Development of PCR Assays for Detection of \textit{Trichomonas vaginalis} in Urine Specimens

Nancy Fajman, Emory University
Claudiu Bandea, Center for Disease Control and Prevention
Kahaliah Joseph, Center for Disease Control and Prevention
Evan W. Secor, Center for Disease Control and Prevention
Laurie A. Jones, Center for Disease Control and Prevention
Joseph U. Igietseme, Center for Disease Control and Prevention
Robert L. Sautter, Carolinas Pathology Group
Margaret R. Hammerschlag, SUNY Downstate Medical Center
Rebecca G. Girardet, University of Texas - Houston Medical School
Carolyn M. Black, Center for Disease Control and Prevention

\textbf{Journal Title:} Journal of Clinical Microbiology
\textbf{Volume:} Volume 51, Number 4
\textbf{Publisher:} American Society for Microbiology | 2013-04-01, Pages 1298-1300
\textbf{Type of Work:} Article | Final Publisher PDF
\textbf{Publisher DOI:} 10.1128/JCM.03101-12
\textbf{Permanent URL:} https://pid.emory.edu/ark:/25593/rxbjv

Final published version: http://dx.doi.org/10.1128/JCM.03101-12

\textbf{Copyright information:}
© 2013, American Society for Microbiology. All Rights Reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/).

Accessed August 10, 2019 3:37 AM EDT
Development of PCR Assays for Detection of *Trichomonas vaginalis* in Urine Specimens

Claudiu I. Bandea, a Kahaliah Joseph, a Evan W. Secor, a Laurie A. Jones, a Joseph U. Igietseme, a Robert L. Sautter, b Margaret R. Hammerschlag, a Nancy N. Fajman, a Rebecca G. Girardet, a Carolyn M. Black a

Centers for Disease Control and Prevention, Atlanta, Georgia, USA; aCarolina Pathology Group, Charlotte, North Carolina, USA; aSUNY Downstate Medical Center, Brooklyn, New York, USA; aEmory University School of Medicine, Atlanta, Georgia, USA; aThe University of Texas—Houston Medical School, Houston, Texas, USA

Trichomonas vaginalis infections are usually asymptomatic or can result in nonspecific clinical symptoms, which makes laboratory-based detection of this protozoan parasite essential for diagnosis and treatment. We report the development of a battery of highly sensitive and specific PCR assays for detection of *T. vaginalis* in urine, a noninvasive specimen, and development of a protocol for differentiating among *Trichomonas* species that commonly infect humans.

Sexually transmitted infections (STIs) caused by the protozoan parasite *Trichomonas vaginalis* are more prevalent than those caused by *Neisseria gonorrhoeae* and *Chlamydia trachomatis*, both globally and in the United States (1–4). In women, *T. vaginalis* infections cause vaginitis and cervicitis and are associated with pelvic inflammatory disease and adverse pregnancy outcomes (5). In men, *T. vaginalis* infections cause nongonococcal urethritis and can lead to prostatitis, epididymitis, and male factor infertility (5). Additionally, *T. vaginalis* infections have been implicated as a significant risk factor for sexual transmission of HIV (6, 7) and possibly other bacterial and viral STIs (8), as well as for cervical cancer (9). As with other STIs, *T. vaginalis* infections are usually asymptomatic or can result in nonspecific clinical symptoms (5), which makes laboratory-based detection of the protozoan parasite essential for diagnosis and treatment of trichomoniasis.

The conventional diagnostic test for *T. vaginalis* infection in women is direct microscopic examination of vaginal fluid in wet-mount preparations. Usually performed in physician’s offices or clinics, this test is highly specific, but its sensitivity is only about 60% of that of culture, which currently is the gold standard laboratory test for *T. vaginalis* infection in women and men (10–12). However, several nucleic acid amplification tests (NAATs), including PCR tests, have been developed in research laboratories and shown to be more sensitive than culture and antigen-based tests (10–12). Consistent with developments in the diagnosis of other STIs, culture and the other clinical laboratory and point-of-care rapid tests for the detection of *T. vaginalis* are being replaced by NAATs (13, 14).

Recently, the Centers for Disease Control and Prevention (CDC) conducted a multicenter study of diagnostic tests for STIs in children under evaluation of sexual abuse (15, 16). One of the objectives of this study was to evaluate the use of NAATs for the detection of *N. gonorrhoeae* and *C. trachomatis* in noninvasive specimens for clinical and forensic purposes. Because the collection of invasive genital samples in a pediatric population can be difficult and traumatic, the use of noninvasive specimens, such as urine, is highly recommended. Owing to lack of availability of FDA-approved NAATs at the time, the use of NAATs for the detection of *T. vaginalis* was not part of the protocol used in this multicenter study. However, we initiated a separate study to develop and evaluate PCR assays for potential use in similar future studies and for studies validating the performance of commercial *T. vaginalis* NAATs (13, 14, 17, 18). In this paper, we report the performance of a series of published and novel single and nested PCR assays for the detection of *T. vaginalis* in laboratory-spiked urine specimens and in clinical urine specimens.

