Variability of Organophosphorous Pesticide Metabolite Levels in Spot and 24-hr Urine Samples Collected from Young Children during 1 Week

Asa Bradman, University of California Berkeley
Katherine Kogut, University of California Berkeley
Ellen A. Eisen, University of California Berkeley
Nicholas P. Jewell, University of California Berkeley
Lesliam Quiros-Alcala, University of California Berkeley
Rosemary Castorina, University of California Berkeley
Jonathan Chevrier, University of California Berkeley
Nina T. Holland, University of California Berkeley
Dana Barr, Emory University
Geri Kavanagh-Baird, University of California Berkeley

Only first 10 authors above; see publication for full author list.

Journal Title: Environmental Health Perspectives
Volume: Volume 121, Number 1
Publisher: National Institute of Environmental Health Sciences (NIEHS) | 2013-01-01, Pages 118-124
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1289/ehp.1104808
Permanent URL: https://pid.emory.edu/ark:/25593/s5c08

Final published version: http://dx.doi.org/10.1289/ehp.1104808

Copyright information:
Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely.

Accessed April 10, 2019 10:26 AM EDT
Spot urine samples have been used to assess organophosphorous (OP) pesticide exposures in epidemiological and biomonitoring studies, with samples analyzed for either nonspecific diacyl phosphate (DAP) metabolites [Centers for Disease Control and Prevention (CDC) 2003] or pesticide-specific metabolites (Fenske et al. 2002). Because collection of spot urine samples is relatively simple and noninvasive, this sample type is commonly used in studies involving children (Fenske et al. 2005). Several studies suggest that spot samples provide meaningful measures of exposure, reporting associations, for example, between residence near farmlands and OP metabolite levels in children’s urine (Fenske et al. 2000). However, concerns have been raised as to whether metabolites measured in a single spot sample accurately reflect exposure for the full day or beyond.

Several factors may result in exposure misclassification when using spot samples: a) Because the concentration of a chemical, urine volume, and rate of urinary excretion vary with fluid and salt intake, time of day, and other factors (Barr et al. 2005; Boeniger et al. 1993; Cornelis et al. 1996), exposure measurements may be more variable than other sample types, such as first morning voids (FMVs) (Kissel et al. 2005), which are more concentrated and reflect a longer period of accumulation, or 24-hr urine collections, considered by some as the “gold standard” (Aprea et al. 2002; Boeniger et al. 1993; Fenske and Elknor 1990; Martin et al. 1996); b) because of within-child variability in creatinine excretion (Barr et al. 2005; Boeniger et al. 1993), creatinine-adjusted metabolism may introduce new variability that does not reflect urine dilution; and c) most OP pesticides have biological half-lives of only 12–36 hr (Needham 2005) and are metabolized and excreted from the body in hours to days (Barr 2008). Thus, OP pesticide metabolite excretion in a brief sampling period, whether measured in a spot, FMV, or 24-hr urine sample, may not accurately represent a child’s cumulative OP pesticide exposure over longer periods.

One recent study of 44 preschool-age children who provided between 10 and 26 biweekly spot urine samples over 21 months reported that within-child variability for the five DAP metabolites measured exceeded between-child variability by several factors (Griffith et al. 2011)—a finding that underscores concern about the reliability of this measure and raises questions about the source of within-child variability. To date, no studies have evaluated variability of OP metabolites in within-day samples or in 24-hr urine samples collected several days apart. Nor have studies compared variability in DAP measurements when expressed in terms of unadjusted concentrations, creatinine-adjusted concentrations, or urinary excretion rates.

To address these questions, in this study with preschool-aged children in California we aimed to a) evaluate the reproducibility of children’s nonspecific OP pesticide measurements within a 1-week period; b) evaluate the influence of concentration corrections (i.e., creatinine adjustment and use of urinary excretion rate) on reproducibility of DAP measurements; c) determine the degree of correspondence between pesticide metabolite concentration in spot urine samples (including FMVs) and same-day 24-hr samples; and d) evaluate the sensitivity and specificity of spot urine samples to classify full-week average measurements.

Methods

Study population. We recruited a convenience sample of 25 children (10 boys, 15 girls) from

**Address correspondence to A. Bradman, Center for Environmental Research and Children’s Health (CERCH); School of Public Health; University of California, Berkeley; 1995 University Ave., Suite 265; Berkeley, CA 94704 USA. Telephone: (510) 643-3023. Fax: (510) 642-9083. E-mail: abradman@berkeley.edu

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1104808).

*These authors share lead authorship.

We thank S. Mehta and T. Whitehead for statistical assistance and also thank our staff, community partners, and study participants. We thank the anonymous reviewers for insightful comments and suggestions to improve the paper.

This research was supported by grant numbers RD 83171001 and RD 876709 from the U.S. Environmental Protection Agency (EPA), and PO1 ES09605 from the National Institute of Environmental Health Sciences (NIEHS).

The contents are solely the responsibility of the authors and do not necessarily represent the views of the EPA or the NIEHS.

B.E. recently consulted on a pesticide exposure case. The other authors declare they have no actual or potential competing financial interests.
clinics serving low-income families in the Salinas Valley, an agricultural region. Eligible children were between 3 and 6 years old, in good health with no history of diabetes or renal disease, toilet-trained, free of enuresis, and had English- or Spanish-speaking mothers who were at least 18 years old. Sampling occurred in March and April 2004. The study was approved by the University of California at Berkeley Committee for the Protection of Human Subjects, and parents provided written informed consent.

Urine sample collection. Each family participated for 7 consecutive days (study days 1–7). On day 1, study staff provided families with sampling supplies and instructions on sample collection. Supplies included specimen trays (cleaned, sterile Specipan™; Baxter Scientific, McGaw Park, IL), gloves, collection jars with blank labels, a small refrigerator, and two 24-hr sampling record forms. On spot-sampling days (1, 3, 4, 6, and 7), families collected a single void at their convenience; families sometimes collected an FMV as the spot sample. On 24-hr sampling days (2 and 5), families were instructed to collect the child’s FMV, all daytime and evening spot voids, and the FMV of the following day as separate specimens, and to note the timing of all voids (including missed voids) during this period on the 24-hr sampling record form.

Sample collection methods have been previously validated in this age range (Lu et al. 2001). Children voided directly into a collection jar or into a clean, sterile specimen tray placed on a training potty or toilet. If samples were collected in specimen trays, parents transferred specimens into collection jars. Parents identified each sample as an FMV or a non-FMV spot sample, recorded the time of collection on jar labels, and stored specimens in the refrigerator until daily collection by research staff. On 24-hr sampling days, research staff reviewed the sampling record form with the families to assure its accuracy and completeness.

Twenty-four-hour samples included 3–11 collected voids (mean, 6.5). Overall, 86% (range, 50–100%) of the reported voids during the 24-hr sampling periods were collected. Twenty-two (44%) of the 24-hr samples were based on 100% collection of all voids. Reasons for missed voids included out-of-home bathroom use, toileting accidents, and participant error, such as missing an evening void. In sensitivity analyses, we excluded seven 24-hr samples with fewer than five total voids to confirm that collection errors did not substantially change study results (not shown).

Sample processing and analysis. Samples were processed at the Salinas Valley study office. The weight of each void was measured (grams), and the volume (milliliters) was estimated assuming a urine specific gravity of 1.022 (Salita et al. 1998). Individual voids from 24-hr sampling sessions that were not selected for individual analysis were pooled. After aliquotting, samples were stored at –80°C until being shipped on dry ice to the CDC for analysis.

We measured six DAP metabolites in all samples: three dimethyl (DM) phosphate metabolites—dimethylphosphate (DMP), dimethylthiophosphate (DMTP), and dimethyldithiophosphate (DMDTP); and three diethyl (DE) phosphates—diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DDETP). These metabolites represent approximately 81% of the agricultural OP pesticides used in the Salinas Valley (Bradman et al. 2007). Laboratory methods and quality control procedures are described in detail elsewhere (Bravo et al. 2004). Briefly, samples were lyophilized to remove water, redissolved in a 1:1 solution of acetonitrile and diethyl ether, and analyzed using gas chromatography–tandem mass spectrometry using isotope dilution. Creatinine concentrations were determined using a commercially available method (Vitros CREA slides; Ortho Clinical Diagnostics, Raritan, NJ). Westgard rules for quality control were used to establish the validity of each analytical run (Westgard 2003). Limits of detection (LODs) were 0.2 μg/L for all DEs, 0.5 μg/L for DMP, 0.4 μg/L for DMTP, and 0.1 μg/L for DMDTP.

Levels below the LOD were imputed as LOD/2 (Hornung and Reed 1990), and molar concentrations were summed within each sample to yield total DM, total DE, and total DAP concentrations. Metabolite levels in 24-hr voids were computed as the volume-weighted average of concentrations in all samples collected on sampling days 2 and 5, which included the FMV samples from the following day. We expressed metabolite concentration and/or excretion in three ways: a) unadjusted metabolite concentration (nanomoles metabolite per liter of urine); b) creatinine-adjusted metabolite concentration (nanomoles metabolite per gram of creatinine); and c) urinary excretion rate (UER) of each metabolite (nanomoles metabolite per minute) computed as the total moles of excreted metabolite divided by the duration of time in minutes since the previous void. For 24-hr collections, time since the previous void was calculated as the time elapsed between the last void preceding the 24-hr sample collection (typically the last void on day 1 or 4) and the last void included in the 24-hr sample (typically the FMV on day 3 or 6).

Data Analysis

Statistical analyses were performed using Stata 10 for Windows (StataCorp LP, College Station, TX). We first computed descriptive statistics and assessed normality. Log_{10}-transformed values were used for subsequent analyses.

Correspondence between spot samples and 24-hr samples. We constructed generalized estimating equation (GEE) models using DAP concentration in a 24-hr sample as the outcome variable and concentration in a same-day spot sample (FMV or non-FMV) or a combination of these two spot samples as the predictor variable. Combinations of two spot samples were modeled as separate predictor variables and as a single variable computed as either the arithmetic or volume-weighted average of the individual samples. Analyses using each DAP variable type (i.e., unadjusted concentrations, creatinine-adjusted concentrations, and UER) were compared. Robust standard errors were calculated.

Reproducibility of spot and 24-hr urine samples. We used mixed random-effects models to compute the between-child and within-child variance for 24-hr samples from days 2 and 5, and for all FMV spot samples. For all non-FMV spot samples and for all spot samples (FMV and non-FMV), we estimated the variance attributable to each of the following components—between-child, within-child, and within-child within-day variability (because multiple samples were available from the same day)—using two-level random-intercept models (Marchenko 2006). This method parses the total within-child variance into two parts: the component attributable to same-day within-child variability, and the component attributable to between-day within-child variability (Hauser et al. 2004; Preau et al. 2010; Ye et al. 2011). We calculated Akaike Information Criterion (AIC) values for the nested models with the largest number of observations (the all spot samples model) to compare the fit of models using unadjusted DAP concentrations, creatinine-adjusted concentrations, and UER. We also calculated the intraclass correlation coefficient (ICC) for each group of samples. The ICC is the ratio of between-subject variance to total variance.

Correlation of spot samples collected 0–6 days apart. We computed Pearson’s correlations between pairs of samples collected on the same day (0 days apart) as well as on pairs of samples collected between 1 and 6 days apart. This analysis included all possible unique pairings of each child’s spot samples, and was conducted separately for pairs of FMV spots only, pairs of non-FMV spots only, and for all pairs of spots regardless of FMV status. Tests of significance were computed using a robust estimate of the variance.

Sensitivity and specificity. We evaluated the sensitivity and specificity of one, two, or three randomly-selected spot urine samples from each child as predictors of high (top 20%) or elevated (top 40%) weekly average DAP metabolite concentrations. For “true” exposure, we calculated the arithmetic mean metabolite concentration of all spot urine samples collected from each
child during the week, categorized these in quintiles, and assigned "true" high (top 20%) or elevated (top 40%) exposure level. For predictor sets, we created 10 data sets each containing one randomly selected spot sample per child (i.e., 25 observations total per data set). Within each randomly-selected data set, we again categorized the 25 metabolite concentration in quintiles, and assigned "predicted" high (top 20%) or elevated (top 40%) exposure levels. This process mimicked the exposure classification process in epidemiological studies, in which knowledge of the range and rankings of exposure in a population is often limited to what can be observed in the single sample or small number of samples collected per subject.

Table 1. Unadjusted and creatinine-adjusted DAP concentrations in urine samples.

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>Unadjusted</th>
<th>Creatinine adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DF (%)</td>
<td>GM Mean Median Max</td>
</tr>
<tr>
<td>Non-FMV spot samples (n = 137)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total DAPs</td>
<td>98.2</td>
<td>110 229 122 4,820</td>
</tr>
<tr>
<td>Total DMs</td>
<td>94.2</td>
<td>63.0 179 60.3 4,790</td>
</tr>
<tr>
<td>Total DEs</td>
<td>98.6</td>
<td>26.9 59.8 31.1 500</td>
</tr>
<tr>
<td>FMV samples (n = 110)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total DAPs</td>
<td>95.5</td>
<td>92.3 234 94.4 2,380</td>
</tr>
<tr>
<td>Total DMs</td>
<td>97.3</td>
<td>43.4 72.5 57.1 391</td>
</tr>
<tr>
<td>Total DEs</td>
<td>—</td>
<td>45.9 65.0 53.3 248</td>
</tr>
</tbody>
</table>

Abbreviations: DF, detection frequency; GM, geometric mean; Max, maximum.

The sensitivity and specificity figures we report represent the average sensitivity and specificity observed across the 10 separate random samples. We report findings separately for FMV samples only, for non-FMV samples only, and for all spot samples. To determine whether collection of more than one spot sample could improve sensitivity, we repeated this analysis using the arithmetic mean of two or three spot samples from each child collected on different days. Because some children lacked three FMV or non-FMV samples from different days, we only assessed the sensitivity and specificity of three spot samples in the “any spot sample” group.

Results

All children were Mexican American, and their ages ranged from 3 to 6.5 years (mean ± SD age, 4.5 ± 0.93 years). Children urinated between 3 and 12 times (mean, 5.7 voids) per 24-hr period, and the volume of their individual spot samples ranged from 4.8 to 642.2 mL (mean, 146.6 mL) for FMV samples and

Figure 1. Concentration of total DAP metabolites (nmol/gram creatinine) in log10 scale for all spot samples and 24-hr samples collected over 1 week. Each panel represents an individual participant (n = 25; P1–P25). The dots in each panel represent the total DAP metabolite concentration in the 24-hr samples from sampling days 2 and 5, respectively. The panels are ranked in order of ascending arithmetic mean of all spot samples collected for each child. Thus, the bottom row (P21–P25) contains the children rated as having "true" high (top 20%) weekly exposure in the sensitivity and specificity analysis, and the bottom two rows (P16–P25) contain the children with "true" elevated (top 40%) weekly exposure.
from 8.4 to 238.3 mL (mean, 68.1 mL) for non-FMV spot samples. The creatinine concentration of spot samples ranged from 9.4 to 213.2 mg/dL (mean, 86.6 mg/dL) for FMV samples and from 4.5 to 158.7 mg/dL (mean, 68.6 mg/dL) for non-FMV samples. Creatinine concentration varied more within children than between children for both FMV (ICC = 0.37) and non-FMV (ICC = 0.22) spot samples. Individual DE and DM metabolites were detected in >70% of samples, except for DEDTP (17%) (data not shown). Total DM concentrations exceeded total DE concentrations, and total DAP levels reflected predominantly DM metabolites (Table 1). Central tendency measures (e.g., means, medians) for unadjusted concentration values were similar for FMV spot samples and 24-hr samples, which were generally higher than levels in non-FMV spot samples. In contrast, central tendency measures for creatinine-adjusted concentration values were more similar for FMVs and non-FMV spot samples, with both generally lower than creatinine-adjusted 24-hr samples.

Figure 1 presents the total DAP metabolite concentrations [in log_{10} scale (nanomoles per gram creatinine)] for each participant for all spot samples collected over the 7 consecutive sampling days. There are no clear exposure trends over time among the children, though our data indicate that shifts of up to two orders of magnitude can occur over the week (Figure 1, P7) or within a single day (Figure 1, P19, day 5). Twenty-four-hour samples collected only 3 days apart can likewise differ by an order of magnitude (e.g., Figure 1, P2, P7, P25).

Table 2 presents results of GEE models examining how well same-day spot samples predict 24-hr metabolite levels. For models examining a single unadjusted spot sample (FMV or non-FMV) and its respective 24-hr sample, the predictive power of the model, defined by the coefficient of determination (R^2), was highest for FMVs [R^2 for total DAP metabolites (nmol/L) = 0.54 for FMVs vs. 0.39 for non-FMV spots]. The predictive power of the model was higher for creatinine-adjusted metabolites compared with unadjusted metabolites, especially for non-FMVs, with little difference between the sample types (total DAP R^2 = 0.57 for FMV and 0.63 for non-FMVs). The predictive power was lowest for UER models.

The best-fitting models were obtained when the arithmetic mean of an FMV and a non-FMV sample was used to predict the 24-hr values (Table 2). The best model fit was observed for creatinine-adjusted values (total DAP R^2 = 0.84), but the variability in 24-hr metabolite levels explained by unadjusted values and UER estimates were comparable (R^2 = 0.79 and 0.77, respectively). Model fit was strongest for analyses of total DM metabolites, and weakest for total DE metabolites.

Volume-weighted averages of FMV and non-FMV spots produced model fits that were similar to that obtained with the arithmetic mean (data not shown). Results of sensitivity analyses that excluded seven 24-hr samples with fewer than five spot samples were consistent with those described above (data not shown).

AIC values for mixed-random-effects models used to estimate the variance in total DAPs attributable to between-child versus within-child sources based on all spot urine samples (n = 247) indicated that best model fit was achieved with creatinine-adjusted values (AIC = 36; Table 3) versus AIC = 372 and 451, respectively, for unadjusted concentration and UER models (see Supplemental Material, Table S1 (http://dx.doi.org/10.1289/ehp.1104808)). Relative to unadjusted concentration and UER models, use of creatinine-adjusted values also provided the greatest degree of distinction between individual children [e.g., ICC = 0.32 for creatinine-adjusted total DAP metabolites in the “any spot sample” model (Table 3) vs. ICC = 0.21 and 0.15, respectively, for the analogous unadjusted concentration and UER models (see Supplemental Material, Table S1)].
between a factor between five (e.g., 57% vs.
12% of the total variance for non-FMV spot
samples) and eight (e.g., 88% vs. 12% of
the total variance for FMV spot samples) for
these metabolites.

On the basis of their superior model
performance in the preceding analyses, we
used creatinine-adjusted values in subsequent
analyses.

Table 4 presents Pearson correlations of
creatinine-adjusted metabolite levels in spot
samples collected 0–6 days apart. Correlations
for total DAPs and total DMs were moderate
(≈ 0.5) and statistically significant for samples
collected on the same day (i.e., 0 days apart)
or 1 day apart, and became weaker as the
number of days between samples increased.
All correlations were weak and not signifi-
cant for samples collected 5–6 days apart. DE
metabolites had weaker correlations compared
with DMs, and the decay in correlations across
days was more rapid for DEs than for DM or
total DAP metabolites. FMV samples tended to
have higher correlations than non-FMV
samples or any spot samples. The correlations
between samples collected 2–3 days apart
are comparable with Pearson correlations between
levels in 24-hr samples collected 3 days apart,
which were 0.35, 0.36, and 0.15, respectively,
for total DAP, DM, and DE metabolites.

Table 5 presents results of sensitivity and
specificity analyses. In this sample of partici-
pants, children with high (top 20%) weekly
average total DAP metabolite concentrations
would be correctly classified by a single non-
FMV spot sample 52% of the time. Using
two samples increased the sensitivity margin-
ally to 56%. FMVs also showed marginally
higher sensitivity than non-FMV samples.
Within the “any spot sample group,” three-
spot predictors offered little apparent advan-
tage over two-spot predictors. Overall, the
sensitivity was higher to classify children in the
top 40th percentile (elevated) than in the
top 20th percentile, with a slight improve-
ment with two versus one sample. Specificity
was uniformly higher than sensitivity. Use of a
single non-FMV spot sample would correctly
identify a child in the lower 80th percentile
(i.e., not “high”) 88% of the time, and would
identify a child in the lower 60th percentile
(i.e. not “elevated”) 78% of the time.

Discussion
This study of variability in DAP metabolites
of OP pesticides in urine samples from children
3–6 years old indicates high variability
over a 1-week time frame. Although we
observed strong correlations between full-day
24-hr samples and same-day spot samples (see
Pearson correlations, Table 2), there was weak
correlation between DAP metabolite levels in
24-hr samples collected 3 days apart or in spot
samples collected > 1 day apart, with correla-
tions weaker for DE compared with DM DAP
metabolites. Further, within-child variance was
approximately two to three times the between-
child variance for total DAP metabolites (e.g.,
66% vs. 34% for FMV samples for creatinine-
adjusted total DAPs, ICC = 0.27–0.35). This
ratio was lower (and thus, the ICC higher) in
DM metabolites compared with DE metabo-
lites (ICC = 0.30–0.39 vs. ICC = 0.11–0.16,
respectively). Finally, we found that DAPs
measured in one, two, or even three spot
urine samples have relatively low sensitivity
to identify children who would be considered
the most highly exposed on the basis of their
average full-week DAP concentrations. For
example, a single non-FMV spot sample would
correctly identify only 52% of the children
whose true weekly exposure was in the top
quintile, suggesting high type 2 classification
errors; by contrast, spot samples appear to offer
good specificity, with a single non-FMV spot
sample correctly identifying about 88% of chil-
dren with true total DAP exposure below the
top quintile. Overall, the high within-child
variance, the weak correlation across days, and
low specificity suggests that single-day measure-
ments may not adequately characterize exposure
for longer time frames necessary for chronic risk
assessments or epidemiologic studies.

Our analysis replicated methods applied by
Ye et al. (2011) and Preau et al. (2010)
to partition the variance components among
between-child, within-child between-day, and
within-child within-day components for sam-
ple types with more than one sample per day
(Table 3). Similar to their findings for bisphe-
lon A and monoethyl phthalate, we found that
overall within-person variance was higher than
between-person variance, and that within-day
variance was the largest component of total
variance, suggesting that differences in expos-
ure between days were lower compared with
fluctuations during the course of each day. This
finding suggests that eliminating
within-day variability would substantially
reduce within-child relative to between-child
variability overall. However, we found that
65% of the total variance in 24-hr urine sam-
pled collected 3 days apart was due to within-
child between-day variability, even though
the 24-hr samples reflect complete sampling
with no within-day variability (i.e., the entire
sample was collected). These apparently con-
tradictory findings suggest to us that the vari-
ance component analyses may overestimate
the within-person within-day variance com-
ponent. Specifically, we suspect the models
may overestimate the degree of within-day
variability that is biologically plausible, given
that the total number of possible within-day
observations is capped by the number of times
individuals urinate each day, which in this
study ranged between 3 and 12 times.

Our study provides important information
about the appropriateness of creatinine adjust-
ment to control for urinary dilution in chil-
dren 3–6 years of age. Overall, our findings
suggest that creatinine adjustment of urinary

Table 3. Variance apportionment of log-transformed creatinine-adjusted DAP metabolite concentrations in spot urine samples collected during 1 week and in 24-hr voids collected 3 days apart (n = 25 children).

<table>
<thead>
<tr>
<th>Type of sample</th>
<th>Total DAPs</th>
<th>Total DMs</th>
<th>Total DEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variance</td>
<td>% Total Variance</td>
<td>ICC</td>
</tr>
<tr>
<td>Non-FMV spot samples</td>
<td>0.075</td>
<td>25</td>
<td>0.27<sup>a</sup></td>
</tr>
<tr>
<td>Between child</td>
<td>0.105</td>
<td>34</td>
<td>0.149</td>
</tr>
<tr>
<td>Within child, between day</td>
<td>0.125</td>
<td>41</td>
<td>0.162</td>
</tr>
<tr>
<td>Within child, within day</td>
<td>0.207</td>
<td>66</td>
<td>0.276</td>
</tr>
<tr>
<td>FMV samples</td>
<td>0.105</td>
<td>34</td>
<td>0.34</td>
</tr>
<tr>
<td>Between child</td>
<td>0.157</td>
<td>36</td>
<td>0.37<sup>b</sup></td>
</tr>
<tr>
<td>Within child</td>
<td>0.213</td>
<td>48</td>
<td>0.237</td>
</tr>
<tr>
<td>Any spot samples (FMV or Non-FMV)</td>
<td>0.097</td>
<td>31</td>
<td>0.32<sup>b</sup></td>
</tr>
<tr>
<td>Between child</td>
<td>0.064</td>
<td>20</td>
<td>0.070</td>
</tr>
<tr>
<td>Within child, between day</td>
<td>0.152</td>
<td>49</td>
<td>0.213</td>
</tr>
<tr>
<td>Within child, within day</td>
<td>0.089</td>
<td>35</td>
<td>0.131</td>
</tr>
<tr>
<td>24-hr voids</td>
<td>0.168</td>
<td>65</td>
<td>0.237</td>
</tr>
<tr>
<td>Between child</td>
<td>0.035</td>
<td>12</td>
<td>0.11</td>
</tr>
<tr>
<td>Within child</td>
<td>0.004</td>
<td>10</td>
<td>0.11<sup>b</sup></td>
</tr>
</tbody>
</table>

