About this item:

566 Views | 568 Downloads

Author Notes:

* E-mail:krolson@buffalo.edu (KRO); rwoods@ccrc.uga.edu(RJW)

Conceived and designed the experiments: MBT OCG KRO RJW.

Performed the experiments: MBT OCG JHM DFS SJ JG SLD AMG.

Analyzed the data: MBT OCG JHM AMG RJW.

Contributed reagents/materials/analysis tools: MBT OCG KRO JHM DS RJW.

Wrote the paper: MBT OCG KRO RJW.

The authors would like to thank Kausar N. Samli and Mari DeMarco for preparing samples for NMR analysis.

Competing Interests: The authors have declared that no competing interests exist.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Subjects:

Research Funding:

RJW would like to thank the National Institutes for Health (GM085448 to DFS, GM062116, GM094919 (EUREKA), www.nih.gov) as well as the Science Foundation of Ireland (08/IN.1/B2070, www.sfi.ie) and the European Research Development Fund for support.

Diffraction data were collected at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation under award DMR 0225180 (www.nsf.gov) and the National Institutes of Health (RR001646).

KRO would like to acknowledge the Department of Defense (CDMRP #W81XWH-04-1-0342, www.defense.gov) for support.

Keywords:

  • Science & Technology
  • Multidisciplinary Sciences
  • Science & Technology - Other Topics
  • MULTIDISCIPLINARY SCIENCES
  • GLYCAN-BINDING-PROTEINS
  • THOMSEN-FRIEDENREICH
  • CARBOHYDRATE ANTIGEN
  • MONOCLONAL-ANTIBODY
  • FORCE-FIELD
  • CANCER
  • CONFORMATION
  • GLYCOBIOLOGY
  • MICROARRAY
  • LIGAND

Computational Screening of the Human TF-Glycome Provides a Structural Definition for the Specificity of Anti-Tumor Antibody JAA-F11

Journal Title:

PLoS ONE

Volume:

Volume 8, Number 1

Publisher:

, Pages e54874-e54874

Type of Work:

Article | Final Publisher PDF

Abstract:

Recombinant antibodies are of profound clinical significance; yet, anti-carbohydrate antibodies are prone to undesirable cross-reactivity with structurally related-glycans. Here we introduce a new technology called Computational Carbohydrate Grafting (CCG), which enables a virtual library of glycans to be assessed for protein binding specificity, and employ it to define the scope and structural origin of the binding specificity of antibody JAA-F11 for glycans containing the Thomsen-Friedenreich (TF) human tumor antigen. A virtual library of the entire human glycome (GLibrary-3D) was constructed, from which 1,182 TF-containing human glycans were identified and assessed for their ability to fit into the antibody combining site. The glycans were categorized into putative binders, or non-binders, on the basis of steric clashes with the antibody surface. The analysis employed a structure of the immune complex, generated by docking the TF-disaccharide (Galβ1-3GalNAcα) into a crystal structure of the JAA-F11 antigen binding fragment, which was shown to be consistent with saturation transfer difference (STD) NMR data. The specificities predicted by CCG were fully consistent with data from experimental glycan array screening, and confirmed that the antibody is selective for the TF-antigen and certain extended core-2 type mucins. Additionally, the CCG analysis identified a limited number of related putative binding motifs, and provided a structural basis for interpreting the specificity. CCG can be utilized to facilitate clinical applications through the determination of the three-dimensional interaction of glycans with proteins, thus augmenting drug and vaccine development techniques that seek to optimize the specificity and affinity of neutralizing proteins, which target glycans associated with diseases including cancer and HIV.

Copyright information:

© 2013 Tessier et al.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote