regions of significant spectral coherence (0.04-0.18Hz iso, 0.05-0.3Hz med). Pearson correlation (r_t) was calculated between LFP signals at time shifts -10s to 10s relative to fMRI, at every fMRI voxel (Figure 1B). Instead of a simple hemodynamic response, the LFP correlates appeared both to have a component of spatial propagation (Figure 1B, white arrows), and alternation between positive and negative correlation. This was observed using both anesthetics and suggests that LFPs in coherent frequencies do not simply reflect local activation, but may instead be part of a large scale dynamic process. Using an fMRI-based algorithm validated in both anesthetized rats and awake humans [5], a spatiotemporal dynamic was produced that was highly similar to r_t (Figure 1C). Spatial correlation (r_s) between the two types of pattern reached a maximum at approximately the same shift.
between patterns in all rats, mean $r_s = 0.25$ (med) and mean $r_s = 0.23$ (iso), with mean $r_s > 0.10$ indicating significance at $p < 0.05$ when using boot-strapping and correcting for multiple comparisons [6]. These results suggest that the neural basis of functional networks may be more complex than a simple hemodynamic response and possibly contains contributions from large-scale neuromodulatory processes.

Published: 16 July 2012

References

Cite this article as: Thompson et al.: FMRI correlates for low frequency local field potentials appear as a spatiotemporal dynamic under multiple anesthetic conditions. BMC Neuroscience 2012 13(Suppl 1):O19.