Cross-sectional association between ZIP code-level gentrification and homelessness among a large community-based sample of people who inject drugs in 19 US cities

Sabriya Linton, Emory University
Hannah Cooper, Emory University
Mary Kelley, Emory University
Conny C. Karnes, Emory University
Zev Ross, ZevRoss Spatial Analysis
Mary E. Wolfe, Emory University
Samuel R. Friedman, National Development and Research Institutes
Don Des Jarlais, Mount Sinai Beth Israel
Salaam Semaan, Centers for Disease Control and Prevention
Barbara Tempalski, National Development and Research Institutes

Only first 10 authors above; see publication for full author list.

Journal Title: BMJ Open
Volume: Volume 7, Number 6
Publisher: BMJ Publishing Group: Open Access | 2017-06-20, Pages e013823-e013823
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1136/bmjopen-2016-013823
Permanent URL: https://pid.emory.edu/ark:/25593/s4mxn

Final published version: http://dx.doi.org/10.1136/bmjopen-2016-013823

Copyright information:
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Accessed December 28, 2019 7:37 PM EST
Cross-sectional association between ZIP code-level gentrification and homelessness among a large community-based sample of people who inject drugs in 19 US cities

Sabriya L Linton,1 Hannah LF Cooper,1 Mary E Kelley,1 Conny C Karnes,1 Zev Ross,2 Mary E Wolfe,1 Samuel R Friedman,3 Don Des Jarlais,4 Salaam Semaan,5 Barbara Tempalski,3 Catlaine Sionean,5 Elizabeth DiNenno,5 Cyprian Wejnert,5 Gabriela Paz-Bailey,5 for the National HIV Behavioral Surveillance Study Group

ABSTRACT

Background Housing instability has been associated with poor health outcomes among people who inject drugs (PWID). This study investigates the associations of local-level housing and economic conditions with homelessness among a large sample of PWID, which is an underexplored topic to date.

Methods PWID in this cross-sectional study were recruited from 19 large cities in the USA as part of National HIV Behavioral Surveillance. PWID provided self-reported information on demographics, behaviours and life events. Homelessness was defined as residing on the street, in a shelter, in a single room occupancy hotel, or in a car or temporarily residing with friends or relatives any time in the past year. Data on county-level rental housing unaffordability and demand for assisted housing units, and ZIP code-level gentrification (eg, index of percent increases in non-Hispanic white residents, household income, gross rent from 1990 to 2009) and economic deprivation were collected from the US Census Bureau and Department of Housing and Urban Development. Multilevel models evaluated the associations of local economic and housing characteristics with homelessness.

Results Sixty percent (5394/8992) of the participants reported homelessness in the past year. The multivariable model demonstrated that PWID living in ZIP codes with higher levels of gentrification had higher odds of homelessness in the past year (gentrification: adjusted OR=1.11, 95% CI=1.04 to 1.17).

Conclusions Additional research is needed to determine the mechanisms through which gentrification increases homelessness among PWID to develop appropriate community-level interventions.

INTRODUCTION

Safe and stable housing has been deemed a key social determinant of health by public health bodies, including the WHO and the US Department of Health and Human Services.1 2 As described by Aidala and Sumartojo, ‘unsafe and unstable housing conditions serve as the intermediary by which inequities in social and economic conditions and policies influence health’.3 Consistent with this perspective, housing remains a key structural factor targeted by global Health in All Policies approaches and domestic structural interventions (eg, Housing Opportunity for Persons with AIDS).4 5

Despite a decline in the percentage of unsheltered homeless people in the USA from 40% to 31% between 2007 and 2014, a recent study by the Department of Housing and Urban Development (HUD) reported that on a single night in 2014, more than 578,000 people experienced homelessness.5 This suggests that the USA is far from attaining its goal of ending homelessness.

People who inject drugs (PWID) are particularly vulnerable to homelessness.6–14 Homelessness among PWID has
dire consequences for their health. Homelessness has been associated with relapse among former injectors, and among former and active injectors, homelessness has been associated with injection and sexual risk behaviours, the transmission of infectious diseases, opiate overdose and lower rates of drug treatment enrollment and retention, drug cessation and antiretroviral adherence among those who are HIV positive.

Evaluations of ‘Housing First’ interventions further support the importance of stable housing among PWID. These interventions provide housing to unstably housed individuals without requiring the participants to first engage in drug abuse or mental health treatment. Although most of these evaluations have not been conducted exclusively among PWID, those conducted among individuals with co-occurring disorders (eg, mental illness and substance use) suggest that Housing First interventions improve housing stability, drug abuse treatment retention, health behaviours and health outcomes.

The determinants of homelessness that have been identified among PWID and other populations in previous literature have largely been individual-level characteristics, including sociodemographic factors, mental health status, history of substance use and HIV status, and social network characteristics. With the exception of qualitative research, most research has not explored the potential influence of local place-based factors on homelessness.

Homelessness has been hypothesised to result from several place-based factors, including unaffordable housing and economic deprivation. Homelessness has also been hypothesised to be a consequence of urban redevelopment and gentrification processes that may cause landlords to intentionally disinvest in maintenance and repair of properties that ultimately get repurposed or demolished and thereby reduce available affordable housing stock. Similarly, the demolition of public housing complexes that occurred under the Housing Opportunities for People Everywhere policy in several US cities may have contributed to the loss of affordable housing stock. Urban redevelopment and gentrification may also reduce affordable housing stock by increasing rent and housing market value, increasing demand for supportive housing and housing subsidies (eg, Section-8 vouchers) and potentially causing the needs of marginalised groups to go unmet.

Empirical data are lacking, however, on the extent to which place-based factors relate to homelessness. A study conducted among shelter residents in Philadelphia and New York City is one of the few studies that have explored this line of research. It demonstrated that the majority of shelter residents reported prior addresses that were located in economically deprived neighbourhoods.

The current study provides a rare opportunity to further advance knowledge about the possible impacts of place-based factors on homelessness among PWID, by linking individual-level data on homelessness among a large community-based sample of PWID to administrative data on economic and housing conditions at ZIP code and county geographical levels. Increasing empirical evidence of the potential role of place-based factors on homelessness—above and beyond individual-level factors—may suggest potential structural interventions that should be implemented and reduce social stigma.

METHODS

National HIV Behavioral Surveillance study sample

PWID were recruited by respondent-driven sampling (RDS) for the Centers for Disease Control and Prevention’s 2009 National HIV Behavioral Surveillance (NHBS). NHBS sampling procedures have been described elsewhere. Briefly, its 2009 NHBS surveillance cycle was implemented in 20 metropolitan statistical areas (MSAs) with high AIDS prevalence in 2006. Eligible participants included those who had not already participated in the 2009 cycle of NHBS, were ≥18 years, reported injection drug use in the past year, demonstrated evidence of injection (eg, track marks); resided in an NHBS-eligible MSA and provided oral consent. Participants enrolled at the San Juan–Bayamon site were excluded because administrative data on several place-based characteristics were not available for this MSA. A total of 9882 participants met the eligibility criteria in the remaining 19 MSAs.

Analysis was restricted to 9702 PWID who self-identified as Hispanic/Latino, non-Hispanic/Latino black and non-Hispanic/Latino white. Participants were excluded from the analytic sample if they had invalid/ incomplete surveys (n=26), had invalid or missing ZIP code information (n=499), were transgender individuals in incomplete surveys (n=26), had invalid or missing ZIP code information (n=149), were transgender individuals or had invalid/missing information on key covariates (n=134). The final analytic sample included 8992 participants.

The final analytic sample included 8992 participants. Those excluded from the analysis were more likely to be white (>10% difference) and live in the Western region of the USA and less likely to live in the Midwestern region than those included in the analytic sample. Other characteristics measured in this study were not substantially different (>10%) between those included and excluded from the analysis.

Data collection and measures

Trained interviewers collected self-reported individual-level data on PWID, including demographics, behaviours, life events and ZIP codes and counties where they resided using standardised questionnaires. Participants were assigned to MSAs and regions based on interview site. When possible, participants who reported homelessness at the time of their interview were assigned to the ZIP code where they reported they frequently slept. When participants lived in ZIP codes that crossed county lines, they were assigned to the county where most participants living in that ZIP code reported residing (n=341).
Individual-level homelessness was defined as self-reported homelessness; residing on the street, in a shelter, in a single room occupancy hotel or in a car or temporarily residing with friends or relatives at any time in the past 12 months.

ZIP code-level and county-level factors were selected based on the conceptual framework presented (figure 1). Definitions and sources of these factors are detailed in table 1. Factors were created using data from the 2009 HUD Picture of Subsidized Households and US Census Bureau’s 1990 Decennial Census and 2007–2011 American Community Survey (ACS). County-level factors were percent unaffordable rental units among low-income households and average number of months that applicants were on waiting lists for assisted housing. ZIP code-level factors were economic deprivation and gentrification between 1990 and 2009.

Individual-level covariates were also selected based on previous research and included age, gender, race and ethnicity, full-time employment and self-reported HIV status (ie, indeterminate/unknown, negative, positive) at the time of the interview, personal annual income dichotomized at the median (>US$5000 vs ≤US$5000), daily injection, binge drinking, non-injection drug use, having a main or casual sexual partner in the past year, and incarceration (ie, held in a jail or prison for at least 1 day in the past year). Measures of poor mental health status, which are well-established predictors of homelessness, were not collected as part of NHBS.

Statistical analysis

The distributions of all characteristics were determined using descriptive statistics (ie, frequencies and percentages and means and SD). To prevent possible multicollinearity, the correlations between place-based characteristics were assessed. Univariate and multivariable multilevel logistic regression models were used to assess relationships of place-based factors to the odds of homelessness. Random intercepts were included for ZIP codes, counties and MSAs. A multivariable model assessed the relationships of place-based factors significant at p<0.20 in univariate models to homelessness, controlling for individual-level covariates. We also explored whether the relationships of place-based factors to homelessness differed among Latino, black and white participants through stratified analysis using Stata V.13 (StataCorp).
Table 1 Definition and sources of place-based exposures

<table>
<thead>
<tr>
<th>Place-based exposures</th>
<th>Measure</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent unaffordable rental units among low- income households</td>
<td>Among households earning <US$10000 annually, the number of occupied rental units* where residents spent ≥35% of their annual household income on rent, divided by the total number of occupied rental units</td>
<td>2007–2011 American Community Survey</td>
</tr>
<tr>
<td>Average number of months that applicants were on waiting lists for assisted housing</td>
<td>Average months on waiting lists among new admissions for housing programs assisted by the Department of Housing and Urban Development</td>
<td>2009 Picture of Subsidised Households, Department of Housing and Urban Development</td>
</tr>
<tr>
<td>ZIP code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic deprivation†</td>
<td>Index of % residents employed in low-wage occupations (eg, service, sales, construction, manufacturing, transportation), % households in poverty, % female-headed households with dependent children <18 years, % households on public assistance, % low-income households, % without high school diploma/General Educational Development Diploma (GED) and % unemployed</td>
<td>2007–2011 American Community Survey</td>
</tr>
<tr>
<td>Gentrification‡</td>
<td>Index of percent change in the following indicators between 1990 and 2009: % poverty, % college or more among adults aged ≥25, % White, median household income and median monthly rent. Economic factors were adjusted for inflation using the Consumer Price Index.</td>
<td>Geolytics 1990 Long Form in 2010 Boundaries; 2007–2011 American Community Survey</td>
</tr>
</tbody>
</table>

*The US Census Bureau defines housing units to be a house, an apartment, a mobile home or trailer, a group of rooms or a single room that is occupied. Group quarters (eg, treatment centres, correctional facilities and homeless shelters) are not defined as housing units.49.
†The economic deprivation index was informed by50 51: Principal component analysis (PCA) was conducted to confirm the dimensionality of the items across ZIP codes of all metropolitan statistical areas (MSAs). Once confirmed through PCA, the items were standardised by z-score, weighted by factor loadings and summed to create the index.
‡The gentrification measure was informed by38 40 52 53; PCA was conducted to confirm the dimensionality of the items across ZIP codes of all MSAs. Once confirmed through PCA, the items were standardised by z-score, weighted by factor loadings and summed to create the index.

RESULTS

Place characteristics

On average, participants resided in counties where 85.18% (SD=6.15) of rental units among low-income households were unaffordable, and the average number of months that applicants were on waiting lists for assisted housing was 30.03 months (SD=17.65; table 2). The mean gentrification score was 0.41 (SD=1.45) among the ZIP codes where participants lived. On average, ZIP codes that scored above the mean were characterised by a 53% increase in percent of non-Hispanic white residents between 1990 and 2009 and a 20% increase in median gross rent and median household income (adjusted for inflation) between 1990 and 2009.

Participant characteristics

The majority of participants were black (52%) and men (72%; table 2). The mean age of the participants was 45.76 years (SD=10.54). Less than 5% of participants reported current full-time employment at the time of the interview and 61% earned an annual personal income of US$5000 or less. Sixty percent of the participants reported experiencing homelessness at some point during the last year.

Associations of place characteristics with homelessness among PWID

In univariate models (table 3), PWID who lived in ZIP codes with higher levels of gentrification had a significantly higher odds of homelessness in the past year (OR=1.13; 95% CI=1.07 to 1.18). PWID who lived in counties with greater percentages of unaffordable rental housing units among low-income households were less likely to report homelessness in the past year; this association was marginally significant (OR=0.97; 95% CI=0.94 to 1.01; p=0.110). These associations did not substantially differ in magnitude and significance across different racial/ethnic groups of PWID (data not shown).
In the multivariable model, ZIP code-level gentrification remained significantly associated with homelessness (table 3: adjusted OR=1.11; 95% CI=1.04 to 1.17). Specifically, the odds of homelessness increased by 17% with each SD increase in ZIP code-level gentrification. The association between percentages of unaffordable rental housing units among low-income households and homelessness was no longer marginally significant (adjusted OR=0.99; CI=0.96 to 1.02).

DISCUSSION

A high level of homelessness (60% in last year) was reported among this large sample of PWID, which not only...
Table 3 Association of ZIP code, county and participant characteristics with recent homelessness among people who inject drugs from 19 US metro areas in 2009

