Electroporation (EP)-related technical errors experienced during an HIV vaccine clinical trial conducted in Rwanda and Uganda: lessons learned

R. Bayingana, International AIDS Vaccine Initiative
A. Nanvubya, Uganda Virus Research Institute
E. Karita, International AIDS Vaccine Initiative
J. Nyombayire, International AIDS Vaccine Initiative
R. Ingabire, International AIDS Vaccine Initiative
K. Chinyenze, International AIDS Vaccine Initiative
J. Lehrman, International AIDS Vaccine Initiative
C. Schimidt, International AIDS Vaccine Initiative
D. Hannaman, ICHOR Medical Systems Inc
Susan Allen, Emory University

Only first 10 authors above; see publication for full author list.

Journal Title: Retrovirology
Volume: Volume 9, Number Suppl 2
Publisher: BioMed Central | 2012-09-13, Pages P113-P113
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1186/1742-4690-9-S2-P113
Permanent URL: https://pid.emory.edu/ark:/25593/s5ff8

Final published version: http://dx.doi.org/10.1186/1742-4690-9-S2-P113

Copyright information:

©2012 Bayingana et al; licensee BioMed Central Ltd.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/).
Electroporation (EP)-related technical errors experienced during an HIV vaccine clinical trial conducted in Rwanda and Uganda: lessons learned

R Bayingana¹*, A Nanvubya², E Karita¹, J Nyombayire¹, R Ingabire¹, K Chinyenze³, J Lehrman³, C Schimidt³, D Hannaman⁴, S Allen⁵, P Fast³

From AIDS Vaccine 2012
Boston, MA, USA. 9-12 September 2012

Background
Intracellular DNA vaccine delivery is essential for antigen expression and induction of immune response. Unfortunately, conventional intramuscular injection provides low efficiency DNA uptake and suboptimal immunogenicity. Electroporation-based DNA vaccination can enhance potency by 100-1000 fold. In this trial we used the TriGrid Delivery System by Ichor Medical Systems. We describe the electroporation technical errors that occurred during administration of an HIV pDNA vaccine in a clinical trial conducted at sites in Rwanda and Uganda and how those errors were resolved.

Methods
The site physicians were trained and qualified to use the EP procedure during site initiation visits and further practiced mock EPs later. We examined the technical errors that occurred by reviewing volunteer files between 19th December 2011 and 27th March 2012.

Each administration of the HIV pDNA intramuscularly by electroporation required two injections (one in each deltoid muscle) at each vaccination time point. Should an error occur during EP procedure, the respective error codes are shown on the monitor. Once the procedure is complete, 'procedure complete' is indicated on the monitor.

Results
Six errors out of 90 electroporations occurred. Four occurred because of improper insertion of the electrodes or injection needle. These errors were resolved by repeating the procedure. Two occurred because of improper insertion of the cartridge into the applicator and on both occasions the errors were captured before switching on the enable button on the pulse stimulator. These were resolved by properly re-inserting the cartridge into the applicator. Most of the other potential errors were caught before the procedure started by the second person observing the set up.

Conclusion
We conclude that errors related to EP procedure can be minimized or avoided when there is appropriate quality control immediately prior to vaccination. We advise to have two trained and qualified staff present during the procedure for quality control purposes.

Author details
¹Project San Francisco/International AIDS Vaccine Initiative, Kigali, Rwanda. ²Uganda Virus Research Institute, Entebbe, Uganda. ³International AIDS Vaccine Initiative, Nairobi, Kenya. ⁴ICHOR Medical Systems Inc, USA. ⁵Emory University, Atlanta, GA, USA.

Published: 13 September 2012

doi:10.1186/1742-4690-9-S2-P113