The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse

Avanti Gokhale, Emory University
Cortnie Hartwig, Kennesaw State University
Amanda H. Freeman, Emory University
Ravi Das, Georgia State University
Stephanie A. Zlatic, Emory University
Rachel Vistein, Carnegie Mellon University
Amelia Burch, Emory University
Guillemette Carrot, Agnes Scott College
Arielle F. Lewis, Emory University
Sheldon Nelms, Kennesaw State University

Only first 10 authors above; see publication for full author list.

Journal Title: Journal of Neuroscience Nursing
Volume: Volume 36, Number 49
Publisher: Lippincott, Williams & Wilkins | 2016-12-07, Pages 12393-12411
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1523/JNEUROSCI.1321-16.2016
Permanent URL: https://pid.emory.edu/ark:/25593/s33q6

Final published version: http://dx.doi.org/10.1523/JNEUROSCI.1321-16.2016

Copyright information:
© 2016 the authors.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed December 5, 2018 6:25 PM EST
The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse

Avanti Gokhale,1*, Cortnie Hartwig,3,4*, Amanda H. Freeman,1,2* Ravi Das,5*, Stephanie A. Zlatic,1* Rachel Vistein,6**, Amelia Burch,1 Guillemette Carrot,4 Arielle F. Lewis,1 Sheldon Nelms,3 Dion K. Dickman,7 Manojkumar A. Puthenveedu,6 Daniel N. Cox,5 and Victor Faundez1

1Department of Cell Biology and 2Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322, 3Kennesaw State University, Atlanta, Georgia 30144, 4Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, 5Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302, 6Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and 7Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California 90089

Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk. We applied quantitative mass spectrometry to identify proteins expressed in neuronal cells the abundance of which was altered after downregulation of the schizophrenia susceptibility factor dysbindin (Bloc1s8) or two other dysbindin-interacting polypeptides, which assemble into the octameric biogenesis of lysosome-related organelles complex 1 (BLOC-1). We found 491 proteins sensitive to dysbindin and BLOC-1 loss of function. Gene ontology of these 491 proteins singled out the actin cytoskeleton and the actin polymerization factor, the Arp2/3 complex, as top statistical molecular pathways contained within the BLOC-1-sensitive proteome. Subunits of the Arp2/3 complex were downregulated by BLOC-1 loss of function, thus affecting actin dynamics in early endosomes of BLOC-1-deficient cells. Furthermore, we demonstrated that Arp2/3, dysbindin, and subunits of the BLOC-1 complex biochemically and genetically interact, modulating Drosophila melanogaster synapse morphology and homeostatic synaptic plasticity. Our results indicate that ontologically prioritized proteomics identifies novel pathways that modify synaptic phenotypes associated with neurodevelopmental disorder gene defects.

Key words: Arp2/3; BLOC-1; dysbindin; proteomics; schizophrenia; synapse

Significance Statement

The mechanisms associated with schizophrenia are mostly unknown despite the increasing number of genetic loci identified that increase disease risk. We present an experimental strategy that impartially and comprehensively interrogates the proteome of neurons to identify effects of genetic mutations in a schizophrenia risk factor, dysbindin. We find that the expression of the actin polymerization complex Arp2/3 is reduced in dysbindin-deficient cells, thus affecting actin-dependent phenotypes in two cellular compartments where dysbindin resides, endosomes and presynapses. Our studies indicate that a central cellular structure affected by schizophrenia susceptibility loci is the actin cytoskeleton, an organelle necessary for synaptic function in the presynaptic and postsynaptic compartment.
discrete cellular and molecular pathways (Gilman et al., 2012; Fromer et al., 2014; Purcell et al., 2014). These ontologically informed pathways often implicate synapse function as a pathogenesis mechanism. Individual genetic risk loci are likely to influence the expression of multiple proteins encoded by genes other than the affected locus (Picotti et al., 2013; Wu et al., 2013; Albert et al., 2014). These proteins downstream of a single risk allele could map within a protein complex, cellular pathway, or organelle. This suggests, that in addition to genomes, proteomes could either widen the spectrum of mechanisms downstream of defined schizophrenia genetic risk factors and/or increase the confidence in putative disorder pathways solely defined by genomic data (Mullin et al., 2013). We hypothesized that proteome modifications downstream of a single gene defect should reveal novel and overlapping mechanisms with pathways defined by genomic studies in schizophrenia patients. We reasoned that this hypothesis could be best examined by studying the proteome sensitive to a gene encoding a subunit of a protein complex that is required for synapse biology and implicated in schizophrenia risk.

We tested this hypothesis using monogenic defects affecting subunits of biogenesis of lysosome-related organelles complex 1 (BLOC-1) (Ghiani and Dell’Angelica, 2011; Gokhale et al., 2012; Mullin et al., 2013). The BLOC-1 complex is an obligate octamer constituted by blo1, 2, 3 (Bloc1s3–1), cappuccino (Bloc1s4), muted (Bloc1s5), pallidin (Bloc1s6), snapin (Bloc1s7), and dysbindin (Bloc1s8) (Ghiani and Dell’Angelica, 2011; Gokhale et al., 2012; Mullin et al., 2013). Importantly, the stability of the BLOC-1 complex strictly requires the integrity of all of its subunits as determined from genetic defects in one subunit, which decrease the expression of transcripts and polypeptides encoding other subunits within the BLOC-1 complex (Huang et al., 1999; Zhang et al., 2002; Ciciotte et al., 2003; Li et al., 2003; Gwynn et al., 2004; Starcevic and Dell’Angelica, 2004; Wei, 2006; Yang et al., 2012; Larimore et al., 2014).

Dysbindin and BLOC-1 subunits localized to the synapse and are required for diverse presynaptic and postsynaptic mechanisms ranging from synaptic vesicle recycling to homeostatic synaptic plasticity (Dickman and Davis, 2009; Newell-Litwa et al., 2009; Newell-Litwa et al., 2010; Larimore et al., 2011; Dickman et al., 2012; Di Giovanni and Sheng, 2015; Gokhale et al., 2015b; Mullin et al., 2015). Predictably, Bloc1s8 deficiency alleles, such as the sandy mouse (Bloc1s8^{ady/ady}) or the Drosophila dys^b allele, cause behavioral and cognitive phenotypes, some resembling schizophrenia phenotypes (Cox et al., 2009; Jentsch et al., 2009; Shao et al., 2011; Wolf et al., 2011; Papaleo et al., 2012; Mullin et al., 2015). A powerful role for a argument of a BLOC-1 complex in schizophrenia mechanisms is the observation that dysbindin expression is selectively reduced in the majority of schizophrenia brains regardless of the <i>DTTNP1</i> allele encoding dysbindin in these patients (Talbot et al., 2004; Tang et al., 2009; Talbot et al., 2011). Polymorphisms in the gene encoding dysbindin were initially reported as risk factors for schizophrenia, yet this assertion has been challenged by recent genomic meta-analyses (Straub et al., 2002; Gornick et al., 2005; Talbot et al., 2009; Fatijo-Vilas et al., 2011; Mullin et al., 2011; Farrell et al., 2015). This evidence indicates that risk loci outside of the <i>DTTNP1</i> locus regulate the expression of dysbindin in individuals affected by schizophrenia and suggests that altered dysbindin protein expression is a better disorder risk predictor.

Here, we used quantitative mass spectrometry to identify proteins with expression that is modified by diminishing the expression of one of three BLOC-1 subunits, muted (Bloc1s5), pallidin (Bloc1s6), and dysbindin (Bloc1s8), in neuronal cells. We defined 491 proteins sensitive to dysbindin and BLOC-1 loss of function, the BLOC-1-sensitive proteome, which we prioritized statistically by gene ontology (GO) analyses. Unbiased GO brought into focus the actin polymerization factor, the Arp2/3 complex. Conditional genetic disruption of the Arp2/3 complex causes schizophrenia endophenotypes in mouse (Kim et al., 2015). Furthermore, Arp2/3 subunit transcripts are decreased in the prefrontal cortex of schizophrenia patients, revealing the relevance of the Arp2/3 complex for the pathogenesis of schizophrenia (Datta et al., 2016). We demonstrated that Arp2/3 interacts genetically with dysbindin and the BLOC-1 complex subunits Blo1s1 and pallidin to modulate <i>Drosophila</i> neuromuscular synapse morphology and homeostatic synaptic plasticity, an adaptive response of the presynaptic compartment (Dickman and Davis, 2009; Dickman et al., 2012; Gokhale et al., 2015b). As predicted, the proteome sensitive to BLOC-1 deficiencies enriched gene products implicated in psychosis and schizophrenia risk and GO categories previously associated with schizophrenia gene candidates identified in population genomic studies. Our results indicate that ontologically prioritized proteomics identify novel synaptic mechanisms downstream of individual neurodevelopmental disorder risk factors. We propose that protein expression traits emanating from disorder risk alleles expand and strengthen mechanistic insight gained from population genomic studies.

Materials and Methods

Animals. We used C57BL/6 and Bloc1s8^{ady/ady} mice (<i>Mus musculus</i>) described previously. Animals of both sexes were used (Larimore et al., 2014). Animal procedures and studies were approved by the Emory University Institutional Animal Care and Use Committee.

Antibodies. Antibodies against rabbit ArpC2 and ArpC5 (15058-1-AP and 16717-1-AP, 1:1000 blot dilution; ProteinTech Group), rabbit ArpC2 used for immunoprecipitation (07-227, 1 µg; Millipore), rabbit plexin A2 (6896, 1:1000 blot dilution; Cell Signaling Technology), rabbit dysbindin (HPA029616, 1:125 blot dilution; Sigma-Aldrich), rabbit ataxin 2 (A301-118A, 1:2000 blot dilution; Bethyl), mouse VAMP7 (1:750 blot dilution; a gift from Dr. A.A. Peden, Sheffield University, UK), mouse pallinide clone 2G6 (1:500 blot dilution; a gift from Dr. Esteban Dell’Angelica, University of California–Los Angeles), rabbit FAM21 (MC2188, 1:2000 blot dilution; a gift from Dr. Daniel Billadeau, Mayo Clinic, Rochester, MN), rabbit strumpellin (SC67442, 1:1000 blot dilution; Santa Cruz Biotechnology), mouse actin clone AC-15 (A5451, 1:500 blot dilution; Sigma-Aldrich) mouse monoclonal SV2 (Clone 10H, 1:500 blot dilution; Developmental Studies Hybridoma Bank), mouse monoclonal HSP90 (610418, blot dilution 1:1000; BD Biosciences), and mouse monoclonal FLAG (M2 clone, F-3165, 1 µg used for immunoprecipitation, blot dilution 1:1000; Sigma-Aldrich).

Cell culture, homogenate preparation, and brain fractionation. HEK293T and SH-SY5Y cells (American Type Culture Collection), WASH^{b50} cells, and WASH-null mouse embryonic fibroblasts were cultured in DMEM supplemented with 10% fetal bovine serum (FBS) and 100 µg/ml penicillin and streptomycin (Hyclone) at 37°C in 10% CO₂, Bloc1s8^{mut/mut}, Bloc1s6^{hu/hu}, and rescued melanocytes were a gift from...
Dr. Michael Marks (Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia; Setty et al., 2007; Setty et al., 2008). WASH (Setty et al., 2007) and WASH-null mouse embryonic fibroblasts were gifts from Dr. Daniel Billadeau (Department Medical Oncology, College of Medicine, Mayo Clinic, Rochester, MN; Gomez et al., 2012). MNT-1 cells were a generous gift from Dr. Vincent Hearing and were cultured as described previously (Kushimoto et al., 2001). shRNA-mediated Bloc1s5 mutant and Block1s6 pallidin knockdowns were generated as described previously (Gokhale et al., 2015b). Briefly, shRNA in pLKO.1 vector for lentiviral infection was obtained from Open Biosystems (Pallidin, Clone ID: TRCN0000122781; Muted, Clone ID: TRCN0001288121). Control shRNA in pLKO.1 was obtained from Addgene (vector 1864). For shRNA-mediated dysbindin knockdowns, shRNA in a psiHIV-U6 vector for lentiviral infection was obtained from GeneCopoeia (Dysbindin, catalog #HSH024441-HIVU6). Control shRNA in a psiHIV-U6 vector was also obtained from GeneCopoeia (control, catalog #CSCHCTR001-HIVU6).

SH-SYSY cells were treated with lentiviral particles for 7 d to obtain efficient knockdown. After day 3 of lentiviral infection, cells were maintained in DMEM supplemented with 10% FBS and selected with puromycin (2 μg/ml; Invitrogen). Detergent-soluble cellular lysates were prepared as described previously (Gokhale et al., 2015b). Briefly, cells were scraped from the dish and cell homogenates were centrifuged at 16,100 × g for 10 min. The clarified supernatant was recovered and measured for total protein content. Samples were resolved by SDS-PAGE and analyses were conducted by immunoblot as described previously (Gokhale et al., 2015b).

Adult brains (postnatal day 50, P50) of C57BL/6 and Block1s18/h/hady mice were fractionated according to the Nagy and Delgado-Escueta (1984) method except that we used the P2 fractions as a crude synaptosome preparation for immunoblot analysis. A total of six animals were fractionated in three independent experiments.

Stable isotope labeling by amino acids in cell culture (SILAC) quantitative mass spectrometry. SH-SYSY cells were labeled using the protocol described previously by us (Perez-Cornejo et al., 2012; Ryder et al., 2013; Gokhale et al., 2015b). Briefly, cells were grown in DMEM with either "light" unlabeled arginine and lysine amino acids (ROK) or "heavy" 13C- and 15N-labeled arginine and 13C- and 15N-labeled lysine amino acids (RIOKS) supplemented with 10% FBS and 100 μg/ml penicillin and streptomycin and, in some cases, 2 μg/ml puromycin. Cells were grown for a minimum of seven passages, ensuring incorporation of the amino acids in the cellular protein pool at >98%. All reagents for SILAC labeling were obtained from Dundee Cell Products. Lysates were prepared as described below and analyzed by mass spectrometry, as described previously (Perez-Cornejo et al., 2012; Ryder et al., 2013; Gokhale et al., 2015b). SILAC mass spectrometry services were contracted from MSBioWorks (http://www.msbioworks.com/).

Total proteome quantitative mass spectrometry. Whole brain tissue from C57BL/6 and Block1s18/h/hady P1 mice was flash frozen in liquid nitrogen and stored at −80°C. Tissue was homogenized in 500 μl of urea lysis buffer (8 M urea, 100 mM NaH2PO4 pH 8.5), including 5 μl of (100X stock) HALT protease and phosphatase inhibitor mixture (Pierce). Homogenization was performed using a Bullet Blender (Next Advance) according to the manufacturer’s protocols. Briefly, each tissue piece was added to urea lysis buffer in a 1.5 ml Rino tube (Next Advance) harvesting 750 mg stainless steel beads (0.9−2 mm in diameter) and blended twice for 5 min intervals in the cold room (4°C). Protein supernatants were transferred to 1.5 ml Eppendorf tubes and sonicated (Heatasy, and transiently transfected with LifeAct-GFP, LifeAct-RFP, or Actin-GFP. Cells were imaged 10 min after the addition of 10 μM isoproterenol to induce receptor internalization. Functional endosomes were labeled using anti-flag M1 antibody conjugated to Alexa Fluor-647 dye. Cells were grown on coverslips and maintained in 10% FBS (Invitrogen) high-glucose DMEM (HyClone) and imaged in Opti-MEM (Invitrogen) with 10% FBS and buffered to pH 7.4 with 40 mM HEPES. Live-cell confocal images were collected on an Andor Revolution XD Spinning Disk system with a Nikon Eclipse Ti inverted microscope. Objective used for capture was a 100× 1.49 numerical aperture TIRF objective from Nikon. Both microscopy and characteristics were imaged using infrastructure of the case. Precursor mass tolerance of ±20 ppm and a fragment mass tolerance of 0.6 Da were applied. Spectra matches were filtered by Percolator to a peptide-spectrum matches false discovery rate of <1.0%. Only razor and unique peptides were used for abundance calculations. Ratio of sample over the GIS of normalized channel abundances were used for comparison across all samples.

Microscopy. HEK293T cells stably expressing Signal-Sequence FLAG tagged β-2 adrenergic receptors (SSF-B2AR) were used. Cells were treated with scrambled or Bloc1s6 shRNAs, selected for 7 d in puromycin, and transiently transfected with LifeAct-GFP, LifeAct-RFP, or Actin-GFP. Cells were imaged 10 min after the addition of 10 μM isoproterenol to induce receptor internalization. Functional endosomes were labeled using anti-flag M1 antibody conjugated to Alexa Fluor-647 dye. Cells were grown on coverslips and maintained in 10% FBS (Invitrogen) high-glucose DMEM (HyClone) and imaged in Opti-MEM (Invitrogen) with 10% FBS and buffered to pH 7.4 with 40 mM HEPES. Live-cell confocal images were collected on an Andor Revolution XD Spinning Disk system with a Nikon Eclipse Ti inverted microscope. Objective used for capture was a 100× 1.49 numerical aperture TIRF objective from Nikon. Both microscopy and characteristics were imaged using infrastructure of the case. Precursor mass tolerance of ±20 ppm and a fragment mass tolerance of 0.6 Da were applied. Spectra matches were filtered by Percolator to a peptide-spectrum matches false discovery rate of <1.0%. Only razor and unique peptides were used for abundance calculations. Ratio of sample over the GIS of normalized channel abundances were used for comparison across all samples.
Image noise was filtered out using the Analyze Particles plugin and converted to a binary file format in Photoshop (Adobe). Background was manually to eliminate nonspecific autofluorescent spots such as the larval interior. Maximum-intensity projections of the DA neuron MARCM clones, as described previously by Dickman et al. (2015), were a gift from Dr. Lynn Cooley of Yale University (Hudson and Cooley, 2002). Two additional stocks of w^{1118} and other fly strains such as balancer chromosome containing dysbindin1 and blos1 were described previously (Mullin et al., 2015). ArpC1{	extsuperscript{Q25sd/+}} and ArpC1{	extsuperscript{Q25sd/w}} were a gift from Dr. Lynn Cooley of Yale University (Hudson and Cooley, 2002). Live confocal imaging was performed as described previously (Iyer et al., 2013b). Briefly, live third-instar larvae were placed on a microscope slide, immersed in 1:5 (v/v) diethyl ether to halocarbon oil, and a 22 × 50 mm glass coverslip. Neurons expressing GFP were visualized on a Zeiss LSM 780 confocal microscope. Images were collected as z-stacks using a 20× dry objective at a step-size of 2.0 μm and 1024 × 1024 resolution. MARCM analyses were performed essentially as described previously (Sulkowski et al., 2011). Briefly, for generating dendritic arborization (DA) neuron MARCM clones, ArpC1{	extsuperscript{Q25sd/FRT40A}} flies were crossed to w;GAL4{	extsuperscript{UAS-Venus,pm}}/DLP-4/FRT;Gal80,FRT{	extsuperscript{FRT00A}} (Shimono et al., 2014). Live confocal imaging was performed as described previously (Iyer et al., 2013b).

Quantitative analyses of neuronal reconstructions were performed as described previously (Iyer et al., 2013a) with some modifications. Maximum-intensity projections of the z-stacks were exported as jpeg or tiff files using Zeiss Zen-blue software. Exported images were curated manually to eliminate nonspecific autofluorescent spots such as the larval gut. Specifically, two transposons flanking the pallidin locus, the pallidin locus, were used to analyze the skeletonized images by iteratively pruning terminal branches and determining the branch number in each iteration. The precise deletion of the pallidin locus was generated using FLP-mediated recombination between pairs of transposon-based FLP recombinase target (FRT) sites, as described in the DrosDel Collection (Parke et al., 2004). Two transposons flanking the pallidin locus, PBac[WH]05716 and PBac[WH]05753, were obtained from the Bloomington Drosophila Stock Center. Each contained FRT sites in the correct orientation to permit a precise deletion. After FLP-mediated recombination and excision of the remaining hybrid transposon, we confirmed the deletion by PCR using the following primers: forward primer 5′-TCCCGAACGCTCAT-GTGGAT; reverse primer 5′-GTTGAAACTTGAATGGCGCA. This revealed that bases 11,689,5565 to 11,691,527 on chromosome 3L were deleted.

Bioinformatics. Gene list to disease associations were performed with the GDA algorithm (https://gda.cs.tufts.edu/); Park et al., 2014) and gene expression analysis was performed with the CSEA tool (http://genetics.wustl.edu/jdlab/csea-tool-2/; Dougherty et al., 2010). Three algorithms were used to perform GO analysis. The BLOC-1-sensitive proteome was analyzed by GeneTerm Linker (http://glinker.cnb.csc.es/gets/index; Fontanillo et al., 2011), ENRICH (http://amp.pharm.mssm.edu/Enrichr; Chen et al., 2013), and Database Annotation, Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov; Huang Da et al., 2009). Cytoscape with Enrichment Map plugin for visualizing DAVID outputs was used to depict integrations between GO terms associated with the BLOC-1-sensitive proteome (Shannon et al., 2003; Merico et al., 2010). Briefly, gene lists uploaded to DAVID were analyzed by setting annotations based by species (Homos sapiens) in annotation databases such as GOTERM_BP_FAT or GOTERM_CC_FAT, which would produce a functional annotation chart for molecular function and cellular component, respectively (Huang Da et al., 2009). Parameters for these functional annotation charts included p-value cutoff (<0.01), a minimum number of genes for each GO term, fold enrichment, and Benferroni and/or Benjamini corrected statistical analysis to control for false discovery (Huang Da et al., 2009). Charts were narrowed down to simplify Cytoscape representations by eliminating broad GO terms.

Statistical analysis. Experimental conditions were compared using Synergy Kaleida-Graph version 4.1.3 as specified in each figure.

Results Identification of a Dysbindin-BLOC-1-sensitive proteome Deficiencies in dysbindin and other BLOC-1 subunits generate phenotypes in multiple cellular systems, yet a comprehensive understanding of molecular mechanisms upstream or downstream of each one of these phenotypes is still lacking. We sought to answer this question in neuronal tissue because dysbindin is required for synaptic function and plasticity and because dysbindin expression is reduced in the majority of schizophrenia brains (Telbot et al., 2004; Mullin et al., 2011; Telbot et al., 2011; Ghiani and Dell’Angelica, 2011). We hypothesized that molecular mechanisms sensitive to dysbindin-BLOC-1 complex deficiencies should be represented as pathway-specific changes in protein expression, should enrich gene products implicated in schizophrenia risk, and should include gene products capable of modifying the phenotypic expression of dysbindin-BLOC-1 mutant alleles.

We began testing this hypothesis and its predictions by quantitatively profiling protein expression in Bloc1s1a{	extsuperscript{ady}} mouse brains and human SH-SY5Y neuroblastoma cells in which we downregulated the expression of one BLOC-1 subunit (Fig. 1). The quantitative proteome of mutant and wild-type P0 mouse brains was determined using in vitro 10-plex tandem mass tagging of brain homogenate peptides with isobaric tag reagents (TMT; Thompson et al., 2003). We focused on P0 mouse brains because the highest expression of dysbindin occurs during late embryonic development and declines progressively after birth (Ghiani et al., 2010). The quantitative proteome of control and BLOC-1 downregulated neuroblastoma cells was determined by in vivo SILAC (Fig. 1; Ong et al., 2002).

We simultaneously quantitated 5922 proteins from four wild-type and five Bloc1s1a{	extsuperscript{ady}} mutant brains by TMT and identified 270 proteins with content that was modified significantly by the mutation (Fig. 2A, A2). Of these proteins, 161 were upregulated and 109 were downregulated in Bloc1s1a{	extsuperscript{ady}} brains (Fig. 2A1, A2). Among the proteins downregulated were just two known proteins with ex-
expression that is reduced in BLOC-1 deficiencies, the BLOC-1 subunit Bloc1s1 and Vamp7 (Fig. 2A2; Starcevic and Dell’Angelica, 2004; Salazar et al., 2006; Newell-Litwa et al., 2010). Therefore, the identification of BLOC-1-sensitive proteins might have been compromised by the complexity of whole-brain proteomes. Therefore, we complemented the whole-brain proteome studies with quantitative SILAC proteome analyses of SH-SY5Y neuroblastoma cells (Gokhale et al., 2015a; Lim and Allada, 2013; Okada et al., 2016). We additionally selected Ataxin 2 and plexin A2 for confirmation because they suggest novel mechanisms intersecting with BLOC-1, including mRNA metabolism and semaphorin receptor activity (Suto et al., 2007; Lim and Allada, 2013; Yokoshi et al., 2014). Ataxin 2 (ATXN2) and plexin A2 (PLXNA2) were upregulated in the proteome, a result that we confirmed in neuroblastoma cells in which BLOC-1 was downregulated by distinct BLOC-1 subunit shRNAs (Fig. 2B1 and see Fig. 5A–C, A1–C1). Collectively, TMT and SILAC quantitative mass spectrometry generated a candidate list of 491 proteins sensitive to dysbindin and BLOC-1 loss of function, henceforth referred to as the BLOC-1-sensitive proteome.