<table>
<thead>
<tr>
<th></th>
<th>Univariate model OR (95% CI)</th>
<th>Multivariable model adjusted OR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>19.58 (1.13 to 339.80)</td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northeast (reference)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>1.19 (0.73 to 1.93)</td>
<td>—</td>
</tr>
<tr>
<td>Midwest</td>
<td>0.71 (0.33 to 1.55)</td>
<td>—</td>
</tr>
<tr>
<td>West</td>
<td>1.33 (0.77 to 2.28)</td>
<td>—</td>
</tr>
<tr>
<td>Metropolitan statistical area (n=19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random intercept variance</td>
<td>0.06 (0 to 2.61)</td>
<td>0.06 (0 to 2.00)</td>
</tr>
<tr>
<td>County (n=51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random intercept variance</td>
<td>0.26 (0.10 to 0.70)</td>
<td>0.21 (0.07 to 0.69)</td>
</tr>
<tr>
<td>Percent unaffordable rental units among low-income households</td>
<td>0.97 (0.94 to 1.01)</td>
<td>0.99 (0.96 to 1.02)</td>
</tr>
<tr>
<td>Average number of months that applicants were on waiting lists for assisted housing</td>
<td>1.00 (0.98 to 1.01)</td>
<td>—</td>
</tr>
<tr>
<td>ZIP code (n=937)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random intercept variance</td>
<td>0.31 (0.23 to 0.43)</td>
<td>0.17 (0.11 to 0.26)</td>
</tr>
<tr>
<td>Economic deprivation</td>
<td>0.98 (0.95 to 1.02)</td>
<td></td>
</tr>
<tr>
<td>Gentrification</td>
<td>1.13 (1.07 to 1.18)</td>
<td>1.11 (1.04 to 1.17)</td>
</tr>
<tr>
<td>Participant characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current age</td>
<td>0.97 (0.96 to 0.97)</td>
<td>0.98 (0.97 to 0.98)</td>
</tr>
<tr>
<td>Sex (1=male)</td>
<td>0.88 (0.80 to 0.98)</td>
<td>0.81 (0.73 to 0.91)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (reference)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Black</td>
<td>0.66 (0.58 to 0.75)</td>
<td>0.76 (0.66 to 0.87)</td>
</tr>
<tr>
<td>Latino</td>
<td>0.87 (0.75 to 1.01)</td>
<td>0.83 (0.71 to 0.97)</td>
</tr>
<tr>
<td>Annual income (US$5000 vs more)</td>
<td>0.48 (0.44 to 0.53)</td>
<td>0.48 (0.44 to 0.53)</td>
</tr>
<tr>
<td>Full-time employment</td>
<td>0.34 (0.27 to 0.42)</td>
<td>0.38 (0.30 to 0.49)</td>
</tr>
<tr>
<td>Incarceration</td>
<td>2.19 (1.98 to 2.42)</td>
<td>1.84 (1.65 to 2.05)</td>
</tr>
<tr>
<td>Daily injection (vs less than daily)</td>
<td>1.23 (1.10 to 1.37)</td>
<td>1.18 (1.04 to 1.32)</td>
</tr>
<tr>
<td>Binge drinking</td>
<td>1.51 (1.38 to 1.66)</td>
<td>1.30 (1.18 to 1.44)</td>
</tr>
<tr>
<td>Non-injection drug use</td>
<td>1.41 (1.27 to 1.57)</td>
<td>1.23 (1.10 to 1.37)</td>
</tr>
<tr>
<td>Type of sexual partner in the past 12 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Main</td>
<td>1.15 (0.82 to 1.60)</td>
<td>1.14 (0.81 to 1.60)</td>
</tr>
<tr>
<td>Casual</td>
<td>2.10 (1.91 to 2.31)</td>
<td>1.76 (1.60 to 1.95)</td>
</tr>
<tr>
<td>Recent self-reported HIV test result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeterminate result/or did not receive result (reference)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Negative result</td>
<td>0.78 (0.69 to 0.88)</td>
<td>0.86 (0.76 to 0.99)</td>
</tr>
<tr>
<td>Positive result</td>
<td>0.49 (0.39 to 0.62)</td>
<td>0.63 (0.50 to 0.80)</td>
</tr>
</tbody>
</table>

*The multivariable model assessed the relationships of place-based factors significant at p<0.20 in univariate models to homelessness, controlling for individual-level confounders.

Highlights PWID’s vulnerability to poor health outcomes but also raises concerns about the potential high societal costs that may result from homelessness, including increased healthcare costs. To our knowledge, this is among the first studies to empirically reveal relationships of local economic and housing stock characteristics...
to homelessness among PWID. Specifically, this study
discovered a significant association between ZIP code-
level gentrification from 1990 to 2009 and homelessness
among PWID; this relationship did not vary across racial/
ethnic groups. Because empirical investigations of the
potential role of local economic and housing conditions
on homelessness among the general population have
been limited,43 this paper also makes a new contribution
to the larger body of research focused on homelessness
and health.

The relationship between gentrification and homeless-
ness in this analysis is supported by previous qualitative
studies with predominantly low-income and racial/ethnic
minority residents, which suggests that living in gentri-
fying areas can increase housing instability.31–33 38–41 These
studies report a combination of pathways through which
gentrification can increase housing instability. Gentrifi-
cation is a change in the socioeconomic character of a
community that is largely accompanied by stark inflations
of rental costs and property taxes.33 38 39

Housing markets of gentrifying areas may further be changed by direct
demolition or repurposing of low-income and affordable
housing units into mixed-income and mixed-use develop-
ment,31–33 38–41 55 56 a process that was widely implemented by federally funded public housing demolitions in several
US cities (eg, Housing Opportunities for People Every-
where).31 57

Abrupt changes to the housing market in these ways
can increase the demand for affordable housing, shelters
and other safety-net services among low- to moderate-income
residents who cannot afford inflated costs of living in
gentrifying areas. As a result, the needs of the most
marginalized and low-income groups, including PWID, may
go unmet.31 42 55 56 This is particularly concerning,
given increasing rates of gentrification in several cities
across the USA,38 including those sampled in this study.

Contrary to previous conceptual frameworks and
hypotheses, we did not observe a statistically signifi-
cant association between unaffordable housing and
homelessness in this study. These findings, however,
may not challenge the importance of increasing access to
affordable housing and the potential positive health
consequences that may result from such efforts. Because
the US Census Bureau’s ACS does not provide publicly
available data on low-income households spending
more than 35% of their income on housing, we could
not explore the potential impact of a higher threshold
of affordability. Higher thresholds of 50% or more of
income allocated to housing costs have been proposed
by housing policy researchers to better measure the
burden of housing-related costs among predominantly
low-income populations.59 The measure of assisted
housing units that we used in this study is also limited
and may not accurately reflect demand for subsidised
housing. In many cities, waiting lists for subsidised
housing are closed to applicants at specific thresholds
and thus exclude the waiting times of those who could
not apply.

It is plausible that factors not measured in this study
may partly contribute to the relationship between gentrifi-
cation and homelessness. Previous research demonstrates
that gentrification and its common antecedent—urban
redevelopment—are associated with reductions in
crime.33 50 61 These reductions may result from increases
in law enforcement strategies that aim to prevent drug-re-
lated offences and other ‘public nuisances’ that might
slow redevelopment and gentrification processes.32–34 42

Perceived crime and political capital among new residents
may further increase law enforcement activities in gentri-
fying areas. Previous studies suggest that (more affluent)
residents moving into gentrifying areas often have
greater political power than (predominantly low-income
and racial/ethnic minority) long-term residents and are
thereby more empowered in advocating for increased
law enforcement.52 62 63 Together, these circumstances
can increase arrests of people who possess and use substances,
including PWID, and thereby increase their vulnerability
to homelessness.’

Limitations
This study is cross-sectional, so temporal associations that
might be observed in longitudinal analysis may go unde-
dected, and causal interpretations cannot be made. The
cross-sectional design also limits exploration of potential
displacement of homeless participants as a result of gentri-
fication. Previous studies have revealed links between
gentrification, crime reduction efforts and the displace-
ment of homeless people and homeless services.31 32

Additionally, findings may not be generalizable to PWID
living outside of the MSAs captured by NHBS, and the
extent to which RDS generated a representative sample
in this study cannot be confirmed.65

We did not account for clustering of observations
within RDS chains because of the large number of
intercepts required for cross-classified multilevel model-
ing. We adjusted for place and sociodemographic
factors, however, which may have partially controlled
for intra-chain clustering.66 67 Additionally, we could not
distinguish different types or durations of homelessness
among participants in this study because these character-
istics are not collected by NHBS.

Lastly, ZIP codes were the smallest geographic unit used
to describe areas where participants resided. ZIP codes
may not adequately capture smaller boundaries within
which housing and economic factors are most relevant to
housing stability among PWID.

CONCLUSION
Homelessness has been associated with the transmission
of HIV/AIDS and hepatitis C (HCV) and lower levels
of drug cessation among PWID and high societal costs.
Identifying place-level predictors of homelessness can
suggest changes in policy that can prevent these negative
consequences. This study demonstrated a relationship
between gentrification and homelessness among PWID.
Future longitudinal studies should explore whether these associations are causal and identify potential mediators. Because this area of research has been underexplored among the general population, future research should include broader samples of residents. Growth in this line of research can inform urban planning strategies and community mobilisation campaigns that are designed to curb the potential negative effects of gentrification by strengthening access to stable and permanent housing among low-income and marginalised populations.