^aNo. of samples used in calculation. ^bRatio of between-child to total variability as calculated using a one-factor (child) as opposed to a two-factor nested mixed-effects model.
^cBecause FMV spots and 24-hr voids allow only one measure per day, the distinction between within-day versus between-day variability is not applicable.

122 | VOLUME 121 | NUMBER 1 | January 2013 • Environmental Health Perspectives
DAP concentrations in children ages 3–6 years maximizes between-child relative to within-child variance (thus reducing exposure misclassification), improves estimation of the average 24-hr DAP concentration on the basis of spot urine samples, and may decrease the difference between FMV and easier-to-collect non-FMV spot samples in terms of their ability to estimate total 24-hr excretion. Despite this empirical evidence suggesting that creatinine adjustment effectively normalized the metabolite concentrations, this method may introduce other sources of variability. Specifically, creatinine varies as a function of sex, age, meat consumption, body size, and muscle mass (Boeniger et al. 1993). Thus, large differences in size, muscle mass, and diet between developing children of the same age could result in very different normalized metabolite values among children with the same exposure. In future analyses, we will examine creatinine excretion patterns in these children and assess adjustment for specific gravity (not yet quantified in these samples) as an alternative approach to account for urinary dilution.

In summary, our findings raise concerns about the utility of urinary DAP metabolites as a biomarker of chronic OP pesticide exposure in young children. Two recent published analyses from our Center have detected no association between DAP measures in children and adverse outcomes, although they did detect significant associations between maternal prenatal DAP measurements and child neurodevelopmental outcomes (Bouchard et al. 2011; Marks et al. 2010), despite the fact we have also observed high within versus between variability in maternal urine (Bradman et al. 2005). One interpretation of this finding is that OP exposures in childhood are less critical than exposures that occur in utero. The fetus is so exceptionally sensitive to OPs that the strength of the prenatal exposure effects are evident despite limitations in the exposure measure. The current study suggests another plausible explanation: that misclassification of child OP exposure biased results toward the null hypothesis.

Our study has several limitations. Collecting 24-hr urine samples from young children proved challenging, and missed voids due to occasional toileting accidents or other circumstances were beyond the control of study staff. Though 86% of the voids reported to have occurred during 24-hr sampling periods were collected, missed voids meant that individual spot samples made up a greater proportion of the 24-hr volume-weighted average than they should have. Thus, our estimates of the association between metabolites in spot and 24-hr samples (Table 2) represent an upper bound. We measured class-specific organophosphorus pesticide DAP metabolites, and our findings should not be generalized to pesticide-specific OP metabolites, which may exhibit different variance patterns. Our study was also conducted in an agricultural community during the growing season, and it is possible that intermittent exposures related to nearby agricultural pesticide use may have caused higher variability in metabolite levels than would be observed in the general U.S. population. Furthermore, different exposure scenarios could result in different variability patterns. Before the phaseout of diazinon and chlorpyrifos in household pesticides (U.S. Environmental Protection Agency 2000, 2001), for example, children from homes with frequent indoor use of such pesticides may have shown more stable exposure levels. In a follow-up analysis, we intend to use additional data available to us to assess which potential exposure sources (e.g., diet, nearby agricultural pesticide use) best account for the metabolite variability patterns we present here.

Conclusions

We found that though DAP metabolites in single or multiple spot samples are strongly correlated with levels in same-day 24-hr samples, children’s urinary DAP concentrations vary greatly from day to day, and use of spot samples to characterize a child’s cumulative weekly exposure results in a moderate degree of misclassification. Exposure misclassification resulting from urinary metabolite variability has the potential to bias measures of association between early childhood OP exposures and developmental outcomes in epidemiologic research toward the null hypothesis; such misclassification may account for the weak or null findings often reported to date between pediatric urinary DAP concentrations and child development (Bouchard et al. 2011; Marks et al. 2010). Additional research on variability in measures of nonpersistent compounds in children is needed to assure that exposure biomarkers are valid and that epidemiological studies have adequate power to detect health outcomes that may result from these exposures.

References

Barr DB, Wilder LC, Caulliet SP, Gonzalez AJ, Needham LL, Pickrell JL. 2005. Urinary creatinine concentrations in the

Variability of urine measures of pesticide metabolites in children

Table 4. Pearson correlations of creatinine-adjusted DAP metabolite concentrations (log_{10} scale) in paired, same-child spot urine samples collected 0–6 days apart.

<table>
<thead>
<tr>
<th>Type of spot sample metabolite</th>
<th>0 (same day)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-FMV spot samples</td>
<td>n = 26*</td>
<td>84</td>
<td>60</td>
<td>58</td>
<td>65</td>
<td>84</td>
<td>2</td>
</tr>
<tr>
<td>Total DAPs</td>
<td>0.54*</td>
<td>0.48*</td>
<td>0.08</td>
<td>0.24</td>
<td>0.16</td>
<td>—0.01</td>
<td></td>
</tr>
<tr>
<td>Total DMs</td>
<td>0.58*</td>
<td>0.45*</td>
<td>0.27*</td>
<td>0.37*</td>
<td>0.10</td>
<td>—0.15</td>
<td>—</td>
</tr>
<tr>
<td>Total DEs</td>
<td>0.44*</td>
<td>0.34*</td>
<td>—0.21</td>
<td>0.13</td>
<td>0.13</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>FMV samples</td>
<td>n = 28</td>
<td>58</td>
<td>57</td>
<td>45</td>
<td>50</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Total DAPs</td>
<td>—0.54*</td>
<td>0.27*</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total DMs</td>
<td>—0.59*</td>
<td>0.34*</td>
<td>0.30*</td>
<td>0.38</td>
<td>0.31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total DEs</td>
<td>—0.25</td>
<td>—0.01</td>
<td>0.32*</td>
<td>—0.10</td>
<td>—0.05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Any spot samples (FMV or Non-FMV)</td>
<td>n = 92*</td>
<td>303</td>
<td>248</td>
<td>203</td>
<td>154</td>
<td>77</td>
<td>25</td>
</tr>
<tr>
<td>Total DAPs</td>
<td>0.46*</td>
<td>0.45*</td>
<td>0.25*</td>
<td>0.26*</td>
<td>0.17*</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Total DMs</td>
<td>0.49*</td>
<td>0.48*</td>
<td>0.35*</td>
<td>0.30*</td>
<td>0.21*</td>
<td>0.18</td>
<td>0.13</td>
</tr>
<tr>
<td>Total DEs</td>
<td>0.25*</td>
<td>0.22*</td>
<td>—0.15</td>
<td>0.08</td>
<td>0.02</td>
<td>0.11</td>
<td>—0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>0.88</td>
</tr>
<tr>
<td>0.56</td>
<td>0.89</td>
</tr>
<tr>
<td>0.58</td>
<td>0.90</td>
</tr>
<tr>
<td>0.58</td>
<td>0.90</td>
</tr>
<tr>
<td>0.46</td>
<td>0.87</td>
</tr>
<tr>
<td>0.60</td>
<td>0.90</td>
</tr>
<tr>
<td>0.64</td>
<td>0.91</td>
</tr>
</tbody>
</table>

*Average sensitivity and specificity calculated based on 10 separate random samples of predictor spot samples.

*Calculations use creatinine-adjusted total DAP metabolite concentration (nmol/g creatinine) on the log_{10} scale. *Pairs and trios consist of spot samples collected on different days (i.e., no pairs of same-day spots).

