Freezing of gait that disappears: Should there be rest before rehab?

Stewart Factor, Emory University
Jaime Hatcher-Martin, Emory University
Amy S. Morse, Emory University
Joe Nocera, Emory University
Gonzalo J. Revuelta, Medical University of South Carolina

Journal Title: Parkinsonism and Related Disorders
Volume: Volume 28
Publisher: Elsevier | 2016-07-01, Pages 169-170
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.parkreldis.2016.04.010
Permanent URL: https://pid.emory.edu/ark:/25593/s3rkm

Final published version: http://dx.doi.org/10.1016/j.parkreldis.2016.04.010

Copyright information:
© 2016 Elsevier Ltd. All rights reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed August 25, 2017 7:07 AM EDT
Freezing of Gait that disappears: Should there be rest before rehab?

Stewart A. Factor, DOa,*, Jaime M. Hatcher-Martin, MD, PhDa, Amy S. Morse, PT, DPTb, Joe R. Nocera, PhDa,c, and Gonzalo J. Revuelta, DOd

Stewart A. Factor: sfactor@emory.edu; Jaime M. Hatcher-Martin: jmhatch@emory.edu; Amy S. Morse: Amy.Morse@emoryhealthcare.org; Joe R. Nocera: joenocera@emory.edu; Gonzalo J. Revuelta: revuelta@musc.edu

aEmory University, Department of Neurology, 12 Executive Park Drive NE, Atlanta GA, 30329

bEmory University, Department of Rehabilitative Medicine, 1441 Clifton Ave. Atlanta, GA 30326

cEmory University, Dept of Veterans Affairs RR&D, Center for Visual and Neurocognitive Rehabilitation, 1670 Clairmont Rd. MS 151R, Decatur, GA 30033

dMedical University of South Carolina, Department of Neurology, 208B Rutledge Avenue, MSC 108, Charleston, SC 29425

Keywords

Parkinson's disease; freezing of gait; rehabilitation; immobilization; brain plasticity

Freezing of gait (FOG) is a leading cause of falls and is associated with poor quality of life in Parkinson's disease (PD)\cite{1}. The pathophysiology is not understood, however, one possibility is a loss of automaticity of gait and changes in connectivity between the mesencephalic locomotor region (MLR) and frontal cortical structures\cite{1}. Treatment of FOG is problematic from a medical and surgical standpoint. This has led to the development of rehabilitation approaches including the development of compensatory techniques to “reset”

* Corresponding Author: Stewart A. Factor, DO, Emory University Department of Neurology, 12 Executive Park Drive NE, Atlanta GA, 30329, Phone: 404-712-7262, sfactor@emory.edu.

Role of the authors: Stewart A. Factor, DO: the conception and design of the study, acquisition of data, analysis and interpretation of data, drafting the article, final approval of the version to be submitted

Jaime M. Hatcher-Martin, MD, PhD: analysis and interpretation of data, revising it critically for important intellectual content, final approval of the version to be submitted.

Amy S. Morse, PT, DPT: analysis and interpretation of data, revising it critically for important intellectual content, final approval of the version to be submitted.

Joe R. Nocera, PhD: analysis and interpretation of data, revising it critically for important intellectual content, final approval of the version to be submitted.

Gonzalo J. Revuelta, DO: analysis and interpretation of data, revising it critically for important intellectual content, final approval of the version to be submitted.

Conflict of interest statement:

Factor:

Honoraria: Merz, Chelsea Therapeutics, Neurocrine, Lundbeck, Auspex, Avanir, UCB.

Grants: Teva, Ipsen, Allergan, medtronics, Genzyme Corp, Genzyme Sanofi

Royalties: Demos, Blackwell Futura, Uptodate, Neurotherapeutics

Hatcher-Martin, Morse, Nocera: None

Revuelta:

Advisory Boards: Lundbeck, Chelsea, Ipsen

Grants: NIH, Boston Scientific, Lundbeck, Auspex
the motor system and overcome freezing phenomena[2]. With impairment of automatic pathways this approach moves gait to being a learned task. However, while promising, these also have demonstrated inconsistent results. Thus, once FOG occurs, it continues to progress leading to significant disability and a wheelchair bound state.

