A novel regulator controls Clostridium difficile sporulation, motility and toxin production

Adrienne Edwards, Emory University
Rita Tamayo, University of North Carolina
Shonna McBride, Emory University

Journal Title: Molecular Microbiology
Volume: Volume 100, Number 6
Publisher: Wiley | 2016-06-01, Pages 954-971
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1111/mmi.13361
Permanent URL: https://pid.emory.edu/ark:/25593/s3000

Final published version: http://dx.doi.org/10.1111/mmi.13361

Copyright information:

© 2016 John Wiley & Sons Ltd. This is the peer reviewed version of the following article, which has been published in final form. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Accessed October 11, 2018 2:10 PM EDT
A Novel Regulator Controls *Clostridium difficile* Sporulation, Motility and Toxin Production

Adrianne N. Edwards¹, Rita Tamayo², and Shonna M. McBride¹

¹Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
²Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

SUMMARY

Clostridium difficile, an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which *C. difficile* initiates sporulation proteins are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spor-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus *rstA*, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing *sigD* transcription. Conserved RstA orthologs are present in other pathogenic and industrial *Clostridium* species and may represent a key regulatory protein controlling clostridial sporulation.

Keywords

Clostridium difficile, sporulation; spore; anaerobe; tetratricopeptide repeat domains; toxin production; motility; Spo0A; SigD; TcdA; TcdB; RNPP; RRNPP

INTRODUCTION

For the obligate anaerobe *Clostridium difficile*, the formation of a dormant spore is a critical transition within its life cycle. *C. difficile* spore formation permits long-term persistence outside the host, provides recalcitrance from anti-infectives and facilitates efficient transmission from host to host (Deakin *et al.*, 2012). While *C. difficile* exhibits the same morphological features throughout each sporulation stage as the model organism, *B. subtilis*, many of the regulatory proteins that control the early stages of sporulation are not conserved or readily apparent within the *C. difficile* genome (Paredes *et al.*, 2005, Pereira *et al.*, 2013, *Corresponding author. Mailing address: Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322. Phone: (404) 727-6192. Fax: (404) 727-8250. shonna.mcbride@emory.edu.

The content of this manuscript is solely the responsibility of the authors and does not necessarily reflect the official views of the NIH. The authors declare no competing financial interests.
Saujet et al., 2013, Fimlaid et al., 2013, Edwards & McBride, 2014). Therefore, the regulatory mechanisms that govern the initiation of spore formation in C. difficile are mostly unknown, with only a few regulatory proteins identified and studied thus far (Underwood et al., 2009, Saujet et al., 2011, Deakin et al., 2012, Edwards et al., 2014, McBride, 2014). These include the master regulator of sporulation, Spo0A, which is a highly conserved transcriptional regulator, and the stationary phase sigma factor, SigH, both of which are found in all studied endospore-formers. Spo0A and SigH regulate the expression of early sporulation-specific genes and are required for the initiation of sporulation (Deakin et al., 2012, Rosenbusch et al., 2012, Saujet et al., 2011).

Recently, our work revealed that C. difficile initiates sporulation in response to nutrient availability and uptake (Edwards et al., 2014). The loss of two oligopeptide permeases, Opp and App, results in increased sporulation, likely due to the inability of the mutant to import small peptides as a nutrient source (Edwards et al., 2014). In other Gram-positive species, Opp and App also import small quorum sensing peptides, which control a vast array of physiological processes, including sporulation, competence, conjugation, toxin expression and production of other virulence factors (Rudner et al., 1991, Perego et al., 1991, Koide & Hoch, 1994, Leonard et al., 1996, Solomon et al., 1996, Gominet et al., 2001, Chang et al., 2011). In B. subtilis, the Phr quorum sensing peptides positively regulate sporulation initiation. The Phr peptides are synthesized within the cell, exported and processed, accumulate in high cell density conditions, and are then imported back into the cell by Opp and App (Perego & Hoch, 1996, Perego, 1997, Jiang et al., 2000). Once inside the cell, the Phr peptides promote sporulation by binding to and inhibiting the activity of the Rap phosphatases (Perego, 1997, Lazazzera et al., 1997). The Rap phosphatases indirectly prevent phosphorylation of Spo0A and thus, inhibit spore formation (Perego et al., 1994). This regulatory pathway is one of several in B. subtilis that modulate the level of phosphorylated (active) Spo0A, thereby ensuring that sporulation initiation is appropriately controlled.

The B. subtilis Rap phosphatases belong to the RNPP (Rap/NprR/PlcR/PrgX) family of cytoplasmic proteins (Declerck et al., 2007), or the RRNPP family, to include the Streptococcus Rgg proteins (Mashburn-Warren et al., 2010, Parashar et al., 2015). The C. difficile genome encodes two potential RNPP proteins (CD2123 and CD3668) (Edwards & McBride, 2014, Edwards et al., 2014). This study was undertaken to determine whether either RNPP-like protein has a role in C. difficile spore formation. Herein, we describe one RNPP ortholog, CD3668, which regulates multiple physiological traits in vitro, including sporulation, motility and toxin production. Our results also indicate that CD3668 is a bifunctional protein that influences spore formation and toxin expression in vivo and is important for virulence in an animal model of CDI. This study provides the first evidence that an RNPP protein controls spore formation and other virulence traits in Clostridium and closely related organisms.
RESULTS

Identification and disruption of two putative RNPP orthologs in *C. difficile*

CD2123 and CD3668 possess multiple, conserved tetratricopeptide repeat (TPR) domains, which are a core feature of Gram-positive proteins belonging to the RNPP (Rgg/Rap/NprR/PlcR/PrgX; or RRNPP) family (Declerck et al., 2007, Parashar et al., 2015; Fig. 1). The Rap proteins directly bind and dephosphorylate their molecular target: Spo0F, a member of the phosphorylation-dependent pathway that activates Spo0A, and ComA, the regulator of competence in *Bacillus* species (Perego et al., 1994, Core & Perego, 2003, Bongiorni et al., 2005). The other RNPP members include the *Bacillus* NprR and PlcR, the *Enterococcus* PrgX and *Streptococcus* Rgg proteins, which are DNA-binding transcription factors. NprR from *Bacillus thuringiensis* contains a bifunctional N-terminal region comprised of a helix-turn-helix (HTH) DNA-binding domain followed by a Spo0F-binding domain (Cabrera et al., 2014). NprR is the only published dual-function protein in the RNPP family.

Neither CD2123 nor CD3668 encode an identifiable phosphatase domain, a hallmark feature of the Rap phosphatase proteins. Besides the TPR domains identified within CD2123, this protein does not encode any other apparent protein motifs. The CD3668 sequence contains a conserved HTH DNA-binding motif in the N-terminal region, followed by five TPR repeat regions (Fig. 1). Protein structure modeling analysis using Phyre2 (Kelley et al., 2015) revealed that the predicted structure of CD3668 models to several members of the RNPP family, including PlcR of *Bacillus thuringiensis*, NprR of the *Bacillus cereus* group and RapH, Rapl and RapJ from *B. subtilis*. There is a high degree of similarity in CD3668 to both the N-terminal HTH DNA-binding motif and the peptide-interacting TPR domains of PlcR and NprR (Grenha et al., 2013). Although there is structural similarity between CD3668 and the *B. subtilis* RapH, Rapl and RapJ proteins, only 4 of 18 identified amino acids required for Rap-dependent Spo0F-binding and dephosphorylation are conserved in CD3668 (Parashar et al., 2011, Parashar et al., 2013; not shown). Altogether, these structural analyses provide evidence that CD3668 is related to the transcriptional regulators in the RNPP family. While the predicted Phyre2-generated protein structure of CD2123 is predominantly alpha-helical, there was little similarity to any prokaryotic proteins, suggesting that CD2123 may function differently than other RNPP proteins.

Disruption of CD3668 decreases sporulation frequency in *C. difficile*

In *Bacillus* species, the Rap and NprR proteins inhibit sporulation by directly binding and dephosphorylating Spo0F, an intermediate phosphotransfer protein in the sporulation phosphorelay (Perego et al., 1994, Cabrera et al., 2014). The sporulation phosphorelay modulates the phosphorylation state of the master sporulation regulator, Spo0A, in response to a variety of intracellular and environmental signals. Many of the *B. subtilis* Rap proteins inhibit sporulation; hence, overexpression of these proteins lowers the sporulation frequency while null mutations in these loci often result in increased sporulation frequency (Perego et al., 1994, Mueller & Sonenshein, 1992). There is no sporulation phosphorelay encoded in the *C. difficile* genome (Paredes et al., 2005, Sebaihia et al., 2006). In *C. difficile*, Spo0A appears to be activated by phosphorylation directly by sporulation kinases (Underwood et
al., 2009), and it is expected that Spo0A can be directly inactivated, as well (Paredes et al., 2005, Edwards & McBride, 2014, Underwood et al., 2009).

To determine if CD2123 or CD3668 is important for C. difficile spore formation, we created independent insertional mutations in these genes. Antibiotic resistance markers were introduced in CD2123 at nucleotide 553 and in CD3668 at nucleotide 306, using a TargeTron-based group II intron. The presence of the retargeted intron in the correct gene was confirmed by Southern blot analysis (Fig. S1A), and qRT-PCR analysis confirmed a significant reduction of CD2123 and CD3668 transcript levels in the respective mutants (Fig. S1B and S1C). Transcription of CD3667, CD3666 and CD3665, the genes immediately downstream of CD3668, were slightly decreased in the CD3668 mutant (Fig. S1C), while CD3664 expression was unchanged. PCR analysis of cDNA from 630Δerm confirmed that CD3668-CD3667-CD3666-CD3665-CD3664 constitute a transcriptional unit (Fig. S1D, E); however, our transcriptional data suggest that the full 3.83 kb region may be a minor product since transcript levels of the downstream genes are not as greatly affected by the insertional mutation in CD3668. CD3667 is annotated as a selenium metabolism protein, CD3666 and CD3665 as hypothetical proteins and CD3664 as an aminotransferase, and are all uncharacterized, to our knowledge.

The CD2123 and CD3668 mutants (MC379 and MC391, respectively) were tested for sporulation frequency after 24 h of growth (H24) on 70:30 sporulation agar (Putnam et al., 2013). Using phase-contrast microscopy to differentiate vegetative bacilli from phase bright spores, we observed a mean sporulation frequency of 28.1% in the parent strain, 630Δerm (Fig. 2A), consistent with previously published results (Putnam et al., 2013). The CD2123 mutant demonstrated a similar sporulation frequency to the parent strain (Fig. 2A). In contrast, the CD3668 mutant produced ~20-fold less spores than the parent strain (1.4% in the CD3668 versus 28.1% in 630Δerm, Fig. 2A), suggesting that CD3668 is important for sporulation in C. difficile. When enumerating ethanol resistant spores from strains grown on 70:30 sporulation agar at H24, a ~25-fold decrease in sporulation frequency in the CD3668 mutant compared to 630Δerm was observed (Table 1), which corroborates the oligosporogenous phenotype ascertained with phase contrast microscopy. When a plasmid copy of CD3668, driven by the nisin-inducible cprA promoter (McBride & Sonenshein, 2011b, McKee et al., 2013), was introduced into the CD3668 mutant (MC480), the sporulation phenotype was partially restored in a manner relative to the amount of inducer added to the medium (Fig. 2B). The sporulation frequency of the CD3668 mutant containing the pPcprA-CD3668 construct (MC480) was 1.9% in the absence of nisin, and increased to 13.3% in 0.5 μg ml⁻¹ nisin and 17.3% in 1 μg ml⁻¹ nisin (Fig. 2B), confirming that CD3668 positively influences sporulation in C. difficile. The inability to fully complement the sporulation phenotype may be due to exogenous CD3668 expression driven from an inducible promoter on a plasmid, rather than from the native promoter on the chromosome, which may not reflect native expression patterns. Overexpression of CD3668 in the parent background (MC478) did not increase sporulation frequency (Fig. 2B).

Sporulation is a complex process in bacteria and is defined by multiple morphological stages (Errington, 2003, Pereira et al., 2013, Paredes-Sabja et al., 2014). Specific genetic and regulatory events are required to complete each morphological stage throughout sporulation.
(Losick & Stragier, 1992, Fimlaid et al., 2013, Saujet et al., 2013, Pereira et al., 2013). To further assess the sporulation phenotype of the CD3668 mutant, we performed fluorescence microscopy using the membrane specific dyes, FM4-64 and Mitotracker green (MTG). This technique allows the detection of earlier sporulation events, such as asymmetric septum formation (stage II) and engulfment of the prespore (stage III), neither of which is visible by phase contrast microscopy. At H24, there was a significant decrease in cells at stage II or beyond in the CD3668 mutant (6.1 ± 1.7%) compared to the parent strain (35.2 ± 3.9%; Fig. 2C), indicating that fewer cells are able to achieve mature spore formation in the CD3668 mutant compared to the parent strain. As there is no increase in sporulation frequency in the CD3668 mutant at H96 compared to H24 (Fig. S2), it is likely that sporulation in the CD3668 mutant is arrested early.

Sporulation-specific gene expression is decreased in the CD3668 mutant

The decreases in sporulation frequency and in the formation of asymmetric sporulation septa in the CD3668 mutant suggest that sporulation-specific gene expression is reduced and/or delayed in this strain. To further characterize the sporulation phenotype of the CD3668 mutant, we used qRT-PCR to measure the transcript levels of spo0A and the sporulation-specific sigma factors at multiple time points during growth on 70:30 sporulation agar. Transcription of spo0A, which encodes the master regulator of sporulation, was unchanged between the parent strain and the CD3668 mutant (Fig. 3A). However, spo0A transcript levels do not fully correlate to Spo0A~P activity (Edwards et al., 2014), as is frequently observed with regulatory proteins. To evaluate Spo0A~P activity, we also analyzed transcription of sigE, an early stage sporulation-specific sigma factor that depends upon active Spo0A~P for its expression. We found that sigE expression appeared decreased at H₈ and H₁₀ and was significantly decreased at H₁₂ in the CD3668 mutant (~6-fold; Fig. 3B). Transcript levels of additional sporulation-specific sigma factors, sigF and sigG, trended lower at H₈ and H₁₀ and were significantly decreased at H₁₂ in the CD3668 mutant (~2-fold and ~7-fold, respectively; Fig. 3C–D). Further, expression of another Spo0A-dependent gene, spoIIE, which encodes a phosphatase necessary for SigF activation, was also significantly decreased in the CD3668 mutant (Fig. S3A). These data indicate that sporulation-specific genes are expressed at lower levels in the CD3668 mutant, which correlates with the reduced sporulation phenotype observed.

As Spo0A activity is controlled by phosphorylation, we analyzed the expression of the three putative Spo0A sensor histidine kinases in C. difficile (Underwood et al., 2009). Transcript levels of CD1492, CD1579 and CD2492 were all increased in the absence of CD3668 (Fig. S3B), which suggests that levels of phosphorylated Spo0A would be higher in the CD3668 mutant, contradicting the pattern of sporulation-specific gene expression observed above. Because the function of these three putative Spo0A kinases are not elucidated, there are likely additional regulatory interactions unknown that control sporulation initiation. Finally, sigE transcript levels were similarly decreased (~4-fold) in the CD3668 mutant grown in TY medium compared to growth on 70:30 sporulation agar (Fig. S4A versus Fig. 4B), indicating that CD3668 controls sporulation in multiple growth conditions.
Toxin gene expression and toxin production are increased in the \textit{CD3668} mutant

Sporulation and the production of the two primary \textit{C. difficile} toxins, toxin A (TcdA) and toxin B (TcdB), have been linked in multiple \textit{C. difficile} strains (Deakin \textit{et al.}, 2012, Mackin \textit{et al.}, 2013, Pettit \textit{et al.}, 2014), although a definitive regulatory pathway has not been identified. To determine whether the loss of \textit{CD3668} affects toxin production, we first analyzed \textit{tcdA} and \textit{tcdB} gene expression using qRT-PCR. Transcript levels of \textit{tcdA} and \textit{tcdB} were elevated in the \textit{CD3668} mutant when grown on 70:30 sporulation agar (~4-fold and ~3.5-fold, respectively; Fig. 4A) or in TY medium (~6-fold; Fig. S4A), suggesting that CD3668 negatively influences toxin gene expression. Both \textit{tcdA} and \textit{tcdB} gene expression were complemented to wild-type levels when \textit{CD3668} expression was induced in the \textit{CD3668} mutant (Fig. S5A, B). Additionally, \textit{CD3668} overexpression in the 630\textit{Δerm} parent background resulted in a ~2-fold decrease in \textit{tcdA} transcript levels (Fig. S5A), further confirming that CD3668 represses toxin gene expression. Western blot analysis of cultures grown in TY medium demonstrated that TcdA protein levels were increased ~2.1-fold in the \textit{CD3668} mutant compared to the 630\textit{Δerm} parent (Fig. 4B). No change in TcdA protein levels was detected in the CD2123 mutant (Fig. 4B), analogous to the toxin expression profiles for this strain (Fig. 4A).

Regulation of \textit{C. difficile} toxin production is complex and is influenced by multiple regulatory factors. Expression of \textit{tcdA} and \textit{tcdB} is directly activated by the toxin-specific sigma factor, TcdR (Mani & Dupuy, 2001), while the motility sigma factor, SigD, directs \textit{tcdR} transcription (McKee \textit{et al.}, 2013, El Meouche \textit{et al.}, 2013; Fig. 4). In addition, toxin gene expression is directly repressed by the global regulators, CodY (Dineen \textit{et al.}, 2007) and CcpA (Antunes \textit{et al.}, 2011, Antunes \textit{et al.}, 2012), in response to nutrient availability (Karlsson \textit{et al.}, 2008). To elucidate whether CD3668 controls \textit{tcdA} and \textit{tcdB} transcription directly or through one of the known regulators, we assessed \textit{tcdR} transcript levels in the \textit{CD3668} mutant. Transcription of \textit{tcdR} was ~3-fold higher in the \textit{CD3668} mutant compared to the parent strain or the CD2123 mutant (Fig. 4A). Altogether, these data indicate that CD3668 negatively affects \textit{C. difficile} toxin production, likely through the toxin-specific sigma factor, TcdR.

\textbf{CD3668 controls motility and toxin production through regulation of \textit{sigD} expression}

SigD is the only known positive regulator of the toxin-specific sigma factor, \textit{tcdR} (El Meouche \textit{et al.}, 2013, McKee \textit{et al.}, 2013). As such, we next investigated the effects of \textit{CD3668} disruption on \textit{sigD} expression. The abundance of the \textit{sigD} transcript was ~2.5-fold higher in the \textit{CD3668} mutant compared to the parent strain grown on 70:30 sporulation agar (Fig. 5A), while a ~2-fold increase in \textit{sigD} transcript occurred when grown in TY medium (Fig. S4A). The \textit{CD2123} mutant exhibited no change in \textit{sigD} transcript levels, while the \textit{sigD} transcript was ~2-fold lower in the \textit{sigD} mutant (Fig. 5A), as previously shown (El Meouche \textit{et al.}, 2013). However, SigD is subject to post-translational regulation (El Meouche \textit{et al.}, 2013); thus, transcript abundance of \textit{sigD} is not fully indicative of its activity. To determine if SigD-dependent gene expression was also affected in the \textit{CD3668} mutant, we analyzed transcript levels of \textit{fliC}, a SigD-dependent flagellar gene. Expression of \textit{fliC} was significantly higher in the \textit{CD3668} mutant on 70:30 sporulation agar (Fig. 5A) and in TY medium (Fig. S4A). Likewise, \textit{fliC} expression was significantly reduced when
CD3668 expression was induced in the CD3668 mutant (Fig. S5C). Expression of additional SigD-regulated genes, such as the early stage flagellar genes, flgB, motA and fliQ, were also higher in the CD3668 mutant (Fig. S6A), demonstrating that SigD-dependent gene expression is globally affected by the loss of CD3668. Finally, to determine if the CD3668-dependent regulation of sigD transcription influences motility of C. difficile, swimming motility assays were performed using soft agar plates. As shown in Fig. 5B, the CD3668 mutant exhibited a ~10% increase in swimming motility at 120 h compared to the parent strain. As anticipated, the sigD mutant control was nonmotile.

Although the data indicate that CD3668 signals through sigD expression to regulate toxin production, we assessed whether CD3668 could also influence the other known regulators of toxin expression, CodY and CcpA. Transcription of ccpA was unaffected, and a small decrease in codY expression was observed in the CD3668 mutant, but no consistent change in expression was found for genes controlled by these regulators (Fig. S6B, data not shown). Together, these results demonstrate that CD3668 regulates toxin expression in a SigD-dependent manner. Because of the phenotypes affected by CD3668, we propose this locus be renamed rstA (regulator of sporulation and toxin, A).

Expression of rstA may be controlled through autoregulation

RNPP proteins often control their own expression (Lereclus et al., 1996, Lazazzera et al., 1999, Mashburn-Warren et al., 2010). We asked whether the rstA mutation affects rstA expression. rstA transcript levels slightly increased in the parent strain during growth on 70:30 sporulation agar (at H8 and H12; Fig. 6A) and remained unchanged during growth in TY medium (Fig. S4B). Expression of rstA was increased ~4–6-fold in the rstA mutant compared to the parent strain at all time points when grown on 70:30 sporulation agar (Fig. 6A) and in TY medium (~3–5-fold; Fig. S4B), which suggests that RstA negatively influences its own expression. To further assess whether RstA affects rstA transcription, we constructed a PrstA::phoZ reporter fusion containing 489 bp upstream of the annotated rstA start codon and measured alkaline phosphatase (AP) activity in 630Δerm and the rstA mutant. AP activity was increased ~1.7-fold in the rstA mutant compared to the parent strain (Fig. 6B), further verifying that rstA inhibits its own expression. Altogether, these data strongly suggest that rstA transcription is autoregulatory.

As RNPP proteins and their cognate quorum sensing peptide are often co-transcribed or located adjacent to one another (Rocha-Estrada et al., 2010, Cook & Federle, 2014), we looked for potential open reading frames that may encode a precursor to a quorum sensing peptide or a similar regulatory feature; however, no candidate, short open reading frame that possibly encodes a peptide is apparent near the rstA locus. It is possible, however, that the one or both of the hypothetical genes downstream of rstA, CD3666 and CD3665, encode an unknown class of quorum sensing peptides.

The rstA mutant exhibits increased virulence in the hamster model of C. difficile infection

The TcdA and TcdB toxins are critical virulence factors in animal models of C. difficile infection (Kuehne et al., 2010). Because RstA inhibits toxin gene expression, we next asked whether the rstA mutant is more virulent in a hamster model of C. difficile infection (Chang
et al., 1978, Douce & Goulding, 2010, Best et al., 2012). Female Syrian golden hamsters were infected with the 630Δerm parent strain or the rstA mutant. Animals were monitored for symptoms of C. difficile infection, as described in the Experimental Procedures. Hamsters infected with the rstA mutant succumbed to C. difficile infection more quickly than those infected with the 630Δerm parent strain (P < 0.01, log rank test; mean times to morbidity: 45.5 ± 3.5 h for 630Δerm and 34.1 ± 2.6 h for the rstA mutant; one animal infected with 630Δerm survived the duration of the ten day study; Fig. 7A). These results indicate that the rstA mutant is more virulent than the parental strain.

To quantify the burden of total C. difficile vegetative cells and spores in vivo, fecal samples were collected 24 h post-infection and cecal contents were acquired at the time of morbidity. While there was no statistically significant difference in the number of C. difficile colony forming units (CFU) in feces 24 h post infection (Fig. 7B), significantly fewer CFU (~2.5-fold) were enumerated from cecal contents for hamsters infected with the rstA mutant compared to those infected with 630Δerm (Fig. 7C). It is important to note that no significant in vitro growth defect was observed in the rstA mutant when grown in BHIS, TY or 70:30 sporulation media (data not shown), which may suggest that the rstA mutant forms fewer spores in vivo.

To determine if toxin gene expression was greater in vivo, as it is in vitro, RNA was isolated from the cecal contents of infected hamsters post-mortem. Cecal contents from an uninfected animal were included as a control. Expression analyses revealed that both tcdA and tcdB transcript levels were higher (~2.5- and ~1.6-fold, respectively) in animals infected with the rstA mutant, compared to those infected with the parent strain (Fig. 7D). Because RstA appears to control toxin expression through SigD, we also measured in vivo sigD transcription. Transcript levels of sigD were significantly higher (~2.6-fold) in hamsters infected with the rstA mutant (Fig. 7D), suggesting that RstA also regulates toxin production and motility in a SigD-dependent manner in vivo. Finally, because animals infected with the rstA mutant carried fewer total C. difficile cells in vivo, at the time of death (Fig. 7C), we asked whether a reduced sporulation frequency in vivo contributed to this phenotype. sigE transcription was examined in cecal contents to determine if sporulation-specific gene expression was decreased in vivo, as observed in vitro. sigE transcription was detected in most hamsters infected with the 630Δerm strain (n = 10/11); however, sigE transcripts were only detectable in two of the nine hamsters tested that were infected with the rstA mutant, even though other transcripts were readily measurable. The inability to detect sigE transcript levels in most of the rstA-infected hamsters may correlate with the reduced number of total C. difficile cells recovered from cecal contents if the rstA mutant is oligosporogenous in vivo. The gene expression patterns observed in infected hamsters suggest that the same RstA-mediated regulation of sporulation and toxin production identified in vitro, are also relevant in vivo.

RstA demonstrates bifunctional control of sporulation and SigD-dependent activity

The presence of a putative HTH DNA-binding motif and protein-interacting TPR domains suggests that RstA may interact with peptides and also serve as a DNA-binding transcriptional regulator. To assess the importance of the DNA-binding domain in RstA
function, a truncated RstA lacking 37 amino acids within the HTH domain, was expressed in the rstA mutant and evaluated for effects on sporulation and SigD-dependent gene expression (MC738, Table 2; Cabrera et al., 2014). Expression of the rstAΔHTH allele substantially restored sporulation of an rstA mutant but did not significantly affect SigD repression, as evidenced by SigD-dependent gene expression (Table 2). These results demonstrate that the HTH DNA-binding domain is dispensable for RstA-dependent stimulation of sporulation but is important for repression of SigD. Conversely, the five predicted peptide-interacting TPR domains that comprise the majority of RstA are sufficient to partially restore the sporulation-promoting functions of the protein, but are not adequate for repression of sigD expression.

DISCUSSION

Although *C. difficile* efficiently forms spores, many conserved regulatory proteins that are required for initiating sporulation in other studied spore-formers are not encoded in the *C. difficile* genome, suggesting that *C. difficile* employs unique regulatory mechanisms to control the early stages of sporulation. *C. difficile* does encode two weak orthologs to the Rap family of proteins, which inhibit sporulation in *Bacillus* species by indirectly preventing the accumulation of phosphorylated Spo0A, the active form of the master regulator of sporulation. In contrast, our study demonstrates that one *C. difficile* Rap-like protein, RstA (CD3668), functions as a novel regulator to increase sporulation and decrease motility and toxin production (Fig. 8).

Our results reveal that RstA regulates several physiological processes and virulence in *C. difficile* in multiple *in vitro* conditions. RstA positively affects the initiation of sporulation through its peptide-interacting TPR domains. RstA likely influences early sporulation events, as the majority of rstA mutant cells do not advance beyond Stage II of sporulation and gene expression of Spo0A-dependent genes and early-sporulation sigma factors is decreased. In addition, RstA negatively influences TcdA and TcdB toxin production and motility by repressing transcription of sigD, resulting in higher expression of toxins *in vivo* and increased virulence when the rstA mutant is used in the hamster model of *C. difficile* infection. Our data demonstrate that RstA regulates toxin expression through SigD, the flagellar-specific sigma factor. Removal of the HTH DNA-binding motif and examination of sporulation in a sigD mutant revealed that RstA controls sporulation initiation through a SigD-independent pathway. Based on these results, we hypothesize that RstA may be a global regulator in *C. difficile*, similar to the broad physiological roles RNPP proteins play in other bacteria.

While RstA exhibits more amino acid similarity to the *Bacillus* Rap proteins, RstA shares more features in common with the other members of the RNPP family of proteins. The RNPP family of regulatory proteins controls diverse traits, including sporulation, competence, toxin production and conjugation, in response to the direct binding of small quorum peptides to the TPR domains (reviewed in: Rocha-Estrada et al., 2010, Cook & Federle, 2014). The RNPP proteins are characterized by the tetratricopeptide repeat (TPR) domains found in the C-terminal portion of these proteins. Multiple TPR domains of the RNPP proteins are arrayed in tandem, and form stacked alpha-helical surfaces that facilitate
the binding of small quorum sensing peptides (Declerck et al., 2007, Diaz et al., 2012). The N-terminal effector domains of RNPP proteins function as phosphatases and/or transcriptional regulators. Peptide binding to the protein induces a conformational change that either activates or inhibits the phosphatase activity or DNA-binding capabilities of an RNPP protein (Grenha et al., 2013, Parashar et al., 2013, Gallego del Sol & Marina, 2013, Zouhir et al., 2013).

RstA contains several TPR domains that share similarity with the Bacillus Rap proteins; however, the conserved N-terminal HTH DNA-binding motif and predicted protein structure are more similar to the other RNPP members, namely B. thuringiensis PlcR and the B. cereus group NprR (Fig. 1). The secondary structure of PlcR, which is a DNA-binding transcriptional activator when bound to its cognate peptide (Slamti & Lereclus, 2002), aligns with residues 5–190 and 350–428 of RstA, which leaves an approximate 160 residues between the putative HTH DNA-binding motif and the C-terminal TPR domains (Fig. 1). RstA also aligns with much of the full-length bifunctional RNPP regulatory protein, NprR (Fig. 1). NprR is the only known RNPP protein that both directly binds DNA to regulate gene transcription and directly interacts with the phosphotransfer protein, Spo0F (Cabrera et al., 2014). NprR contains a conserved HTH DNA-binding domain followed by a region that is similar to the Rap proteins and contains several conserved residues that mediate Spo0F binding (Cabrera et al., 2014). The Spo0F-binding domain of NprR is composed of two TPR domains (Zouhir et al., 2013) and is similar to the secondary structure predicted for RstA in this region (Fig. 1). Our data and the structural similarity between RstA and the other RNPP proteins suggest that RstA functions as a DNA-binding regulator and possesses a protein-binding domain.

Multiple attempts to demonstrate direct RstA binding to potential DNA targets, including a putative sigD promoter (P\text{flgB}) and the rstA promoter, through \textit{in vitro} electrophoretic mobility shift assays were unsuccessful. The absence of RstA-DNA binding \textit{in vitro} may be attributable to several factors: 1) RstA requires a cofactor, such as a small quorum sensing peptide, to bind DNA, as is the case for other RNPP proteins (Slamti & Lereclus, 2002, Perchat et al., 2011); 2) the DNA fragments tested are not direct RstA targets or 3) RstA is not a DNA-binding protein. To test if RstA requires an additional cofactor to bind DNA with high affinity, concentrated supernatants from \textit{C. difficile} \textit{630Δerm} parent, the opp app mutant (Edwards et al., 2014) or the rstA mutant strains grown on 70:30 sporulation agar were added to the binding reactions, but no binding was observed. It remains unclear whether \textit{C. difficile} employs quorum sensing to regulate sporulation initiation. To our knowledge, there is no published evidence of quorum sensing regulation in \textit{C. difficile} sporulation, and our previous study revealed that the Opp and App oligopeptide permeases negatively influence sporulation, likely through nutrient acquisition rather than quorum sensing (Edwards et al., 2014). In addition, a recent study revealed that the absence of multiple Rap proteins in gastrointestinal isolates of \textit{B. subtilis} leads to earlier Spo0A activation and cell density-independent sporulation (Serra et al., 2014). \textit{C. difficile} may also utilize similar regulatory mechanisms. However, it is also possible that the nutrient starvation occurring in the opp app mutant masks the loss of the potential RstA-dependent quorum sensing, resulting in the increased sporulation phenotype observed. It is important to note that the Agr quorum sensing system positively controls sporulation in other related non-
pathogenic and pathogenic clostridial organisms, including *C. acetobutylicum*, *C. botulinum* and *C. perfringens* (Cooksley *et al.*, 2010, Li *et al.*, 2011, Steiner *et al.*, 2012); however, the regulatory pathways have not been elucidated. The *C. difficile* genome contains one to two encoded *agr* systems (Darkoh *et al.*, 2015). The partial Agr1 system in *C. difficile* 630 has not been studied to our knowledge, and thus, its influence on sporulation is unknown. Finally, there remains the possibility that a host-derived signal triggers sporulation in an RstA-dependent manner.

Determining the genetic interactions through which RstA induces spore formation in *C. difficile* is a focus of future studies, as is determining how *rstA* expression and activity is controlled. Transcription of *rstA* in 630Δerm varies less than 2-fold throughout sporulation, and overexpression of *rstA* in the parent background does not increase sporulation, suggesting that regulation of RstA activity is controlled post-transcriptionally. Although regulation of *sigD* transcription by RstA requires the putative DNA-binding region, this activity also likely involves specific peptide interactions mediated by the TPR repeat domains. As evidenced by the restoration of sporulation with a truncated RstAΔHTH allele expressed in the *rstA* background, RstA functions as a transcriptional regulator and has additional regulatory functions that likely require protein interaction. As a bifunctional protein, the regulatory activity of RstA is expected to be complex, as is the case for the related RNPP protein, NprR (Cabrera *et al.*, 2014).

RstA is highly conserved in all sequenced *C. difficile* genomes, suggesting that its function is conserved as well. RstA orthologs are also encoded in pathogenic and non-pathogenic *Clostridium* and closely related organisms, including *C. botulinum*, *C. perfringens*, *C. sordellii*, *C. acetobutylicum* and *C. butyricum*, which suggests an important role for RstA in clostridial physiology and pathogenesis. Although the regulation and function of the *C. difficile* sporulation-specific sigma factors and additional sporulation regulators differ from other clostridia (Fimlaid *et al.*, 2013), RstA may similarly regulate early sporulation events in both *C. difficile* and other clostridial organisms. These findings underscore the unique molecular mechanisms that *C. difficile*, and likely clostridia, use to promote virulence, sporulation, motility and toxin production, and have revealed an important regulatory protein that regulates these physiological processes during *C. difficile* infection.

EXPERIMENTAL PROCEDURES

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 3. *Clostridium difficile* strains were routinely cultured in BHIS or TY broth or on BHIS agar plates and supplemented with 2–10 μg ml⁻¹ thiamphenicol, 5 μg ml⁻¹ erythromycin or 0.5–1 μg ml⁻¹ nisin (Sigma-Aldrich) as needed (Smith *et al.*, 1981). Counterselection of E. coli after conjugation with *C. difficile* was performed using 50 μg ml⁻¹ kanamycin as previously described (Purcell *et al.*, 2012). Taurocholate (0.1%, Sigma-Aldrich) and fructose (0.2%) were added to *C. difficile* cultures to induce germination of *C. difficile* spores and prevent sporulation, respectively, as indicated (Sorg & Dineen, 2009, Putnam *et al.*, 2013). *C. difficile* strains were cultured in an anaerobic chamber maintained at 37°C (Coy Laboratory Products) with an atmosphere of 10% H₂, 5% CO₂ and 85% N₂ as previously described.
(Edwards et al., 2013). *Escherichia coli* strains were grown at 37°C in LB (Luria & Burrous, 1957) or BHIS medium, unless otherwise stated, and supplemented with 20 μg ml⁻¹ chloramphenicol and/or 100 μg ml⁻¹ ampicillin as needed.

Strain and plasmid construction

Oligonucleotides used in this study are listed in Fig. S7. Details of DNA cloning and vector construction are outlined in Fig. S8. *C. difficile* strain 630 (Genbank no. NC_009089.1) was used as a template for primer design and *C. difficile* strain 630Δerm was used for PCR amplification, unless otherwise specified. Isolation of plasmid DNA, PCR and cloning were performed using standard protocols. Additional genetic manipulations of *C. difficile* were performed as previously described (Bouillaut et al., 2011). Null mutations in *C. difficile* were created by retargeting the group II intron from pCE240 using the intron retargeting primers listed in Fig. S7, as previously described (Karberg et al., 2001, Ho & Ellermeier, 2011, Heap et al., 2007). To complement the CD3668 disruption, a control plasmid (pMC211; Edwards et al., 2014) or plasmids containing the CD3668 wild-type, histidine-tagged or HTH motif deletion gene driven by the cprA promoter (pMC367, pMC519 and pMC520; McBride & Sonenshein, 2011b, Purcell et al., 2012, Suarez et al., 2013) was transferred into *C. difficile* strains from *E. coli* by conjugation as previously described, except that 50 μg ml⁻¹ kanamycin was used to counterselect against *E. coli* post-conjugation (McBride & Sonenshein, 2011a). Cloned DNA fragments were verified by sequencing (Eurofins MWG Operon).

Southern blot analysis

Genomic DNA from 630Δerm, MC379, MC391 and RT1075 was isolated following a modified Bust n’ Grab protocol (Harju et al., 2004). Briefly, 6 ml of *C. difficile* culture was washed with TE Buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA pH 8.0) before the cells were suspended in 400 μl lysis buffer (2% Triton X-100, 1% SDS, 100 mM NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0). Cells were lysed as described except samples were exposed to a dry ice-ethanol bath for 2 min and boiled for 2 min twice. Lysed cells were removed by phenol:chloroform:isoamyl alcohol (25:24:1) extraction and subsequent chloroform extraction. Contaminating RNA was removed by incubation with RNase A (Ambion) for 30 min at 37°C. Genomic DNA was digested, separated and transferred and fixed onto Hybond-N+ nylon membranes (GE Healthcare) as previously described (Edwards et al., 2014). Southern blot analysis was performed using a DIG High Prime labeling and detection kit (Roche) and an intron-specific probe (Saujet et al., 2013).

Sporulation assays and phase contrast microscopy

C. difficile cultures were started in BHIS medium supplemented with 0.1% taurocholate and 0.2% fructose, to induce germination of *C. difficile* spores and prevent sporulation, respectively, until late-log phase. Cultures were then diluted in BHIS to an optical density at 600 nm (OD₆₀₀) of 0.5. These cultures (250 μl) were applied to 70:30 sporulation agar as a lawn (Putnam et al., 2013). Plates were incubated at 37°C and monitored for the production of spores. At the indicated time points, cells were scraped from the plates, suspended in BHIS medium and removed from the chamber. Sample and slide preparation was performed as previously described (Edwards et al., 2014). Phase contrast microscopy was performed...
using a X100 Ph3 oil immersion objective on a Nikon Eclipse Ci-L microscope. At least two fields of view for each strain were acquired with a DS-Fi2 camera, and at least 1000 cells per independent experiment were enumerated to calculate the percentage of spores (the number of spores divided by the total number of spores and vegetative cells) from at least three independent experiments.

Ethanol resistance assays

C. difficile strains were grown on 70:30 sporulation agar as described above, and ethanol resistance assays were performed as previously described (Edwards et al., 2014). Briefly, after 24 h growth (H24), cells were scraped from the plates and suspended in 70:30 sporulation liquid medium to an OD600 = 1.0. Cells were immediately serially diluted in 70:30 sporulation liquid medium and plated onto BHIS + 0.1% taurocholate plates to enumerate all viable vegetative cells and spores. An 0.5 ml aliquot of culture was removed from the chamber, mixed with 0.5 ml 95% ethanol, vortexed and incubated at room temperature for 15 min. Ethanol-treated cells were serially diluted in 1X PBS, brought back into the chamber and plated onto BHIS + 0.1% taurocholate plates to enumerate spores. After 24 h of growth, CFU were enumerated, and the sporulation frequency was calculated as the number of ethanol resistant spores divided by the total number of viable cells. A spo0A mutant (MC310) was used as a negative control.

Fluorescence Microscopy

C. difficile strains were grown on 70:30 sporulation agar as described above. After 24 h growth (H24), cells were scraped from the plates, suspended in 0.5 ml BHIS and pelleted at room temperature. The supernatant was removed, cells were suspended in 50 μl BHIS, and the membrane specific dyes FM4-64 and MitoTracker Green (Life Technologies) were added to the samples at a final concentration of 165 μM and 100 μM, respectively. Cells were incubated for 20 min in the dark at room temperature, and slides were prepared as previously described (Edwards et al., 2014), using a 24x55 mm #1 coverslip. Fluorescence microscopy was performed using a X100 oil immersion objective (numerical aperture, 1.49) on a Nikon structured illumination microscope (N-SIM). At least three fields of view for each strain were used to calculate the percentage of cells entering sporulation from at least three independent biological replicates. The percentage of sporulating cells was defined as the number of cells possessing polar septa, partially/completely engulfed forespores or fully formed spores (stage II and beyond) divided by the total number of cells.

RNA isolation and quantitative reverse transcription PCR analysis (qRT-PCR)

Samples of *C. difficile* were grown on 70:30 sporulation agar as described above, and cells were harvested from plates directly into 1.5:1.5:3 ethanol:acetone:dH2O. RNA was purified as previously described (Dineen et al., 2010, McBride & Sonenshein, 2011b, Edwards et al., 2014), and cDNA synthesis was performed as previously detailed (Edwards et al., 2014). Either 50 ng (samples isolated from *in vitro* cultures) or 200 ng (samples isolated from hamster cecal content) cDNA per reaction mixture was used for quantitative reverse-transcription PCR (qRT-PCR) analysis. qRT-PCR analysis was performed using SensiFAST SYBR & Fluorescein kit (Bioline) and a Roche Lightcycler 96. Control cDNA synthesis reactions containing no reverse transcriptase were included to identify genomic
contamination. Primers for qRT-PCR analysis were designed using PrimerQuest (Integrated DNA Technologies), and primer efficiencies were calculated for each primer set prior to use. qRT-PCR was performed in technical triplicate for each cDNA sample and primer pair and on cDNA isolated from a minimum of three biological replicates. Results were calculated by the comparative cycle threshold method (Schmittgen & Livak, 2008) and normalized to the *rpoC* transcript. Results are presented as the means and standard errors of the means, and a two-tailed Student’s *t* test was performed to determine statistical significance.

Motility Assays

C. difficile strains were grown overnight in BHIS medium supplemented with 0.1% taurocholate and 0.2% fructose as detailed above. Cultures were diluted to an OD₆₀₀ of 0.5 in BHIS broth, and 5 μl of culture was stabbed in the center of one-half concentration BHI plates with 0.3% agar. The diameter of cell growth was measured every 24 h for five days, and the results represent four independent experiments. Results are presented as means and standard errors of the means, and a two-tailed Student’s *t* test was performed for statistical comparison of mutant outcomes to the parent strain.

Alkaline Phosphatase (AP) Assays

AP assays were performed as previously described (Edwards et al., 2015) with the following modifications. Briefly, *C. difficile* strains were grown on 70:30 sporulation agar as described above, and cells were harvested from plates at H₈ and suspended directly into 1 ml dH₂O to an OD₆₀₀ of 0.5. Cells were pelleted and stored overnight at −20°C, and the AP assay was continued as previously described, except that no chloroform was used for cell lysis (Edwards et al., 2015). Technical duplicates for each sample were performed and averaged, and results are presented as means and standard error of the means of four biological replicates. The two-tailed Student’s *t* test was used to compare the results of the mutant to the parent strain.

Animal Studies

Female Syrian golden hamsters (*Mesocricetus auratus*) weighing between 75–100 g were obtained from Charles River Laboratories and housed individually in sterile cages in an animal biosafety level 2 facility in the Emory University Division of Animal Resources. Hamsters were fed a standard rodent diet and offered water ad libitum. Seven days prior to inoculation with *C. difficile*, the hamsters were administered one dose of clindamycin (30 mg kg^{−1} of body weight) by oral gavage to enable susceptibility to *C. difficile* infection. Hamsters were inoculated with approximately 5000 spores of a single strain of *C. difficile* (630Δerm or MC391) seven days after antibiotic administration. Negative control animals were administered clindamycin to induce susceptibility to disease but were not infected with *C. difficile*. Hamsters were weighed at least daily and monitored for signs of disease (weight loss, lethargy, diarrhea and wet tail), and fecal samples were collected daily for enumeration of total *C. difficile* CFU. Hamsters were considered moribund if they lost 15% or more of their highest weight or if they presented with disease symptoms of lethargy, diarrhea and wet tail. To prevent suffering, animals meeting either criterion were euthanized by CO₂ asphyxiation and subsequent thoracotomy. At the time of death, animals were necropsied, and cecal contents were obtained for enumeration of total *C. difficile* CFU as well as stored.

Mol Microbiol. Author manuscript; available in PMC 2017 June 01.
in 1:1 ethanol-acetone solution at −80°C for RNA isolation and subsequent qRT-PCR analysis. Two independent experiments were performed in cohorts of six animals per C. difficile strain. For enumeration of C. difficile CFU, fecal samples were weighed, and fecal and cecal samples were suspended in 1X PBS, heated to 55°C for 20 min to eliminate significant background growth of other organisms, and plated onto the C. difficile selective agar, taurocholate cycloserine cefoxitin fructose agar (TCCFA; George et al., 1979, Wilson et al., 1982). C. difficile colony forming units, which derived from vegetative cells and germinated spores, were enumerated after 48 h. This standard preparation of fecal samples does not significantly reduce vegetative cells numbers, and this method does not distinguish vegetative cells from spores (data not shown). Therefore, our results represent total C. difficile cells recovered from fecal and cecal contents. Differences in C. difficile CFU recovered from fecal and cecal content samples were determined by a two-tailed Student’s t test (Excel; Microsoft), and differences in hamster survival between those infected with C. difficile 630Δerm or MC391 were analyzed using the log rank test (GraphPad Prism 6).

Western blot analysis

Strains were grown in TY medium overnight and then diluted into fresh TY medium. After incubation for 24 h at 37°C, bacterial cells were collected by centrifugation and suspended in SDS-PAGE loading buffer (62.5 mM Tris-HCl, pH 6.8, 25% glycerol, 2% SDS, 0.01% Bromophenol Blue, 5% 2-mercaptoethanol). The samples were separated by electrophoresis on pre-cast TGX 4–15% gradient gels (BioRad), and then transferred to nitrocellulose membranes. TcdA was detected using mouse anti-TcdA antibodies (Novus Biologicals). RNA polymerase β-subunit served as a loading control and was detected using mouse anti-RNAP antibodies (Abcam). Goat anti-mouse IgG conjugated with IR800 dye was used as the secondary antibody. The blots were imaged and densitometry analyses were performed using an Odyssey imaging system (LI-COR). The intensities of the bands corresponding to TcdA were normalized to those of the RNAP band. To calculate fold changes, TcdA protein levels of each mutant were normalized to 630Δerm TcdA protein levels. The data presented are the mean values and standard error of the mean of the fold changes relative to the parent strain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We give special thanks to Dr. Charles Moran and members of the McBride lab for helpful suggestions and discussions during the course of this work and to Emily Weinert for advice on protein expression. This research was supported by the U.S. National Institutes of Health through research grants DK087763, DK101870, AI109526 and AI116933 to S.M.M and AI107029 to R.T.

References

Darkoh C, DuPont HL, Norris SJ, Kaplan HB. Toxin synthesis by Clostridium difficile is regulated through quorum signaling. mBio. 2015; 6:e02569. [PubMed: 25714717]

Edwards AN, McBride SM. Initiation of sporulation in Clostridium difficile: a twist on the classic model. FEMS microbiology letters. 2014

Edwards AN, Suarez JM, McBride SM. Culturing and Maintaining Clostridium difficile in an Anaerobic Environment. Journal of visualized experiments: JoVE. 2013

Hussain HA, Roberts AP, Mullany P. Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Δerm) and demonstration that the conjugal transposon Tn916ΔE enters the genome of this strain at multiple sites. Journal of medical microbiology. 2005; 54:137–141. [PubMed: 15673506]

Mol Microbiol. Author manuscript; available in PMC 2017 June 01.

Rosenbusch KE, Bakker D, Kuijper EJ, Smits WK. C. difficile 630Delataerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PloS one. 2012; 7:e48608. [PubMed: 23119071]

Suarez JM, Edwards AN, McBride SM. The Clostridium difficile cpr Locus is Regulated by a Non-contiguous Two-component System in Response to Type A and B Lantibiotics. Journal of bacteriology. 2013

Figure 1. Identification of putative Rap orthologs in C. difficile

Comparison of C. difficile 630 (Genbank no. AM180355) CD2123 and CD3668 to the RapA and RapB proteins of B. subtilis 168 (AL009126), and of CD3668 to the PlcR (AVF21202.1) and NprR (ABK83928) proteins of B. thuringiensis. Similarity to tetratricopeptide repeat (TPR) domains were determined through BLAST and TPRpred (Karpenahalli et al., 2007) analyses. TPR domain similarity is represented by outlines in pink (B.s. RapA), purple (B.s. RapB) and orange (B.s. RapE), while the TPR motifs outlined in green correlate to those found in B. thuringiensis. The Spo0F-binding domain of B. thuringiensis NprR is composed of TPR domains 1 and 2. Additional conserved protein domains are included.
Figure 2. Sporulation is unaffected in a CD2123 mutant and significantly decreased in a CD3668 mutant

(A) Representative phase contrast micrographs of 630Δerm and the CD2123 (MC379), CD3668 (MC391) and sigD (RT1075) mutants grown on 70:30 sporulation agar at H24. Open arrowheads indicate phase bright spores. Scale bars represent 10 μm. (B) Sporulation frequency of 630Δerm pMC211 (MC282, vector control), 630Δerm pPcprA::CD3668 (MC478), CD3668 pMC211 (MC505, vector control) and CD3668 pPcprA-CD3668 (MC480) grown on 70:30 sporulation agar supplemented with 2 μg ml⁻¹ thiamphenicol and in the absence or presence of 0.5 μg ml⁻¹ and 1 μg ml⁻¹ nisin. Sporulation frequency is calculated from phase contrast micrographs obtained at H24. ND = not determined. (C) Fluorescence microscopy of 630Δerm and the CD3668 mutant using the membrane-specific dyes FM4-64 and Mitotracker Green (MTG). Open arrowheads point to partially or completely engulfed prespores and spores, while hatched arrowheads indicate polar septa. For phase contrast and fluorescence microscopy, samples were removed at the indicated times and prepared for microscopy as described in the Experimental Procedures. The percentage of total cells at Stage II+ are shown. The means and standard error of the means of at least four biological replicates are shown (*, P ≤ 0.05 by a two-tailed Student’s t test).
Figure 3. Sporulation-specific gene expression is decreased in a CD3668 mutant

qRT-PCR analysis of (A) spo0A and the sporulation-specific sigma factors, (B) sigE, (C) sigF and (D) sigG expression in 630Δerm and CD3668 (MC391) grown on 70:30 sporulation agar at H₆, H₈, H₁₀ and H₁₂. The means and standard error of the means of four biological replicates are shown (*, P ≤ 0.05 by a two-tailed Student’s t test).
Figure 4. Toxin gene expression and TcdA protein levels are increased in a CD3668 mutant
(A) qRT-PCR analysis of tcdA, tcdB and tcdR in 630Δerm, sigD (RT1075), CD2123 (MC379) and CD3668 (MC391) grown on 70:30 sporulation agar at H₁₂. The means and standard error of the means of four biological replicates are shown (*, P ≤ 0.05 by a two-tailed Student’s t test). (B) Western blot analysis of TcdA and RNAP (RpoB') in 630Δerm, tcdR (RT854), sigD (RT1075), CD3668 (MC391) and CD2123 (MC379) grown in TY medium at 24 h. The means and standard error of the means of three biological replicates are shown, and bold text indicates P ≤ 0.05 by a two-tailed Student’s t test.
Figure 5. **CD3668 represses sigD gene expression and motility**

(A) qRT-PCR analysis of **sigD** and **fliC** in 630Δerm, **sigD** (RT1075), **CD2123** (MC379) and **CD3668** (MC391) grown on 70:30 sporulation agar at H₁₂. The means and standard error of the means of four biological replicates are shown (*, P ≤ 0.05 by a two-tailed Student’s t test). (B) Swimming of 630Δerm, **sigD** (RT1075) and **CD3668** (MC391) in one-half concentration BHI with 0.3% agar. The swim diameters (mm) were measured every 24 h for a total of 120 h. The means and standard error of the means of four biological replicates are shown (*, P ≤ 0.05 by a two-tailed Student’s t test). Where error bars are not visible, they are obscured by the symbols.
Figure 6. Expression of *rstA* is increased in the *rstA* mutant
(A) qRT-PCR analysis of *CD3668* in 630Δerm and *CD3668* (MC391) grown on 70:30 sporulation agar at H₆, H₈, H₁₀ and H₁₂. (B) Alkaline phosphatase (AP) activity of the *PrstA::phoZ* reporter fusion in 630Δerm and *CD3668* (MC391) grown on 70:30 sporulation agar at H₈. The means and standard error of the means of four biological replicates are shown (*, P ≤0.05 by a two-tailed Student's *t* test).
Figure 7. Disruption of CD3668 results in increased morbidity in the hamster model of C. difficile infection

(A) Kaplan-Meier survival curve representing the cumulative results from two independent experiments of clindamycin-treated Syrian golden hamsters inoculated with 5000 spores of C. difficile 630Δerm (n = 12) or MC391 (CD3668, n = 12). Mean times to morbidity were: 630Δerm, 45.5 ± 3.5 h (n = 11); CD3668 (MC391), 34.1 ± 2.6 h (n = 12); P < 0.01, log rank test. Total number of C. difficile colony forming units (CFU) per (B) gram of feces recovered at 24 h post infection or (C) ml of cecal content recovered at time of morbidity from the same two independent experiments described in the legend for panel A (*, P ≤ 0.05 by a two-tailed Student’s t test). Solid lines represent the median for each strain; dotted line denotes the limit of detection (2 x 10^1 CFU/g or CFU/ml). (D) qRT-PCR analysis of tcdA, tcdB, sigD and sigE transcript levels in cecal contents of hamsters infected with 630Δerm (n = 9 for tcdA and sigE analyses; n = 10 for tcdB and sigD analyses) or MC391 (CD3668; n = 9 for tcdA analysis; n = 8 for tcdB and sigD analyses). The means and standard error of the means are shown (*, P ≤ 0.05 by a two-tailed Student’s t test; ND, not detected)
Figure 8.
Model of *C. difficile* toxin and sporulation regulation. RstA negatively impacts its own expression. RstA positively affects sporulation through an undetermined regulatory pathway. RstA negatively influences both motility and toxin production through the flagellar-specific sigma factor, SigD. In addition, CodY directly represses *tcdR* transcription (Dineen *et al.*, 2007), and CcpA directly represses *tcdR*, *tcdA* and *tcdB* gene expression (Antunes *et al.*, 2011, Antunes *et al.*, 2012). However, CodY- and CcpA-dependent toxin regulation is not influenced by RstA in the conditions tested.
Table 1

Sporulation frequency of 630Δerm and the CD3668 mutant at H24

Viable cells and ethanol resistant spores (CFU ml⁻¹) represent the mean values obtained from four biological replicates grown in the conditions described in the Experimental Procedures.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant Genotype</th>
<th>Viable cells (CFU ml⁻¹)</th>
<th>Ethanol resistant spores (CFU ml⁻¹)</th>
<th>Sporulation frequency</th>
<th>Percent Sporulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>630Δerm</td>
<td>Parent</td>
<td>1.65 x 10⁸</td>
<td>1.13 x 10⁷</td>
<td>6.84 x 10⁻²</td>
<td>6.84%</td>
</tr>
<tr>
<td>MC391</td>
<td>CD3668::erm</td>
<td>3.07 x 10⁸</td>
<td>9.11 x 10⁵</td>
<td>2.97 x 10⁻³</td>
<td>0.30%</td>
</tr>
</tbody>
</table>
Table 2

Sporulation frequency and SigD-dependent gene expression in *C. difficile* expressing modified *rstA* derivatives.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Nis<sup>a</sup></th>
<th>Spo<sup>b</sup> %</th>
<th>fliC</th>
<th>tcdA</th>
<th>tcdB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC282 (630Δerm pMC211<sup>d</sup>)</td>
<td>−</td>
<td>28.2 ± 3.8%</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>24.2 ± 3.0%</td>
<td>0.8 ± 0.0</td>
<td>1.2 ± 0.1</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>MC505 (rstA pMC211<sup>d</sup>)</td>
<td>−</td>
<td>2.1 ± 0.6%</td>
<td>6.6 ± 0.8</td>
<td>5.7 ± 1.2</td>
<td>3.6 ± 0.3</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>1.4 ± 0.3%</td>
<td>6.1 ± 0.6</td>
<td>5.4 ± 0.6</td>
<td>3.5 ± 0.2</td>
</tr>
<tr>
<td>MC480 (rstA pP<sub>cpr</sub>:rstA)</td>
<td>−</td>
<td>2.1 ± 0.4%</td>
<td>6.2 ± 0.7</td>
<td>4.9 ± 0.6</td>
<td>3.1 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>11.9 ± 3.1%</td>
<td>2.0 ± 0.6</td>
<td>1.5 ± 0.1</td>
<td>1.1 ± 0.1</td>
</tr>
<tr>
<td>MC737 (rstA pP<sub>cpr</sub>:rstA-His)</td>
<td>−</td>
<td>1.9 ± 0.4%</td>
<td>3.0 ± 0.6</td>
<td>5.0 ± 0.8</td>
<td>3.3 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>8.8 ± 2.4%</td>
<td>2.0 ± 0.4</td>
<td>2.1 ± 0.3</td>
<td>1.4 ± 0.2</td>
</tr>
<tr>
<td>MC738 (rstA pP<sub>cpr</sub>:rstAΔHTH-His)</td>
<td>−</td>
<td>2.9 ± 0.7%</td>
<td>3.9 ± 0.6</td>
<td>5.2 ± 0.8</td>
<td>3.3 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>5.7 ± 0.3%</td>
<td>3.1 ± 0.7</td>
<td>3.5 ± 0.8</td>
<td>2.4 ± 0.2</td>
</tr>
</tbody>
</table>

^aInduction with 1 μg ml^{−1} nisin.

^bSporulation frequency enumerated from phase contrast microscopy; bold indicates *P* ≤ 0.05 by Student’s *t* test compared to uninduced samples.

^cTranscript levels were determined by qRT-PCR as described in the Experimental Procedures.

^dpMC211 is the vector control.
<table>
<thead>
<tr>
<th>Bacterial strains and plasmids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3</td>
</tr>
<tr>
<td>Plasmid or Strain</td>
</tr>
<tr>
<td>Strains</td>
</tr>
<tr>
<td>E. coli</td>
</tr>
<tr>
<td>DH5αMax</td>
</tr>
<tr>
<td>Efficiency</td>
</tr>
<tr>
<td>MC101</td>
</tr>
<tr>
<td>MC277</td>
</tr>
<tr>
<td>MC369</td>
</tr>
<tr>
<td>MC385</td>
</tr>
<tr>
<td>MC460</td>
</tr>
<tr>
<td>MC734</td>
</tr>
<tr>
<td>MC735</td>
</tr>
<tr>
<td>MC772</td>
</tr>
<tr>
<td>C. difficile</td>
</tr>
<tr>
<td>630</td>
</tr>
<tr>
<td>630Δerm</td>
</tr>
<tr>
<td>MC282</td>
</tr>
<tr>
<td>MC310</td>
</tr>
<tr>
<td>MC379</td>
</tr>
<tr>
<td>MC391</td>
</tr>
<tr>
<td>MC478</td>
</tr>
<tr>
<td>MC480</td>
</tr>
<tr>
<td>MC505</td>
</tr>
<tr>
<td>MC737</td>
</tr>
<tr>
<td>MC738</td>
</tr>
<tr>
<td>MC773</td>
</tr>
<tr>
<td>MC774</td>
</tr>
<tr>
<td>RT854</td>
</tr>
<tr>
<td>RT1075</td>
</tr>
<tr>
<td>Plasmids</td>
</tr>
<tr>
<td>pRK24</td>
</tr>
<tr>
<td>pCR2.1</td>
</tr>
<tr>
<td>pCE240</td>
</tr>
<tr>
<td>pSMB47</td>
</tr>
<tr>
<td>pMC123</td>
</tr>
<tr>
<td>pMC211</td>
</tr>
<tr>
<td>pMC289</td>
</tr>
<tr>
<td>pMC292</td>
</tr>
<tr>
<td>pMC303</td>
</tr>
<tr>
<td>Plasmid or Strain</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>pMC320</td>
</tr>
<tr>
<td>pMC323</td>
</tr>
<tr>
<td>pMC325</td>
</tr>
<tr>
<td>pMC358</td>
</tr>
<tr>
<td>pMC367</td>
</tr>
<tr>
<td>pMC519</td>
</tr>
<tr>
<td>pMC520</td>
</tr>
<tr>
<td>pMC543</td>
</tr>
</tbody>
</table>