Acknowledgements We thank the Centers for Disease Control and Prevention and the National HIV Behavioral Surveillance System Study Group—Atlanta, Georgia: Jennifer Taussig, Shacara Johnson and Jeff Todd; Baltimore, Maryland: Colin Flynn and Danielle German; Boston, Massachusetts: Debbie Isenberg, Maura Driscoll and Elizabeth Hurwitz; Chicago, Illinois: Nikhil Prachand and Nanette Benbow; Dallas, Texas: Sharon Melville, Richard Yeager, Jim Dyer and Alicia Novoa; Denver, Colorado: Mark Trunn and Alia Al-Tayyib; Detroit, Michigan: Emily Higgins, Eve Mokotoff and Vivian Griffin; Houston, Texas: Aaron Sayegh, Jan Riser and Hafezeh Rehman; Los Angeles, California: Trista Bingham and Ekow Kwa Sey; Miami, Florida: Lisa Metsch, David Forrest, Dane Beck and Gabriel Cardenas; Nassau-Suffolk, New York: Chris Nemeth, Lou Smith and Carol-Ann Watson; New Orleans, Louisiana: William T Robinson, DeAnn Gruber and Narquis Barak; New York City, New York: Alan Neaguis, Samuel Jenneris, Travis Wendel, Camila Gelpi-Acosta and Holly Hagan; Newark, New Jersey: Henry Godette, Barbara Golden and Sally D’Errico; Philadelphia, Pennsylvania: Kathleen A Brady, Althea Kirkland and Mark Spanier; San Diego, California: Vanessa Miguelino-Keasling and Al Velasco; San Francisco, California: H Fisher Raymond; San Juan, Puerto Rico: Sandra Miranda De Leo’n and Yadira Rolo’n-Colo’n; Seattle, Washington: Maria Courorgen, Hanne Thiede and Richard Burt; St Louis, Missouri: Michael Herbert, Yelena Friedberg, Dale Wrigley and Jacob Fisher; Washington, DC: Marie Sansone, Tiffany West-Ojo, Manya Magnus and Irene Kuo; and Behavioral Surveillance Team. We also thank the men and women who participated in NHBS and the staff at all NHBS sites.

Contributors SLL and HLFC conceptualized this analysis. SLL constructed and compiled place-level data, designed and conducted the analysis, and interpreted the analysis and results. MEK and HLFC provided input on the analytic plan. MEK, CCK, ZR and MEW contributed to interpreting the geographical data, and SS, ED, CS, CW and GP-B planned, designed and oversaw data collection for NHBS in collaboration with project site directors. SLL, HLFC, MEK, CCK, ZR, MEW, SRF, DDJ, SS, BT, CS, ED, CW, GP-B contributed to revising and finalizing the manuscript.

Funding This research was supported by two grants from the National Institutes of Health: “Place Characteristics & Disparities in HIV in IDUS: A Multilevel Analysis of NHBS” (R01DA035101; Cooper, PI) and the Emory Center for AIDS Research (P30 AI050409;Curran, PI).

Disclaimer The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Competing interests None declared.

Patient consent Detail has been removed from this case description/these case descriptions to ensure anonymity. The editors and reviewers have seen the detailed information available and are satisfied that the information back up the case the authors are making.

Ethics approval The Institutional Review Boards (IRBs) of Emory University and each NHBS site and the CDC approved study protocols.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement National HIV Behavioral Surveillance System data are available from the CDC. Due to ethical restrictions regarding potentially identifiable information, place-based data are available upon request. Requests for all data may be sent to Gabriela Paz-Bailey, MD, PhD, MSc (Team Lead for the Behavioral Surveillance Team, BCBS/DHAP/NCHS/ST/CDC) at gmb5@cdc.gov.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ © Author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

28. Hawk M, Davis D. The effects of a harm reduction housing program on the viral loads of homeless individuals living with HIV/AIDS. *AIDS Care* 2012;24:577–82.