We observed an unusual phenomenon where two patients (see table) in whom levodopa-nonresponsive FOG was a significant burden and disappeared after a catastrophic illness that led to prolonged hospitalization and bedridden state. One developed a ruptured appendix followed by a fractured hip while the other had urosepsis. Bedridden states of 2 and 6 weeks leading an inability to walk were followed by rehabilitation and, in turn, recovery that included sustained abolition of FOG over 2-3 years. Both were left with some level of postural instability but could walk independently.

While it is well known that immobilizing advanced PD patients, even for a few days, can lead to a significant setback from an ambulatory standpoint, both of our patients recovered over time. We posit the question: does immobilization for weeks allow for an optimization of rehabilitation therapy to lead to sustained “resetting” of the motor system and improvement of FOG?

There is precedent for such an approach. In occupational dystonia immobilization of the affected limb for four weeks followed by active practice (playing musical instrument) lead to sustained improvement for up to 12 months[3]. The response was thought to be related to inactivity-dependent plastic changes reversing functional abnormalities on the cortical level including shrinkage of motor cortical representation which is abnormally large in occupational dystonia. It was referred to as a “detraining” of the movement. The authors further stated that the combination of immobilization and rehabilitation might be additive in the response. While FOG is not a form of dystonia they share several similarities that might suggest a similar response to this strategy including both disorders can be influenced by tricks or cues and both are associated by co-activation of agonist and antagonist muscles.

It has been demonstrated that corticospinal plasticity occurs with immobilization using a bed rest model[4]. Ninety days of bed rest in healthy subjects resulted in a decreased corticospinal excitability demonstrated with transcranial magnetic stimulation (TMS) and functional MRI (fMRI) with recovery to normal activity which was delayed in at least one patient to over two weeks. Alterations in afferent signaling from immobilization of the legs induced this reorganization of the cortex by altering cortical excitability and post bed rest increased corticospinal excitability was thought to reflect motor relearning. Casting the legs after a fracture had a similar effect after at least nine days[5]. Such cortical plasticity may be relevant to FOG as imaging studies associate FOG with increased functional connectivity between the MLR and the supplementary motor area[1]. These findings suggest that increased cortical control of gait in FOG subjects may be a maladaptive response. As such, a period of immobility may aid in releasing cortical control, while follow-up systematic gait rehabilitation can induce functional reorganization of these pathways leading to improvement in FOG.
Such changes have not been examined in PD with FOG. Questions remain to be answered before embarking on the study of immobilization followed by gait training including: how long a period of immobility would be needed to reverse FOG? How safe is it to immobilize PD patients for prolonged periods? Would bed rest be required or could patients simply refrain from walking? What would be the retraining method with the best outcome? Such an intervention of rest before rehabilitation would be simple to test. The recovery of our patients who were advanced and seriously ill suggest such an approach could be safe and further investigation in a prospective trial is warranted.

Acknowledgments

Funded by Sartain Lanier Family Foundation, Curtis family Foundation. The funding organization had no input into the interpretation or content of this paper.

References

<table>
<thead>
<tr>
<th>Case #</th>
<th>Age/sex</th>
<th>PD Duration</th>
<th>FOG Duration</th>
<th>FOG Situations</th>
<th>Other troublesome PD Features</th>
<th>Acute Illness</th>
<th>Duration Bedridden</th>
<th>Physical Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79/female</td>
<td>16 yrs</td>
<td>6 yrs</td>
<td>Straight walk, initiation, doorways, approaching destination hesitation</td>
<td>Dyskinesia</td>
<td>Ruptured appendix, fractured hip</td>
<td>8 weeks</td>
<td>Home</td>
</tr>
<tr>
<td>2</td>
<td>86/male</td>
<td>20 yrs</td>
<td>7 yrs</td>
<td>Initiation, Turning, Destination hesitation</td>
<td>Dyskinesia</td>
<td>Urosepsis</td>
<td>2 weeks</td>
<td>Inpatient</td>
</tr>
</tbody>
</table>