The BLOC-1-sensitive proteome significantly enriched gene products implicated in neurodevelopmental disorders such as schizophrenia. This disorder ranked among the three top hits according to the GDA algorithm (Park et al., 2014; Fig. 3A). This statistical association of the BLOC-1-sensitive proteome with schizophrenia was further strengthened by its similarity to other gene sets associated with schizophrenia, which are enriched in gene products expressed in human fetal brain development (Gulsun et al., 2013; Network and Pathway Analysis Subgroup of Psychiatric Genomics, 2015; Fig. 3B). Moreover, the BLOC-1-sensitive proteome predicted a significant enrichment of gene products in developing hippocampus, amygdala, and thalamus (Fig. 3B). These brain regions are the most compromised by volume reductions in adult schizophrenia patients (van Erp et al., 2016; Okada et al., 2016). These unbiased analyses indicate that the BLOC-1-sensitive proteome enriches gene products and anatomical domains implicated in neurodevelopmental disorders.

Ontological prioritization of BLOC-1 converging pathways

The overlap between the brain and the neuroblastoma BLOC-1-sensitive proteomes was limited to just 12 proteins, suggesting that convergence between these proteomes could occur at a higher organization level such as a pathway, cellular compartment, or protein complex. We used GO bioinformatic tools to test whether the brain and the SH-SY5Y neuroblastoma BLOC-1-sensitive proteomes converge onto known and novel cellular processes (Fig. 4). We sought to prioritize statistically the ontological categories for hypothesis formulation and testing (Fig. 1). We investigated whether GO terms associated just with the proteome identified in SH-SY5Y neuroblastoma cells would be any different from the ontology terms derived from the mouse sensitive proteome and the BLOC-1-sensitive proteome, which encompasses both the SH-SY5Y neuroblastoma and mouse brain proteomes. We used the GeneTerm Linker tool, which relies on fuzzy linkage between genes and ontology terms to identify their
Figure 2. Components of the BLOC-1-sensitive proteome. A–A2, Significant TMT proteome hits from wild-type (Bloc1s8+/−) and dysbindin-null newborn brains (Bloc1s8−/−). A, Volcano plot of all TMT protein quantitations. Hits significantly modified by the Bloc1s8−/− are depicted by red-lined circles. A1 and A2 present a hierarchical clustering of the mouse genotypes and changes in protein expression for all significant hits and show upregulated and downregulated proteins, respectively. Each column corresponds to an individual animal. Columns and rows were analyzed using Kendall’s tau distance algorithm according to GENE-E (Broad Institute, MIT). B to B2 present significant SILAC proteome hits from neuroblastoma cells expressing control shRNA and shRNAs directed either to Bloc1s5 muted or Bloc-1s6 pallidin. B, Volcano plots of all SILAC protein quantitations in Bloc1s5 muted or Bloc-1s6 pallidin downregulated cells. Hits significantly modified by BLOC-1 complex subunits downregulation are depicted by red-lined circles. B1 and B2 depict heat maps of proteins upregulated and downregulated by shRNA. Columns present from left to right: fold change, whether a protein was quantified in Bloc1s5–6 shRNA-treated cells, and the number of independent SILAC experiments in which the protein was quantitated.
convergence and associations (Fontanillo et al., 2011). The human neuroblastoma proteome identified 15 cellular component ontology term metagroups, whereas the mouse proteome identified 13 metagroups (Fig. 4A, gray and teal symbols, respectively). Nine of the ontological metagroups were shared between the mouse brain and neuroblastoma proteomes (Fig. 4A, red font), indicating that these proteomes do not differ in their GO architecture (p/H11005 > 0.151, two-tailed Fisher's exact probability test).

The five most significant terms within the human sensitive proteome were in order of significance: cytoplasmic membrane-bounded vesicle (GO: 0016023), melanosome (GO: 0042470), neuron projection (GO: 0043005), lysosome (GO: 0005764), and actin cytoskeleton (GO: 0015629). The reliability of this algorithm was determined by the identification of ontology terms defining organelles and cellular compartments in which function or markers are perturbed by BLOC-1 deficiencies. These subcellular compartments include melanosomes, platelet granules, synapse, late endosomes, and lysosomes.

We probed the robustness of the BLOC-1-sensitive proteome ontology using two different bioinformatic tools, DAVID and ENRICHR (Fig. 4B–D). These tools differ from GeneTerm Linker in their data-processing algorithms (Huang Da et al., 2009; Chen et al., 2013). DAVID identified most GO terms found with GeneTerm Linker either using cellular component or biological process ontology categories (Fig. 4B, C). Among overlapping terms, cytoskeleton (GO: 0005856) and actin cytoskeleton (GO: 0015629) were significantly represented (p/H11021 < 10^{-6} and p/H11002 < 0.0018, respectively. Fisher's exact test). Similarly, ENRICHR scored actin binding (GO: 0003779) and SNARE binding (GO: 0000149) as top molecular functions predicted from the BLOC-1-sensitive proteome (combined scores p/H11022 < 12, log p-value Fisher's exact test z-score; Fig. 4D). We and others have tested the functional association of the SNARE fusion machinery and the BLOC-1 complex (Ghiani et al., 2010; Dickman et al., 2012; Gokhale et al., 2015b). Therefore, these statistically prioritized ontological categories identify known pathways and/or subcellular compartments in which the BLOC-1 complex resides or is involved in psychiatric disorders and expressed in developing human brain. A, Shown is the analysis of the BLOC-1-sensitive proteome using the GDA algorithm to identify molecular connections between gene sets and diseases (Park et al., 2014; http://gda.cs.tufts.edu/). p-values were calculated using 10,000 permutations. Significant hits are depicted with shades of blue. If depicts the number of gene products from the BLOC-1-sensitive proteome in the MeSH category. B, BLOC-1-sensitive proteome (mouse + human), Bloc1s8*sd/sdy-sensitive proteome (mouse), and Bloc1s5–6 shRNA-sensitive proteomes were subjected to expression analysis across brain regions and development using the CSEA algorithm (http://genetics.wustl.edu/jdlab/csea-tool-2/; Dougherty et al., 2010). Columns and rows represent Fisher’s exact p-values corrected by Benjamini–Hochberg. Data were analyzed by hierarchical clustering using Pearson’s correlation according to GENE-E. Significant values are depicted in blue.

Figure 3. The BLOC-1-sensitive proteome enriches gene products associated with psychiatric disorders and expressed in developing human brain. A, Shown is the analysis of the BLOC-1-sensitive proteome using the GDA algorithm to identify molecular connections between gene sets and diseases (Park et al., 2014; http://gda.cs.tufts.edu/). p-values were calculated using 10,000 permutations. Significant hits are depicted with shades of blue. If depicts the number of gene products from the BLOC-1-sensitive proteome in the MeSH category. B, BLOC-1-sensitive proteome (mouse + human), Bloc1s8*sd/sdy-sensitive proteome (mouse), and Bloc1s5–6 shRNA-sensitive proteomes were subjected to expression analysis across brain regions and development using the CSEA algorithm (http://genetics.wustl.edu/jdlab/csea-tool-2/; Dougherty et al., 2010). Columns and rows represent Fisher’s exact p-values corrected by Benjamini–Hochberg. Data were analyzed by hierarchical clustering using Pearson’s correlation according to GENE-E. Significant values are depicted in blue.
required. Ontology strongly argues that the actin cytoskeleton and the BLOC-1 complex belong to a common molecular pathway.

To test whether the actin cytoskeleton and the BLOC-1 complex converge on a shared pathway, we selected molecular targets among the 29 proteins belonging to the actin-binding ontology term (GO: 0003779; Fig. 4D). We determined previously that the WASH complex and annexin A2 (ANXA2) interact with the BLOC-1 complex to regulate the actin cytoskeleton at endosomes (Ryder et al., 2013; Delevoye et al., 2016). We found downregulated ANXA2 within the BLOC-1-sensitive proteome (Fig. 2B2). Annexin A2 and the WASH complex activate the Arp2/3 actin

Figure 4. GO analyses of the BLOC-1-sensitive proteome. A, BLOC-1-sensitive proteome (mouse + human, blue symbols), BLOC1s4–6 shRNA-sensitive proteomes (human, gray symbols), and the BLOC1s84/sdy-sensitive proteome (mouse, teal symbols) were analyzed using the GeneTerm Linker tool (Fontanillo et al., 2011). Nine ontology terms common to mouse and human proteomes are in red font. B and C depict the cellular component and biological process GO terms for the BLOC-1-sensitive proteome using the DAVID tool, respectively (Huang Da et al., 2009). Circled area depicts number of gene products from the BLOC-1-sensitive proteome present in the term. Circle color depicts corrected p-values, lines and their thickness depict GO terms with the number of shared gene products. D and E illustrate GO analysis and the CORUM protein complex analysis of the BLOC-1-sensitive proteome according to ENRICH (combined score = (log p-value Fisher’s exact test) × (z-score); Chen et al., 2013).
Figure 5. The Arp2/3 actin polymerization complex is downregulated after BLOC-1 loss-of-function. A–C, SH-SY5Y cells were treated with control or shRNAs against either one of three BLOC-1 subunits (Bloc1s5, 6, and 8) and cell extracts analyzed by immunoblot with antibodies against the BLOC-1-sensitive proteome components: Arp2/3 complex subunits (Arpc2 and 5), actin2 (Actin2), and plexin A2 (PlexA2). Antibodies against actin, BLOC-1 subunits, and the BLOC-1-sensitive SNARE VAMP7 were used as controls. D, MNT1 melanoma cells were treated with control or Bloc1s6 shRNAs and cell extracts analyzed as in A. E, Immortalized melanocytes from mouse mutants carrying null mutations in the BLOC-1 subunits Bloc1s5–6 (Bloc1s5^{mu/mu} and Bloc1s6^{p/p}) or cells rescued by expression of the missing subunit were analyzed as in A. F, G, Synaptosomes of six wild-type and six Bloc1s5^{mu/mu} and three Bloc1s8^{p/p} homozygous hippocampi were analyzed. F, G, Three independent fractionations. In F, all fractions are depicted (H, homogenate and P1, low speed pellet), whereas in G, only synaptosomes are shown. Samples were probed by immunoblot with Arpc2 and 5 antibodies, hsp90 as a loading control, dysbindin, and the synaptic vesicle marker SV to indicate synapse enrichment. A1–A3. Dot plots representing the protein expression normalized to the control genotype. Each dot depicts an independent determination from at least three independent experiments. Red line marks 100%. All quantitations in A1 to A3 were significantly different from actin. In F1 and G1, only Arp5 was significantly different compared with controls with hsp90 (F, G). Significance was determined by Kruskal–Wallis test followed by Wilcoxon Mann–Whitney nonparametric tests.

Arp2/3 complex expression is reduced in BLOC-1 deficiency

We confirmed the effects of BLOC-1 loss of function on the expression of Arp2/3 complex subunits in diverse cells and hippocampal fractions enriched in synapses, also called synaptopodes (Fig. 5). We used antibodies against the Arp2/3 subunits Arp2 and Arp5 to measure Arp2/3 complex levels and contrasted these results with VAMP7, a protein with expression that is reduced in BLOC-1 deficiencies (Salazar et al., 2006; Newell-Litwa et al., 2010). Arp2 and Arp5 expression was consistently decreased in synaptic enriched fractions of adult dysbindin-null hippocampus. Collectively, these results show that reduced levels of BLOC-1 complex decrease the expression levels of Arp2/3 subunits in diverse cell lines.

We assessed whether Arp2/3 complex subunits expression was affected in adult dysbindin-null Bloc1s8^{dy/dy} mouse hippocampus and synaptic enriched fractions. Arp2c and Arp5 expression was not altered in total brain or hippocampal homogenates from adult Bloc1s8^{dy/dy} mice (Fig. 5F, lanes 1 and 4, F1). However, Arp5 expression was reduced by 50% in synaptosomes from Bloc1s8^{dy/dy} hippocampus. The synaptic vesicle marker SV2 was used to determine the extent of synaptic enrichment in synaptosome fractions (Fig. 5F, G). In contrast with Arp5, Arp2c levels were not affected by the Bloc1s8^{dy/dy} allele compared with wild-type synaptosomes and a loading control, Hsp90 (Fig. 5F, lanes 3 and 6, G, cf. even and odd lanes and G1). These results indicate that expression of selected subunits of the Arp2/3 complex is decreased in synaptic enriched fractions of adult dysbindin-null hippocampus. Collectively, these results show that the integrity of the BLOC-1 complex is required to maintain the expression of subunits of the Arp2/3 complex. Furthermore, our results confirm that GO distillation of the BLOC-1-sensitive proteome reliably and robustly identifies a molecular pathway converging on BLOC-1.

The WASH complex is an Arp2/3 activator that resides in endosomes and interacts with the BLOC-1 complex (Seaman et al., 2013; Ryder et al., 2013). We measured the levels of BLOC-1, Arp2/3 complex subunits, and actin2 to determine whether the BLOC-1 complex was the most upstream component on a path-
way interacting with the Arp2/3 complex via the WASH complex. We used control mouse fibroblasts in which the Wash1 gene was engineered as a flox conditional allele (WASH^{f/f}) and null cells in which Wash1 was excised with cre recombinase (WASH^{−/−}; Gomez et al., 2012). We confirmed the excision of the Wash1 gene measuring the expression of two subunits of the WASH complex, strumpellin and FAM21, the expression of which was reduced by ~50% (Fig. 6; Gomez et al., 2012). Moreover, and similar to what we observed in BLOC-1-deficient cells and synaptosomes, the expression of the Arp2/3 subunit Arp5 and ataxin were significantly downregulated and upregulated, respectively (Fig. 6). These changes in two BLOC-1-sensitive proteins occurred even though the BLOC-1 complex was unaffected in WASH-null cells, as measured by the expression of the BLOC-1 subunits Bloc1s6 (pallidin) and Bloc1s8 (dysbindin) (Fig. 6). These results support a model in which the BLOC-1, WASH, and Arp2/3 complexes are organized sequentially on a pathway. We further tested a pathway model to investigate whether BLOC-1, WASH, and Arp2/3 complexes could coprecipitate. We found previously that BLOC-1 and WASH complex coimmunoprecipitate with antibodies against recombinant FLAG-tagged dysbindin expressed in SH-SY5Y neuroblastoma cells (Ryder et al., 2013). FLAG-tagged dysbindin precipitated the BLOC-1 complex subunit Bloc1s6 pallidin, along with the WASH subunits strumpellin and FAM21 and the Arp2/3 subunit Arp5 (Fig. 6D, lane 1). Importantly, reverse immunoprecipitations with antibodies against Arp5 brought down the BLOC-1 complex subunit Bloc1s6 pallidin (Fig. 6E, lane 1). In these experiments, we excluded spurious binding of BLOC-1, WASH, and Arp2/3 subunits to bead-antibody complexes with either addition of an excess FLAG peptide to immunoprecipitates (Fig. 6D, lane 2) or using beads decorated with an anti-HA antibody (Fig. 6E, lane 2). Further probing of Arp5 immunoprecipitates with antibodies against strumpellin and FAM21 was precluded because all antibodies are raised in the same species. We conclude that BLOC-1 and Arp2/3 form complexes that include Arp2/3 and BLOC-1 complexes interact

Our hypothesis that the Arp2/3 complex and BLOC-1 participate in a common pathway makes three testable predictions that we focused on. First, the dynamic of actin filaments should be impaired in compartments in which the BLOC-1 complex normally resides. Second, genetic deficiencies in BLOC-1 should phenocopy mutations in subunits of the Arp2/3 complex. Finally, transheterozygotic mutations either between two distinct BLOC-1 subunits or one BLOC-1 and Arp2/3 subunits should generate similar phenotypic outcomes.

We measured actin dynamics using fluorescent recovery after photobleaching (FRAP) of the F-actin probes LifeAct-RFP and actin-GFP expressed in the same cells (Fig. 7; Riedl et al., 2008).

Figure 6. Genetic and biochemical interactions of the BLOC-1, WASH, and Arp2/3 complexes. A, Control (WASH^{f/f}) and WASH-null (WASH^{−/−}) mouse embryonic fibroblast cell extracts were analyzed by immunoblot with antibodies against the BLOC-1-sensitive proteome components Arp2/3 complex subunits (Arp2 and 5) and ataxin 2 (Atx2), as well as antibodies against actin, BLOC-1 subunits (Bloc1s6 and 8), and the WASH complex subunits strumpellin and FAM21. B, Dot plots representing the protein expression normalized to the control genotype. Each dot represents an independent determination from three or four independent experiments. Red line marks 100%. p-values were obtained by comparing against actin using the Kruskal–Wallis test followed by Wilcoxon Mann–Whitney nonparametric tests. Arp2 and BLOC-1 subunits were not significant (NS). Asterisks mark all significant values (p < 0.0017). D, E, Immunoprecipitations of FLAG-tagged dysbindin expressed in SH-SY5Y cells (D) or immunoprecipitations with Arp2 antibodies (E). BLOC-1 complex was detected by immunoblot of the precipitated complexes with antibodies against flag or pallidin, WASH complexes were revealed by blotting with antibodies against strumpellin and FAM21; the Arp2/3 complex was detected with antibodies against Arp2 (D, E, n = 3).

We expressed these probes in cells carrying an exofacially FLAG tagged β-adrenergic receptor in which endocytosis is induced by the agonist isoproterenol. Isoproterenol-induced receptor internalization allowed us to define precisely early endosomes functionally (Fig. 7C). The dynamics of endosome localized actin filaments was similarly reported by LifeAct-RFP and actin-GFP (Fig. 7A). Moreover, both probes experienced negligible bleaching due to imaging (Fig. 7B). Therefore, we focused on LifeAct-GFP because actin-GFP is partially functional (Doyle and Botstein, 1996; Deibler et al., 2011). We demonstrated previously that the size and tubulation of β-adrenergic receptor-positive endosomes is increased by BLOC-1 downregulation (Puthenveedu et al., 2010; Ryder et al., 2013). We transduced cells with control and Bloc1s6 shRNA lentiviruses to downregulate BLOC-1 complexes. LifeAct labeled discrete actin-positive domains in the limiting membrane of early endosomes, which were identified by the presence of FLAG antibodies internalized after 10 min of isoproterenol addition (Fig. 7C). These actin spots rapidly recovered their LifeAct FRAP in control cells (Fig. 7D, E). In contrast, FRAP was significantly reduced in BLOC-1-downregulated cells compared with control shRNA-treated cells (Fig. 7D, E). These results demonstrate that actin dynamics at early endosomes is decreased in cells in which the function of the BLOC-1 is impaired.

Drosophila Arp2/3 and BLOC-1 complexes interact genetically

We tested our hypothesis that the Arp2/3 complex and BLOC-1 participate in a common pathway with a genetic analysis of the Drosophila third-instar larva neuromuscular junction (NMJ) (Fig. 8) and Drosophila DA neurons focusing on the morphologically distinct Class-IV (C-IV) DA neurons. We chose the NMJ
synapse because it doubles its synaptic bouton numbers in BLOC-1 loss-of-function mutations (Mullin et al., 2015). We selected the C-IV DA neurons because their dendritic arbor is sensitive to genetic disruption of actin cytoskeleton components and their terminal branches are enriched in actin (Andersen et al., 2005; Jinushi-Nakao et al., 2007; Iyer et al., 2012; Ferreira et al., 2014). We focused on mutants in the orthologs of mammalian

Drosophila genes blos1, pldn, and dysb. The products of these Drosophila genes assemble into a bona fide BLOC-1 complex (Cheli et al., 2010; Mullin et al., 2015). We first resolved a discrepancy of reported bouton count phenotypes in BLOC-1 mutants (Dickman and Davis, 2009; Mullin et al., 2015) and tested whether food composition is a source of these differences. We raised our stocks on our food and the food used by Dickman and Davis (2009), herein referred to as DD food (Fig. 8A, C). The DD food caused an increase in the number of boutons in wild-type w1118 flies that was identical to the number of boutons observed in all BLOC-1 mutant animals regardless of the food on which they were grown (Fig. 8B, D, E). The bouton count observed in our wild-type w1118 animals raised on our food was also observed in two additional w1118 independent stocks of wild-type flies, t155 animals and the w1118 animals used in Dickman and Davis (2009), thus excluding genotypic differences in our stocks (Fig. 8B and data not shown). Importantly, the dysb1 increased bouton count phenotype could be rescued by the expression of a UAS-Dysb-Venus transgene driven by the c155 neuronal GAL4 driver (Fig. 8B, D).

We used this robust bouton count morphological assay to test whether Drosophila BLOC-1 and Arp2/3 mutant alleles phenocopy each other. Homozygous mutant blos1ex65, pldn−, and dysb1 animals significantly increased their synaptic bouton counts compared with control w1118 animals (Fig. 8B, D, E). The increased bouton phenotype observed in blos1ex65 and dysb1 mutants alleles is equally severe in heterozygous and homozygous animals (Fig. 8B, D, E; Mullin et al., 2013). As predicted, the increased synaptic bouton phenotype was also evident in two lethal alleles of the Drosophila Arp2/3 subunit Arcp1 when introduced as heterozygous mutations, Arcp1 Q25st/+ and Arcp1 Q25sd/c (Fig. 8B, E; Hudson and Cooley, 2002). These results demonstrate that mutations in BLOC-1 complex and Arp2/3 subunits phenocopy each other at the neuromuscular synapse, suggesting they converge on a common mechanism.

The synaptic bouton phenotype of blos1 heterozygous animals is suppressed when combined with other loss-of-function alleles of another BLOC-1 subunit (Mullin et al., 2013). This observation offers a powerful assay to test whether BLOC-1 and Arp2/3
complexes converge on a pathway. Transheterozygotic animals carrying one copy of blos1^{ex65} and either one of the Arp1 alleles indeed suppressed the phenotype observed in each one of these deficiencies in isolation (Fig. 8 B,E). The same suppression of the bouton phenotype was observed in transheterozygotic animals carrying one copy of pldn[−] or dysb¹ in combination with Arp1Q25sd^{+/+} (Fig. 8 B,E). All transheterozygotic synaptic bouton counts were similar to wild-type w¹¹¹⁸ flies and were also significantly different from each one of the mutant alleles in isolation (Fig. 8 B,E). We observed no differences in the size of the target muscle by a 50% reduction in Arp1 dosage (data not shown), an observation consistent with the reported lack of effect of Arp2/3 complexes (Pollard et al., 2002). These results indicate that the BLOC-1 and Arp2/3 complexes converge on a pathway to regulate synapse morphology.

We tested whether genetic interactions between BLOC-1 and Arp2/3 complexes were similar in dendrites and NMJ terminals. Therefore, we studied the Drosophila third-instar larvae C-IV DA neurons. These neurons possess an elaborate and stereotypic dendritic arbor with a complexity that is sensitive to genetic perturbation of actin modulators (Andersen et al., 2005; Jinushi-Nakao et al., 2007; Iyer et al., 2012; Ferreira et al., 2014). We investigated whether hemideficiencies in Arp1 and the BLOC-1 subunits blos1 and dysb could alter the dendritic arborization of these neurons. Mutant blos1 and dysb decreased the number of dendrite branches and the total dendrite length per neuron (Fig. 9 A,C,D). These blos1 and dysb mutant phenotypes were more pronounced in the actin-rich terminal branches, as demonstrated by the reversed Strahler analysis, in which branches of the 1 and 2 categories (i.e., terminals) were the most affected (Fig. 9E). Branches closer to the cell body were not significantly affected in these BLOC-1 hemideficiencies (Fig. 9E; Strahler categories 3–8). In contrast, the dendritic arbor was not affected in Arp1Q25sd^{+/+} C-IV DA neurons (Fig. 9A, C–E). With respect to genetic interactions between BLOC-1 and Arp2/3 complexes in C-IV dendrites, haploinsufficiency dendritic phenotypes observed in blos1^{ex65} were further enhanced by the transheterozygotic Arp1Q25sd^{−/−} allele in the case of the total number of branches (Fig. 9 A,B,C); however, the haploinsufficiency phenotypes observed in dysb¹ were not modified by the transheterozygotic Arp1Q25sd^{−/−} allele (Fig. 9A, C–E). We confirmed that the C-IV DA neurons' dendritic arbor indeed cell autonomously requires the Arp2/3 complex by creating Arp1Q25sd^{−/−} homozygous-null mutant clones in sensory neurons using MARCM (Fig. 9B, F). Arp1Q25sd^{−/−} mutant C-IV MARCM clones exhibited drastically decreased complexity of the dendritic tree, indicating that the Arp2/3 complex is necessary for normal dendritic development of sensory neurons (Fig. 9B, F). These results demonstrate that BLOC-1 and Arp2/3 complexes are required for dendritic development by mechanisms that differ between presynaptic and dendritic compartments.

Arp2/3 and BLOC-1 modulate presynaptic plasticity

Mutations in dysb block a philanthotoxin-induced homeostatic increase in quantal content that maintains muscle response during evoked potentials. This adaptive synaptic response is localized to the presynaptic compartment (Dickman and Davis, 2009; Dickman et al., 2002; Pollard et al., 2002). We observed no differences in the size of the target muscle by a 50% reduction in Arp1 dosage (data not shown), an observation consistent with the reported lack of effect of Arp2/3 complexes (Pollard et al., 2002). These results indicate that the BLOC-1 and Arp2/3 complexes converge on a pathway to regulate synapse morphology.

We tested whether genetic interactions between BLOC-1 and Arp2/3 complexes were similar in dendrites and NMJ terminals. Therefore, we studied the Drosophila third-instar larvae C-IV DA neurons. These neurons possess an elaborate and stereotypic dendritic arbor with a complexity that is sensitive to genetic perturbation of actin modulators (Andersen et al., 2005; Jinushi-Nakao et al., 2007; Iyer et al., 2012; Ferreira et al., 2014). We investigated whether hemideficiencies in Arp1 and the BLOC-1 subunits blos1 and dysb could alter the dendritic arborization of these neurons. Mutant blos1 and dysb decreased the number of dendrite branches and the total dendrite length per neuron (Fig. 9 A,C,D). These blos1 and dysb mutant phenotypes were more pronounced in the actin-rich terminal branches, as demonstrated by the reversed Strahler analysis, in which branches of the 1 and 2 categories (i.e., terminals) were the most affected (Fig. 9E). Branches closer to the cell body were not significantly affected in these BLOC-1 hemideficiencies (Fig. 9E; Strahler categories 3–8). In contrast, the dendritic arbor was not affected in Arp1Q25sd^{+/+} C-IV DA neurons (Fig. 9A, C–E). With respect to genetic interactions between BLOC-1 and Arp2/3 complexes in C-IV dendrites, haploinsufficiency dendritic phenotypes observed in blos1^{ex65} were further enhanced by the transheterozygotic Arp1Q25sd^{−/−} allele in the case of the total number of branches (Fig. 9 A,B,C); however, the haploinsufficiency phenotypes observed in dysb¹ were not modified by the transheterozygotic Arp1Q25sd^{−/−} allele (Fig. 9A, C–E). We confirmed that the C-IV DA neurons' dendritic arbor indeed cell autonomously requires the Arp2/3 complex by creating Arp1Q25sd^{−/−} homozygous-null mutant clones in sensory neurons using MARCM (Fig. 9B, F). Arp1Q25sd^{−/−} mutant C-IV MARCM clones exhibited drastically decreased complexity of the dendritic tree, indicating that the Arp2/3 complex is necessary for normal dendritic development of sensory neurons (Fig. 9B, F). These results demonstrate that BLOC-1 and Arp2/3 complexes are required for dendritic development by mechanisms that differ between presynaptic and dendritic compartments.
Figure 9. The *Drosophila* BLOC-1 and Arp2/3 complexes affect dendritic morphology in C-IV DA neurons. **A**, Representative live confocal images of C-IV DA neurons of the specified genotypes labeled by *ppk*-EGFP. **B**, Control and *Arpc1*-*null* C-IV neurons generated by MARCM (*Arpc1*^−/−^). Scale bars in **A** and **B** correspond to 100 μm. **C** and **D** show quantitative analysis of total number of dendritic branches and total dendritic length in the specified genotypes. Data are presented as box plots where the box indicates percentiles 25th and 75th. Box line represents sample median and diamonds sample mean, notches mark the half-width. **E** and **F** depict reversed Strahler branch analysis that shows that BLOC-1 haploinsufficiency phenotypes significantly affect terminal actin rich branches (Strahler number 1 and 2). Comparisons were made by the Kruskal–Wallis test followed by Wilcoxon Mann–Whitney nonparametric tests. Numbers of animals per genotype in **C**–**F** are in the abscissa in italics in **D**.
We used this dysb sensitive phenotype to determine whether an interaction between Dysbindin and the Arp2/3 complex could modulate presynaptic mechanisms. As reported previously, exposure to philanthotoxin did not affect evoked potentials (EJP) after 10 min of toxin addition in wild-type w^1118 animals (Fig. 10A). In contrast, the EJP amplitude was decreased in the dysb^1 flies after toxin addition, a reflection of decreased quantal content compared with w^1118 (Fig. 10A,C). As described previously, single alleles of dysb^1 or bloso^ex65 did not affect the response to philanthotoxin (Fig. 10G; Dickman and Davis, 2009; Dickman et al., 2012; Gokhale et al., 2015b). Single-copy loss of Arpc1 (Arpc1Q25sd^+/−) phenocopied the dysb^1 impaired response after toxin addition (Fig. 10A,C). We tested whether this arpc1-dependent phenotype was presynaptic by analyzing transheterozygotic animals harboring one copy of bloso^ex65 or dysb^1 in combination with Arpc1Q25sd^+/−. Simple copy loss of these two BLOC-1 subunits reverted the decreased Arpc1Q25sd^+/− plasticity phenotype to levels close to wild-type w^1118 (Fig. 10A,C). None of these effects was due to differences in the response of synapses to philanthotoxin. All animals decreased the amplitude of spontaneous fusion events (mEJP) by 50% after toxin addition (Fig. 10B). These results demonstrate that subunits of the BLOC-1 complex interact with components of the Arp2/3 complex to modulate an adaptive synaptic response. Collectively, our findings demonstrate that ontologies derived from proteomes sensitive to single gene defects inform the formulation of novel schizophrenia mechanistic hypotheses converging at the synapse.

Discussion

We used global quantitative proteome profiling and GO to identify and prioritize unbiasedly pathways altered by defect in single genes implicated in neurodevelopmental disorders. We used this strategy in neuronal cells and in tissue with reduced expression of one of three BLOC-1 subunits: Bloc1s5 (muted), Bloc1s6 (pallidin), and Bloc1s8 (dysbindin). Our goal was to identify effectors downstream of the BLOC-1 complex and proteins belonging to compensatory mechanisms activated by BLOC-1 genetic defects. The neuronal BLOC-1-sensitive proteome satisfies three criteria. First, the proteome sensitive to BLOC-1 deficiencies enriches gene products and ontological terms implicated in psychosis and schizophrenia risk (Fig. 3). Second, the proteome is modularly organized into discrete GO categories. These ontology categories include known and novel pathways sensitive to BLOC-1 genetic defects (Fig. 4). Finally, prioritization of the proteome by GO brought into focus the Arp2/3 complex, which we demonstrate interacts genetically with the BLOC-1 complex at a Drosophila model synapse, the larval NMJ (Fig. 8).

Whole-brain Bloc1s8-null proteome poorly overlapped with the proteome of neuroblastoma cells downregulated for BLOC-1 subunits likely because of a low discovery rate of isolated proteomes. However, the ontological organization of the human or mouse brain proteomes did not differ statistically. In fact, the addition of the brain proteome to the proteome of the BLOC-1 downregulated human neuroblastoma cells, the BLOC-1-sensitive proteome, improved the significance of common GO terms identified by the mouse brain and human neuroblastoma considered in isolation. We distilled the BLOC-1-sensitive proteome into two statistically prioritized GO terms, actin cytoskeleton (GO: 0015629) and actin binding (GO: 0003779). Among the actin binding proteins in GO: 0003779 (Fig. 4D), the protein content of which has been reported to be reduced in dysbindin-BLOC-1-null cells or brain. These include the Arp2/3 activator annexin A2 (ANXA2), synapsin 1 (SYN1), and a subunit of calcium/calmodulin-dependent protein kinase II (CAMK2B; Numakawa et al., 2004; Morel et al., 2009; Fei et al., 2010; Borgesius et al., 2011; Papaleo et al., 2012; Saggau et al., 2013; Jia et al., 2014; Delevoye et al., 2016). We identified a new molecular target sensitive to dysbindin-BLOC-1 defects within the actin cytoskeleton ontology terms, the Arp2/3 complex (Pollard, 2007; Rotty et al., 2013; Spence and Soderling, 2015). This actin regulatory complex was represented by four of seven subunits among our mass spectrometry candidate hits (ACTR3, ARPC1A, ARPC2, and ARPC5). Of these four subunits, we found reduced expression...
Dysbindin, other BLOC-1 subunits, and Arp2/3 complex subunits localize to presynaptic and postsynaptic compartments in neuronal cells (Talbot et al., 2006; Larimore et al., 2013). Dysbindin and BLOC-1 function are presynaptically required for synaptic vesicle protein delivery to and recycling within the nerve terminal and homeostatic synaptic plasticity (Dickman and Davis, 2009; Newell-Litwa et al., 2009; Newell-Litwa et al., 2010; Larimore et al., 2011; Dickman et al., 2012; Di Giovanni and Sheng, 2015; Gokhale et al., 2015b; Mullin et al., 2015). Postsynaptically, dysbindin and Arp2/3 complex subunits are required to modulate spine dynamics, actin polymerization, and neurotransmitter receptor surface expression or total content (Iizuka et al., 2007; Shao et al., 2011; Kim et al., 2013; Rocca et al., 2013; Jia et al., 2014). We used Drosophila larvae neurons to address whether presynaptic and dendritic compartments are similarly sensitive to BLOC-1 and Arp2/3 genetic defects. Presynaptic terminals were affected by single-copy loss of either BLOC-1 subunits or Arp2/3 subunits (Figs. 8, 10). However, dendrites were only sensitive to BLOC-1 hemideficiencies, not to a single-copy loss of Arp1 (Fig. 9). We postulate two nonexclusive models to explain these results. First, the abundance of Arp2/3 complexes could be limiting in Drosophila presynaptic compartments, but not in dendrites, a model drawn from the relative distribution of Arp2/3 complexes in mammalian synapses. Arp2/3 levels are higher in spines compared with axon terminals in mammalian neurons (Rácz and Weinberg, 2008; Korobova and Svitkina, 2010; Spence et al., 2016). A second model considers that Arp2/3 likely interacts with multiple upstream modulators in dendritic compartments, whereas BLOC-1 may be a chief upstream interactor of Arp2/3 complexes in presynaptic terminals. Either model, or combinations of thereof, could account for the lack of effect of a single-copy loss of Arpc1 in dendritic morphology and the different way by which BLOC-1 and Arp2/3 interact genetically in transheterozygotic analysis in dendrites compared with presynaptic terminals.

Regardless of which one of these models accounts for our observations, both likely converge on a BLOC-1-actin pathway organizing actin-rich domains in organelles. Actin-rich domains in endosomes or synaptic vesicles could participate in protein sorting via endosome tubules or vesicles or to propel vesicles within the synapse (Qualmann et al., 2000). Our finding that Drosophila BLOC-1 or Arp2/3 complex hemideficiencies alter the morphology of the Drosophila neuromuscular synapse suggest the intriguing possibility that receptors required for maintaining synapse morphology may be sorted from endosomes by BLOC-1-Arp2/3-dependent mechanisms. For example, enhanced TGF-β signaling is sufficient to cause overgrowth of the NMJ, suggesting that disruption of endosome sorting, thus preventing receptor activity downregulation, may contribute to increased synaptotrophic phenotypes (Aberle et al., 2002; Marqués et al., 2002; Harris and Littleton, 2015). This is the case of the late-endosome-localized spinter, the mutation of which induces synaptic overgrowth that requires the activity of the TGF-β receptor wit (Sweeney and Davis, 2002). If receptor signal transduction is increased in BLOC-1 and Arp2/3 mutant alleles, then synaptic bouton overgrowth should be suppressed in mutants of signal transduction pathways controlling Drosophila NMJ morphology (Aberle et al., 2002; Marqués et al., 2002; Harris and Littleton, 2015). Similarly, in mammalian cells, BLOC-1-Arp2/3-dependent mechanisms could control the subcellular localization and activity of other receptor signaling pathways. These include dopamine receptors and NMDA and AMPA glutamatergic receptors, which have been shown previously to be sensitive to BLOC-1 deficiency, as well as other receptors present in the BLOC-1-sensitive proteome such as PLX2A, NRCA2, and cell adhesion molecules (GO:0005178; Iizuka et al., 2007; Marley and von Zastrow, 2010; Karlsgodt et al., 2011; Shao et al., 2011; Saggau et al., 2013; Orozco et al., 2014).

The unbiased identification of a proteome sensitive to a monogenic defect provides insight into predicting genotype-association pathways and phenotypes. At a minimum, the BLOC-1-sensitive proteome identifies organelles and subcellular domains in which biogenesis and/or constituents are affected by BLOC-1.
deficiencies. The BLOC-1-sensitive proteome predicts effects of BLOC-1 genetic defects on neuronal and non-neuronal organelles. For example, defective melanosome and platelet granule biogenesis characterize BLOC-1 mutations in vertebrates (Raposo and Marks, 2007; Dell’Angelica, 2009; Ghiani and Dell’Angelica, 2011; Wei and Li, 2013). These defective organelles are represented in the GO terms describing pigmentation (GO: 0048753 and GO: 0043473) and platelet granule organization (GO: 0060155) inferred from the BLOC-1-sensitive proteome. Similarly, known functions of the BLOC-1 complex such as interactions with the SNARE membrane fusion machinery or as a factor required for the morphology/composition of presynaptic and postsynaptic domains are encompassed by the SNARE or syntaxin binding (GO: 0000149 and 0017075) and neuron projection morphogenesis (GO: 0048812) ontological categories (Ghiani et al., 2010; Larimore et al., 2011; Dickman et al., 2012; Jia et al., 2014; Di Giovanni and Sheng, 2015; Gokhale et al., 2015b).

Our data indicate that the phenotype predictive value of the BLOC-1-sensitive proteome expands to neurodevelopmental disorders such as schizophrenia. The genetic association of polymorphisms in the gene encoding dysbindin (DTNBP1) with schizophrenia is disrupted (Farrell et al., 2015). However, down-regulation of dysbindin expression in brains from schizophrenia patients is a strong argument for dysbindin as a part of the processes associated with disease (Talbot et al., 2004; Tang et al., 2009; Talbot et al., 2011). The BLOC-1-sensitive proteome provides additional insight into the association of dysbindin with schizophrenia because it significantly enriches genes products associated with psychotic disorders as determined with the GDA algorithm (Park et al., 2014). For example, GDA finds 11 gene products in common with the Psychotic Disorders category (F03.700.2009) and 31 gene products with the Schizophrenia and Disorders with Psychotic Features category (F03.700; Park et al., 2014). This latter category includes molecules such as the scaffold SHANK1, plexin A2, the enzyme dopamine β hydroxylase. We demonstrated previously that dopamine β hydroxylase co-purifies with the BLOC-1 complex and the expression of this enzyme is sensitive to BLOC-1 deficiency (Gokhale et al., 2015a). Second, GO analysis of schizophrenia candidate genes identified from genomic or schizophrenia brain gene expression studies overlap with ontology terms inferred from the BLOC-1-sensitive proteome (Gilman et al., 2012; Fromer et al., 2014; Purcell et al., 2014; Focking et al., 2015; Zhao et al., 2015; Pers et al., 2016). This overlap includes GO terms encompassing actin dynamics, stability, and actin-dependent membrane specializations (Fromer et al., 2014; Zhao et al., 2015). The involvement of actin cytoskeletal components in neurodevelopmental disorders is not just limited to ontologies inferred from candidate genes. In fact, Arp2/3 complex subunit messenger RNAs are reduced in specific layers of the prefrontal cortex of schizophrenia patients (Datta et al., 2016). Moreover, genetic disruption of the neuronal mouse Arp2/3 complex causes schizophrenia endophenotypes (Kim et al., 2015). Genes causative of neurodevelopmental disorders reside upstream of modulators of actin polymerization. Well studied examples are DISC1, which binds kalirin, a protein that activates Rac1 and p21-activated kinase (Hayashi-Takagi et al., 2010; Penzes and Remmers, 2012). SHANK3, a protein that interacts directly with Arp2/3 and the upregulation of which increases filamentous actin in spines (Han et al., 2013). Finally, FMRP binds to CYFIP1 a molecule that regulates the activity of the WAVE1 complex, an Arp2/3 activator, thus establishing a molecular mechanism linking translational control and actin polymerization (Abekhoukh and Bordoni, 2014; Pathania et al., 2014; Yoon et al., 2014). Because dysbindin binds to WAVE2, WAVE-CYFIP-like components in the BLOC-1-sensitive proteome may serve as a platform linking translational control and actin cytoskeleton dynamics. Our work adds significantly to the proposition that Arp2/3-dependent actin polymerization at presynaptic and postsynaptic compartments is a major neurodevelopmental disorder risk pathway. Our results indicate that ontologically prioritized proteomics can offer mechanistic insight into monogenic and polygenic neurodevelopmental disorder pathogenesis, disorder-specific endophenotypes, and genetic modifiers of disease.

References

MeCP2 regulates the synaptic expression of a Dysbindin-BLOC-1 network component in mouse brain and human induced pluripotent stem cell-derived neurons. PLoS One 8:e65069. CrossRef Medline

Roth JD, Wu C, Bear JE (2013) New insights into the regulation and cellular

S发布会上未完待续