We chose three different *T. vaginalis* repeat genomic sequences as targets for the PCR assays (Table 1). Two of these genomic sequences, the Kengne et al. (19) and Paces et al. (20) repeats, were previously shown to be highly sensitive and specific PCR targets. The third genomic sequence, the Muresu et al. repeat (21, 22), was previously used as a target for development of dot blot and *in situ* hybridization tests for detection of *T. vaginalis* in vaginal secretions and discharges. The primers used in this study included 2 previously published sets of primers (10) and 6 new primer sets (Table 1). Unlike in the previous studies, the primer sets were designed to be used in both single-round and nested PCR assays. All of the PCR assays were tested using extracted DNA from urine collected from *T. vaginalis*-negative, healthy persons that was spiked with known numbers of *T. vaginalis* organisms grown in culture. To test for the specificity of the primer sets, we included samples containing *Trichomonas tenex* and *Pentatrichomonas hominis*, which are commensal species in humans inhabiting the mouth and the gastrointestinal tract, respectively.

Briefly, the DNA lysates were prepared from spiked urine specimens using a modified High Pure PCR template preparation kit (Roche Molecular Biochemicals, Branchburg, NJ). PCR and sequencing were performed by following a general procedure that we described previously for the detection and genotyping of *C. trachomatis* in urine specimens (23). The results, which are expressed as the lowest number of *T. vaginalis* organisms per PCR that gave a positive result as detected by agarose gel electrophoresis, are presented in Table 1. All of the PCR assays performed on the extracted DNA from *T. tenex* and *P. hominis* were negative. All 8 primer pairs in single or nested PCR combinations gen-
In summary, we have developed and validated a battery of highly sensitive and specific PCR assays that detect *T. vaginalis* in urine, a noninvasive specimen. We also developed a protocol for PCR detection of *Trichomonas vaginalis* in urine.

TABLE 1 *T. vaginalis* PCR primers and their sensitivities

<table>
<thead>
<tr>
<th>Gene target</th>
<th>Primer</th>
<th>Primer sequence</th>
<th>Size (bp)</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>KENGOE (L23861)</td>
<td>TVK3F</td>
<td>5'-ATT GTC GAA CAT TGG TCT TAC CCT C-3'</td>
<td>262</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TVK7R</td>
<td>5'-TCT GTG CGG TCT TCA AGT ATG C-3'</td>
<td>213</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TVC1F</td>
<td>5'-TCA GTT GCC AAA GCC AGT CCT-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVC2R</td>
<td>5'-GTA CTT ACG CCT GGA GAC ATG A-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MURESU (X83109)</td>
<td>TVC3F</td>
<td>5'-GAT GCC ATG AAC GGA AAT GTT-3'</td>
<td>299</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TVC4R</td>
<td>5'-TCT GGA GAA TAT TGG ATC GC-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVC11F</td>
<td>5'-GGA ATG CTT TCA AAA GCA CGA C-3'</td>
<td>237</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>TVC12R</td>
<td>5'-CAA CCT TCT TCA AGC AAC TTG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACES (M86482)</td>
<td>TVC5F</td>
<td>5'-AAT TCC CCG ATA ATT GAA AGG GA-3'</td>
<td>190</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>TVC6R</td>
<td>5'-GAT GTG GGT GAT GTG TAT TCT CCG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVC7F</td>
<td>5'-GAT AAA GAA ATT GTG TTT TTA AGG ATG GA-3'</td>
<td>148</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TVC8R</td>
<td>5'-TTG TAT TCT TAC ACT GGT TCC AAT TT-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACES (M86482)</td>
<td>TVOP1F</td>
<td>5'-GTA AAA TCA TGA TTG GAT GAG CAG TCT TTA CTT-3'</td>
<td>580</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>TVOP2R</td>
<td>5'-GTT TAA TTA ATG ACT GGA AAA TAA AAC ATC TT-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TVC9F</td>
<td>5'-AGA ATT CAA AAC ATC CCC AAC ATC TT-3'</td>
<td>358</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TVCI0R</td>
<td>5'-GCC ATT CTT TTA GCC CCT TCA GAT T-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a For each gene target, the top 2 primers are for 1st PCR and the bottom 2 primers for 2nd PCR.

b The gene targets are labeled with the name of the first author in the published sequence (GenBank accession number).

c *T. vaginalis* organisms per PCR.

The gene targets are labeled with the name of the first author in the published sequence (GenBank accession number).

TABLE 2 Primers used for nested amplification (TF1/TR5 [1st PCR] and TF2/TR2 [2nd PCR]) and sequencing (TF3, TR1, TR3, and TR4) of the *Trichomonas vaginalis* gene and the flanking internal transcribed spacer region ITS1

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF1</td>
<td>5'-TCC TAC CCA TTG GAT GAC TCT G-3'</td>
</tr>
<tr>
<td>TF2</td>
<td>5'-GGA AGG AGG AGT CGT AAC AAG-3'</td>
</tr>
<tr>
<td>TF3</td>
<td>5'-GAA GAG TCT CAG TCA AAG AAG-3'</td>
</tr>
<tr>
<td>TR1</td>
<td>5'-GAA GCC AGC AGC TCC ATT G-3'</td>
</tr>
<tr>
<td>TR2</td>
<td>5'-CAT CGT TCT TCA AGC AAC-3'</td>
</tr>
<tr>
<td>TR3</td>
<td>5'-CGG AAA TTT GGA TGC-3'</td>
</tr>
<tr>
<td>TR4</td>
<td>5'-GAG ATG CTT CAG TGC AAC CAG GGG T-3'</td>
</tr>
<tr>
<td>TR5</td>
<td>5'-CCT TTC CGC TGC TTA TGC-3'</td>
</tr>
</tbody>
</table>
differentiating among Trichomonas species that commonly infect humans. These assays should be useful for other studies of STIs, particularly those designed for the validation of commercial T. vaginalis NAATs.

REFERENCES