About this item:

363 Views | 310 Downloads

Author Notes:

Harun N. Ngugi, Email: ngugihn@gmail.com

See publication for full list of author contributions.

We thank the residents at our two study sites for their support during the study.

Our sincere gratitude goes to Joyce Bandika, Juma Hamadi and Henry Maleka for technical help during mosquito surveys, Rashid Motwa, Riziki Kirenje, Maulidi Wazumo, Hamisi Masemo, Saumu Kushinda and Riziki Jaso who assisted in field survey.

We greatly appreciate the Vector Borne Disease Control Unit (VBDCU) at the Msambweni county referral hospital and the Kenya Medical Research Institute (KEMRI), Kisian, Kisumu for laboratory and insectary space.

We also thank Richard Ndivo of KEMRI-CDC, Kisumu for technical help during statistical analyses.

The authors declare that they have no competing interests.

Subject:

Research Funding:

This study was funded by a program award RO1 AI102918 from the National Institutes of Health, USA.

Keywords:

  • Aedes aegypti
  • Larval habitats
  • Western and coastal Kenya
  • Productivity
  • Household breeding surveys

Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya

Show all authors Show less authors

Tools:

Journal Title:

Parasites and Vectors

Volume:

Volume 10, Number 1

Publisher:

Type of Work:

Article | Final Publisher PDF

Abstract:

Background: Aedes aegypti, the principal vector for dengue and other emerging arboviruses, breeds preferentially in various man-made and natural container habitats. In the absence of vaccine, epidemiological surveillance and vector control remain the best practices for preventing dengue outbreaks. Effective vector control depends on a good understanding of larval and adult vector ecology of which little is known in Kenya. In the current study, we sought to characterize breeding habitats and establish container productivity profiles of Ae. aegypti in rural and urban sites in western and coastal Kenya. Methods: Twenty sentinel houses in each of four study sites (in western and coastal Kenya) were assessed for immature mosquito infestation once a month for a period of 24 months (June 2014 to May 2016). All water-holding containers in and around the households were inspected for Ae. aegypti larvae and pupae. Results: Collections were made from a total of 22,144 container visits: Chulaimbo (7575) and Kisumu (8003) in the west, and from Msambweni (3199) and Ukunda (3367) on the coast. Of these, only 4–5.6% were positive for Ae. aegypti immatures. In all four sites, significantly more positive containers were located outdoors than indoors. A total of 17,537 Ae. aegypti immatures were sampled from 10 container types. The most important habitat types were buckets, drums, tires, and pots, which produced over 75% of all the pupae. Key outdoor containers in the coast were buckets, drums and tires, which accounted for 82% of the pupae, while pots and tires were the only key containers in the western region producing 70% of the pupae. Drums, buckets and pots were the key indoor containers, producing nearly all of the pupae in the coastal sites. No pupae were collected indoors in the western region. The coastal region produced significantly more Ae. aegypti immatures than the western region both inside and outside the sentinel houses. Conclusions: These results indicate that productive Ae. aegypti larval habitats are abundant outdoors and that only a few containers produce a majority of the pupae. Although the numbers were lower, productive habitats were detected within households. Targeting source reduction efforts towards these productive containers both inside and outside homes is likely to be a cost-effective way to reduce arboviral transmission in these regions.

Copyright information:

© The Author(s). 2017

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote