Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia

Kim-Hien T. Dao, Oregon Health and Science University
Magdolna B. Solti, Compass Oncology
Julia E. Maxson, Oregon Health and Science University
Elliott Winton, Emory University
Richard D. Press, Oregon Health and Science University
Brian J. Druker, Oregon Health and Science University
Jeffrey W. Tyner, Oregon Health and Science University

Journal Title: Leukemia Research Reports
Volume: Volume 3, Number 2
Publisher: Elsevier: Creative Commons | 2014-08-01, Pages 67-69
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1016/j.lrr.2014.07.002
Permanent URL: https://pid.emory.edu/ark:/25593/s2d5v

Final published version: http://dx.doi.org/10.1016/j.lrr.2014.07.002

Copyright information:
© 2014 The Authors
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommerical-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Accessed December 18, 2019 2:12 AM EST
Case report

Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia

Kim-Hien T. Dao a, *, Magdolna Solti b, Julia E. Maxson a, Elliott F. Winton c, Richard D. Press d, Brian J. Druker a, e, Jeffrey W. Tyner a, f

a Oregon Health and Sciences University, Knight Cancer Institute, Hematology and Medical Oncology, Portland, OR, USA
b Emory University, Winship Cancer Institute, Atlanta, GA, USA
c Oregon Health and Sciences University, Department of Pathology, Portland, OR, USA
d Howard Hughes Medical Institute, Oregon Health and Sciences University, Portland, OR, USA
e Oregon Health and Sciences University, Knight Cancer Institute, Cell and Developmental Biology, Portland, OR, USA

1. Introduction

Clinically, CNL and aCML are rare leukemias characterized by varying degrees of leukocytosis, anemia, thrombocytopenia, splenomegaly, and constitutional symptoms. Key distinguishing pathologic features between CNL and aCML are summarized in Table 1 [1]. No standard of care is established for CNL and aCML and the reported median overall survival is approximately two years [2]. Recently, Masson, et al. reported CSF3R mutations in ~90% of patients with CNL and in ~40% of patients with aCML [3]. Subsequent studies confirmed this high frequency of CSF3R mutation in CNL while observing a lower frequency in aCML [4]. Mutations in CSF3R generally occur in the extracellular membrane proximal domain or result in premature truncation of the cytoplasmic tail. Of note, membrane proximal mutations are far more common [3]. These membrane proximal mutations cause significant activation of JAK/STAT signaling. Therefore, targeting of the JAK/STAT pathway may inhibit granulocytic proliferation and provide clinical benefit to patients with CNL or aCML. Ruxolitinib (Incyte Corporation) is the first FDA-approved JAK1/JAK2 inhibitor with a reported IC50 of 3.3 nM and 2.8 nM, respectively [5]. In preclinical studies, targeting JAK1/2 with ruxolitinib significantly suppressed CSF3R-T618I-induced malignant colony growth compared to no drug treatment controls [6]. Transplantation of T618I-CSF3R-expressing mouse bone marrow cells was sufficient to produce a highly penetrant, lethal neutrophilic leukemia in a mouse model. Treatment of experimental mice with ruxolitinib provided disease control and improved survival compared to untreated controls [6]. These studies suggest that targeting JAK1/2 may provide clinical benefit to patients with these rare types of leukemia.

2. Case study

A 75 year old man with Parkinson’s disease was diagnosed with aCML in April 2013 based on pathologic review of his bone marrow biopsy and on the finding of the CSF3R-T618I mutation. According to old records, leukocytosis (not otherwise specified) was present as far back as 2005. His CBC before he began taking hydroxyurea showed WBC 71.3 x 10\(^{9}\)/microliter, ANC 42.1 x 10\(^{9}\)/microliter, Hgb 9.8 g/dL, MCV 98.3 fl, and platelet 97 x 10\(^{11}\)/microliter. His peripheral blood
showed 12% immature granulocytes and hypogranular neutrophils and rare pseudo-Pelger–Huet neutrophils. His bone marrow showed granulocytic hyperplasia (myeloid:erythroid ratio > 15:1) and hypo-lobated megakaryocytes in 30% of megakaryocytes. Peripheral and marrow blasts were less than 1%. In addition to the CSF3R-T618I mutation (50% allele frequency), his disease also harbored CBL-JH3T (70% allele frequency) and KDM6A-S114C (100% allele frequency on one X chromosome) mutations evaluated by massively parallel sequencing. SETBP1 was wildtype. His disease was characterized by progressive leukocytosis, anemia, thrombocytopenia, splenomegaly, and constitutional symptoms. Performance status was ECOG of 3. Physical exam revealed a chronically ill-appearing, cachectic male with severe splenomegaly. He began taking hydroxyurea in April 2013 at 1000 mg three times per week and 500 mg four times per week (total 5000 mg per week).

Despite taking hydroxyurea for 6 months, his leukocytosis, splenomegaly, and constitutional symptoms were poorly controlled and his performance status and overall function had declined even further. There was little clinical benefit to gain by increasing the hydroxyurea dose further especially in the setting of severe thrombocytopenia. Interferon therapy was considered contraindicated due to the potential for exacerbating his mood disturbances associated with Parkinson’s disease. The patient was eventually prescribed ruxolitinib through his commercial insurance. Shortly before starting ruxolitinib but while still on hydroxyurea, his CBC showed WBC 56.0 × 10^9/microliter, ANC 48.7 × 10^9/microliter, Hgb 8.6 g/dL, MCV 121 fl, and platelet 28 × 10^9/microliter. His spleen volume was 4342 cm³ [3] and his total symptom score was 164 (total max of 270, MPN-symptom assessment form [MPN-SAF]) [7].

On December 2013 the patient was started on ruxolitinib 10 mg twice a day (day 0). His dose was increased to 15 mg twice a day on day +57 and to 20 mg twice a day on day +84. He was tapered off hydroxyurea and was completely off on day +14. As shown in Fig. 1A, the WBC and MCV were reduced gradually over 3 months while his Hgb and platelets steadily increased, indicating improved marrow function by targeting JAK1/JAK2 signaling and going off hydroxyurea. His peripheral blood showed reduced immature granulocytes while the neutrophils displayed increased cytoplasmic granularity/toxic granulation. His bone marrow had reduced granulocytic hyperplasia (myeloid:erythroid ratio 10:1) and fewer hypolobated megakaryocytes compared with the pre-ruxolitinib bone marrow evaluation. Peripheral and marrow blasts were less than 1%. In addition, his spleen volume was reduced by approximately 75% after approximately 3 months of ruxolitinib therapy as shown in Fig. 1B. Furthermore, his quality of life and total symptom score improved dramatically as shown in Fig. 1C. As a result of his excellent tolerance and response to ruxolitinib, his dose was increased further to the target dose of 20 mg twice a day. After this adjustment, his platelets increased further as shown in Fig. 1A. He has gained weight and his performance status improved to ECOG of 1. As of this report, he continues to do well and remains on ruxolitinib 20 mg twice a day. Interestingly, his dramatic clinical response was not associated with a reduction in CSF3R-T618I allele frequency based on peripheral blood studies after approximately 4 months of ruxolitinib treatment. Single colony assays confirmed that the allele frequency was not significantly reduced.

3. Discussion

Here we report a case of CSF3R-T618I-positive aCML with a robust clinical response to JAK1/2 inhibition with ruxolitinib. The clinical benefit in this case was not merely leukoreduction but also improved marrow function as evident by near normalization of Hgb, MCV, and platelet counts. In addition, the patient had a significant reduction in spleen volume and constitutional symptoms, which were refractory to hydroxyurea. In the report by Maxson et al. [3] a clinical case of CSF3R-T618I-positive CNL was described where the patient also had platelet and Hgb improvement with ruxolitinib. These clinical cases suggest interesting differences between myelofibrosis (primary, post-polycythemia vera, and post-essential thrombocythemia) and CNL/aCML. As noted in the Comfort I study, a randomized placebo-controlled phase III clinical trial with ruxolitinib in patients with myelofibrosis, (1) thrombocytopenia is a dose-limiting toxicity, (2) WBC is not substantially reduced in myelofibrosis patients, and (3) marrow function is not measureably improved with ruxolitinib despite clinical responses (spleen and symptom reduction). One similarity is that the allele burden of the oncogenic driver is not significantly reduced with ruxolitinib [8].

The case described here suggests that targeting JAK1/2 in CNL/aCML may provide clinical benefit beyond spleen and symptom reduction, and may suppress the malignant clone and enhance normal hematopoiesis more effectively than that seen in myelofibrosis. Interestingly, we did not detect a reduction in CSF3R-T618I allele frequency or overall bone marrow cellularity after 3 months of treatment, suggesting that JAK1/2 inhibition may preferentially affect cells not in the sanctuary of the bone marrow microenvironment. It will be important to expand upon prior work to confidently show that specific inhibition of JAK kinases rather than other kinase targets underlie these clinical responses. The safety profile and clinical benefit of ruxolitinib treatment or other JAK1/2 inhibitors in patients with CNL and aCML in a prospective clinical trial is needed to establish the (1) frequency of clinical responses, (2) durability and depth of clinical responses, (3) genetic modifiers of disease characteristics and clinical responses such as co-existing SETBP1 or TET2 mutations, and (4) impact on long-term quality of life and overall survival. As of this report, a prospective, multi-center phase II clinical trial investigating the safety and efficacy of ruxolitinib in this patient population is registered at ClinicalTrials.gov (NCT02092324) and is open for participant recruitment.

In summary, this case highlights the potential clinical benefit of JAK1/2 inhibition for patients with CNL or aCML with CSF3R mutations. It is not known yet whether patients with wildtype CSF3R will experience the same clinical benefit. Many patients with CNL and aCML present with severe anemia and thrombocytopenia thus limiting the usefulness of hydroxyurea. The recent discovery of frequent mutations in CSF3R in patients with CNL and aCML and the preclinical studies supporting JAK1/2 as a molecular target have uncovered a potential line of therapy for these rare types of leukemia associated with very poor prognosis.

Acknowledgments

KTD receives support from the OHSU Knight Cancer Institute and the National Institutes of Health, National Heart, Lung and Blood...
References

