About this item:

808 Views | 722 Downloads

Author Notes:

Corresponding Author: Sheng Yang He Email:hes@msu.edu

ACV designed and performed most of the experiments, and wrote the manuscript

KN performed experiments regarding HopM11–300 purification; MDC supervised experiments

BRH designed and performed experiments regarding lamprey immunizations and the yeast surface display library screens, and wrote the manuscript

SYH designed and supervised the experiments, and wrote the manuscript

All authors read and approved the final manuscript.

We would like to thank Dr. Alexandre Brutus for suggesting the VLR project idea, Dr. Kyaw Aung for constructing the hopK1 constructs and for his help in confocal microscopy, Dr. John Scott-Craig for his help with protein purification, Dr. Melinda Frame for her help in confocal microscopy, James Kremer for his help using the flow cytometer, and Dr. Jian Yao for constructing the pEarleyGate104 vector without the Gateway cassette.

The authors declare that they have no competing interests.

Subjects:

Research Funding:

Funding was provided by the Gordon and Betty Moore Foundation (GBMF3037 [S.Y.H.]), the National Institutes of Health (Grant GM109928 [S.Y.H.] and AI072435 [M.D.C.]), and the US Department of Energy (the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science; DE–FG02–91ER20021 for infrastructural support [S.Y.H.]).

Keywords:

  • Protein targeting
  • Leucine-rich repeat
  • Variable lymphocyte receptor
  • Modules
  • HopM1

Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins

Tools:

Journal Title:

Plant Methods

Volume:

Volume 13, Number 1

Publisher:

, Pages 29-29

Type of Work:

Article | Final Publisher PDF

Abstract:

Background The ability to target and manipulate protein-based cellular processes would accelerate plant research; yet, the technology to specifically and selectively target plant-expressed proteins is still in its infancy. Leucine-rich repeats (LRRs) are ubiquitously present protein domains involved in mediating protein–protein interactions. LRRs confer the binding specificity to the highly diverse variable lymphocyte receptor (VLR) antibodies (including VLRA, VLRB and VLRC types) that jawless vertebrates make as the functional equivalents of jawed vertebrate immunoglobulin-based antibodies. Results In this study, VLRBs targeting an effector protein from a plant pathogen, HopM1, were developed by immunizing lampreys and using yeast surface display to select for high-affinity VLRBs. HopM1-specific VLRBs (VLRM1) were expressed in planta in the cytosol, the trans-Golgi network, and the apoplast. Expression of VLRM1 was higher when the protein localized to an oxidizing environment that would favor disulfide bridge formation (when VLRM1 was not localized to the cytoplasm), as disulfide bonds are necessary for proper VLR folding. VLRM1 specifically interacted in planta with HopM1 but not with an unrelated bacterial effector protein while HopM1 failed to interact with a non-specific VLRB. Conclusions In the future, VLRs may be used as flexible modules to bind proteins or carbohydrates of interest in planta, with broad possibilities for their use by binding directly to their targets and inhibiting their action, or by creating chimeric proteins with new specificities in which endogenous LRR domains are replaced by those present in VLRs.

Copyright information:

© The Author(s) 2017

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote