HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor

Felipe Paredes, Universidad de Chile
Valentina Parra, Universidad de Chile
Natalia Torrealba, Universidad de Chile
Mario Navarro-Marquez, Universidad de Chile
Damian Gatica, Universidad de Chile
Roberto Bravo-Sagua, Universidad de Chile
Rodrigo Troncoso, Universidad de Chile
Christian Pennanen, Universidad de Chile
Clara Quiroga, Pontifical Catholic University of Chile
Mario Chiong, Universidad de Chile

Only first 10 authors above; see publication for full author list.

Journal Title: Free Radical Biology and Medicine
Volume: Volume 90
Publisher: Elsevier | 2016-01-01, Pages 206-218
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.freeradbiomed.2015.11.024
Permanent URL: https://pid.emory.edu/ark:/25593/rw502

Final published version: http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.024

Copyright information:
© 2015 Elsevier Inc. All rights reserved.

Accessed December 1, 2018 8:03 AM EST
HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor

Felipe Paredes1, Valentina Parra1, Natalia Torrealba1, Mario Navarro-Marquez1, Damian Gatica1, Roberto Bravo-Sagua1, Rodrigo Troncoso1,2, Christian Pennanen1, Clara Quiroga1, Mario Chiong1, Christa Caesar4, W Robert Taylor4,5, Jordi Molg6, Alejandra San Martin5, Enrique Jaimovich7, and Sergio Lavandero1,7,8,#

1Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile

2Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile

3ACCDiS, Cardiovascular Diseases Division, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile

4Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, Georgia, USA

5Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA

6Institut des Neurosciences Paris-Saclay, UMR 9197, 91190 Gif sur Yvette, France

7Centro de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile

8Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA

Abstract

Homocysteine-inducible, endoplasmic reticulum (ER) stress-inducible, ubiquitin-like domain member 1 (HERPUD1), an ER resident protein, is upregulated in response to ER stress and Ca2+ homeostasis deregulation. HERPUD1 exerts cytoprotective effects in various models, but its role during oxidative insult remains unknown. The aim of this study was to investigate whether HERPUD1 contributes to cytoprotection in response to redox stress and participates in mediating the stress-dependent signaling pathways. Our data showed that HERPUD1 protein levels increased in HeLa cells treated for 30 min with H2O2 or angiotensin II and in aortic tissue isolated from mice treated with angiotensin II for 3 weeks. Cell death was higher in HERPUD1 knockdown (sh-HERPUD1) in HeLa cells treated with H2O2 in comparison with control (sh-Luc) HeLa cells. This effect was abolished by the intracellular Ca2+ chelating agent BAPTA-AM or the inositol 1,4,5-
trisphosphate receptor (ITPR) antagonist xestospong B, suggesting that the response to H$_2$O$_2$ was dependent on intracellular Ca$^{2+}$ stores and the ITPR. Ca$^{2+}$ kinetics showed that sh-HERPUD1 HeLa cells exhibited greater and more sustained cytosolic and mitochondrial Ca$^{2+}$ increases than sh-Luc HeLa cells. This higher sensitivity of sh-HERPUD1 HeLa cells to H$_2$O$_2$ was prevented with the mitochondrial permeability transition pore inhibitor cyclosporine A. We concluded that the HERPUD1-mediated cytoprotective effect against oxidative stress depends on the ITPR and Ca$^{2+}$ transfer from the ER to mitochondria.

Keywords

HERPUD1; oxidative stress; IP3 receptor; cell death

Introduction

Reactive oxygen species (ROS) participate in host defense, gene expression, cell growth and inflammation [1]. At mild concentrations, ROS exert regulatory functions through oxidation of redox sensors. Excessive or deregulated ROS production (termed oxidative stress) may cause direct damage to proteins, lipids and DNA, contributing to the onset of several diseases [1–3]. In the cardiovascular system, this double-edged behavior mediates the pathophysiological actions of angiotensin II (Ang II), the primary effector of the renin-angiotensin system. In vascular smooth muscle cells (VSMCs), this peptide induces contraction, migration and proliferation through ROS signaling [4–6]. Indeed, Ang II-induced cardiac hypertrophy can be inhibited by antioxidants [7–9] or through overexpression of catalase (Cat), which catalyzes hydrogen peroxide (H$_2$O$_2$) decomposition [10–12].

One of the most abundant and stable ROS is H$_2$O$_2$ [13], which can trigger cell death programs such as apoptosis and necrosis [3]. Elevated ROS levels cause influx of Ca$^{2+}$ into the cytoplasm, increasing oxidative stress [14]. Additionally, alterations in the redox environment of the endoplasmic reticulum (ER), the main storage site for intracellular Ca$^{2+}$, results in the release of Ca$^{2+}$ from the ER [15]. Both oxidative stress and high cytoplasmic Ca$^{2+}$ levels can result in cytotoxicity by the activation of the apoptotic cell death program [16, 17]. Ultimately, it has shown that cytoplasmic Ca$^{2+}$ overload can result in cytotoxicity, concomitant with activation of the intrinsic, or mitochondria-dependent, apoptotic pathway [18]. Consequently, mitochondrial Ca$^{2+}$ overload triggers the opening of the mitochondrial permeability transition pore (MPTP), thereby committing to cellular demise [19, 20].

ER plays a pivotal role in both cell susceptibility and survival. Perturbations in ER homeostasis (termed ER stress) induce several compensatory responses that may revert the cell death decision. Homocysteine-induced ER stress-inducible, ubiquitin-like domain member 1 (HERPUD1), also known as Herp, is a 54 kDa transmembrane protein whose levels increase acutely in response to ER stress [21]. Agents that alter ER proteostasis (e.g. tunicamycin, 2-mercaptoethanol and homocysteine), as well as others that deplete ER Ca$^{2+}$ stores (e.g. A23187 and thapsigargin), also induce ER stress [21]. While HERPUD1 has no enzymatic activity or a defined biological function, this ER protein has shown to regulate
ER-associated degradation (ERAD) by interacting with proteins involved in retrotranslocation, ubiquitination and degradation of misfolded proteins [22, 23]. HERPUD1 has cytoprotective roles against ER stress, as it decreases the activity of various caspases, prevents mitochondrial potential collapse and diminishes c-Jun N-terminal kinase (JNK) activation [24–26]. Moreover, our group has recently shown that HERPUD1 acts as a negative regulator of autophagy by inducing the proteasomal degradation of Beclin-1 [27]. These results show that HERPUD1 not only regulates ERAD and cytoprotection, but also acts as an important regulator of protein degradation and stress responses.

HERPUD1 forms complexes with the inositol 1,4,5-trisphosphate receptor (ITPR) and the ryanodine receptor (RYR), the most prominent Ca\(^{2+}\) channels in the ER membrane. This interaction leads to ITPR and RYR proteasome-dependent degradation, thus allowing HERPUD1 to directly regulate ER Ca\(^{2+}\) release [28]. HERPUD1 over-expression in PC12 cells consistently decreases Ca\(^{2+}\) output after bradykinin or thapsigargin treatment, while HERPUD1 silencing has the opposite effect [24]. Importantly, HERPUD1 over-expression attenuates the mitochondrial Ca\(^{2+}\) increase induced by methylphenylpyridinium (MPP\(^{+}\)), suggesting that HERPUD1 may inhibit Ca\(^{2+}\) transfer between the ER and mitochondria [29]. Despite this evidence, it remains unknown whether HERPUD1 exerts its protective effect against oxidative stress by regulating the ITPR and Ca\(^{2+}\) signaling.

Here, we investigate the role of HERPUD1 in H\(_{2}O\(_{2}\) -induced cell death. We show that HERPUD1 protein levels increased in HeLa cells treated for 30 min with H\(_{2}O\(_{2}\) or Ang II. Moreover, \(HERPUD1\) mRNA increased in total aortic tissue isolated from mice treated with Ang II for 3 weeks. H\(_{2}O\(_{2}\) stimulated higher increases in cytosolic and mitochondrial Ca\(^{2+}\) in \(sh-HERPUD1\) HeLa cells compared with \(sh-Luc\) HeLa cells. Cell death was also higher in \(sh-HERPUD1\) HeLa cells treated with H\(_{2}O\(_{2}\). This effect on cell viability is prevented with BAPTA-AM or ITPR antagonist xestospongin B (XeB), suggesting that the HERPUD1-dependent cytoprotective effect against oxidative stress is regulated by the ITPR and the influx of Ca\(^{2+}\) from the ER to mitochondria.

Materials and methods

Antibodies and reagents

Dulbecco’s modified Eagle medium (DMEM), Earle’s Balanced Salt Solution medium, propidium iodide, Triton X-100, EGTA, cyclosporine A, angiotensin II, carboxy-cyanide-3-chlorophenylhydrazone (CCCP), actinomycin D (ActD), cycloheximide (CHX), histamine, cytochalasin B, Triton X-100, catalase (C-1345), anti-ACTB (\(\beta\)-actin) and anti-TUBB (\(\beta\)-tubulin) antibodies were from Sigma-Aldrich Co. (St. Louis, MO). Secondary anti-mouse and rabbit antibodies and 4EGI were from Calbiochem (Burlington, Canada). Fetal Bovine Serum (FBS), Opti-MEM, trypsin, L-glutamine, non-essential amino acids, HEPES, EDTA, puromycin and penicillin/streptomycin were from GIBCO (Paisley, Scotland, UK). Mitotracker green-FM, tetramethylrhodamine methyl ester perchlorate, Fluo-4AM, Fura-2AM, Rhod-FF, \(2',7'-\)dichlorodihydrofluorescein diacetate (H\(_{2}\)DCFDA), BAPTA-AM, lipofectamine 2000, oligofectamine and Alexa Fluor 488 and 568 antibodies were from Invitrogen (Molecular Probes-Invitrogen, Carlsbad, CA). Anti-HERPUD1 (Harp) was from BIOMOL Research Laboratories (Plymouth Meeting, PA) and Anti-ITPR was from ABR.
(Thermo Fischer Scientific (Rockford, IL). Thapsigargin was obtained from Enzo Life Sciences, Inc (Farmingdale, NY). All materials for SDS-PAGE, nitrocellulose and PVDF membranes were from Bio-Rad Laboratories (Hercules, CA). Fluorescence mounting medium was from DAKO Corporation (CA). Organic and inorganic compounds, acids, H$_2$O$_2$ and solvents were from Merck (Darmstadt, Germany). SuperSignal West Pico chemiluminescent substrate was from Pierce (Rockford, IL). Xestospongion B was isolated and produced in the Laboratory of Prof. Jordi Molgó (Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France) and used as previously described [30].

Cell culture, siRNA transfection and production of stable knockdown cells

HeLa cells and MEFs were cultured in DMEM supplemented with 10% FBS and 100 units/mL penicillin G sodium and 100 μg/mL streptomycin sulfate at 37°C under 5% CO$_2$. MEF cells were supplemented with 5 mM L-glutamine and 10 mM HEPES buffer. To generate a stable cell line that express the sh-**Luc** or sh-**HERPUD1**, HeLa cells were transfected in Opti-MEM medium with Lipofectamine 2000 according to manufacturer instructions, using the following plasmids: VSV-G, pMDL, REV and PLKO1-sh-**HERPUD1** or PLKO1-sh-**Luc** (kindly donated by Dr. H. Komano, National Institute for Longevity Sciences, Obu, Aichi, Japan). After 48 h, the conditioned medium with lentiviral particles was collected and filtered with 0.45-μm pore diameter filters. After 48 h of viral transduction, medium-containing puromycin (2 μg/mL) was used for selecting sh-**HERPUD1** and sh-**Luc** cells. Using this strategy we knocked down HERPUD1 levels from 1.0 ± 0.04 to 0.4 ± 0.02 in HeLa cells (Fig. S1A). This data was also corroborated overexpressing a mouse (PGI3-m**HERPUD1**) and a human (PGI3-h**HERPUD1**) form of the protein in the knocked down cells. Only the mouse form of the protein was able to rescue the HERPUD1 protein levels in the sh-**HERPUD1** cell line (Fig. S1A).

Additionally, HeLa cells were transfected with 100 nM of a control siRNA, two siRNA against HERPUD1 (si-**HERPUD1 1** and 2 [Sigma-Aldrich Co, St. Louis, MO]) or a plasmid to overexpress the human HERPUD1 protein (PGI3-h**HERPUD1**, OriGene), together with Lipofectamine 2000 (Invitrogen, 11668-019) in Opti-MEM medium (GIBCO, 31985-070) overnight according to manufacturer instructions. In the case of the siRNA’s, two different were used, obtaining the best results with the one that arbitrarily we called siRNA number 2 (si-**HERPUD1 2**) (Fig. S1C). The use of this siRNA corroborated all the main results obtained with the sh-**HERPUD1** cell line (Fig. S2D–G).

Animal model

Wild-type and Cat transgenic-overexpressing mice were treated with Ang II (Sigma-Aldrich A6402) reconstituted in saline, infused via an Alzet mini-osmotic pump at a dose of 0.75 mg/kg/day for 7 days [31]. Ang II treated wild type animals increased blood pressure from 103 ± 11 to 164 ± 28 mmHg, while in Ang II treated Cat transgenic-overexpressing mice increased blood pressure from 103 ± 7 to 184 ± 17 mmHg. For the Cat transgenic-overexpressing mice, the catalase transgene was constructed in the pBSCX1-LEL plasmid vector. The final construct consisted of the strong universal promoter CX1, green fluorescent protein (GFP) cDNA with a stop codon flanked by loxP DNA cis-elements, and the human catalase cDNA. With this transgene, a line of transgenic mice (Tgflox-cat-SMC)
mice was generated at the Emory University Transgenic Mouse Core Facility, as it has been previously described [31].

Extraction of RNA and gene expression analysis

Total RNA was obtained from HeLa cells using TRIzol reagent (Invitrogen, 15596-026). cDNA was prepared from 1 μg of RNA, using SuperScript II enzyme (Invitrogen, A13268), according to manufacturer protocol. Real-time PCR was performed using Stratagene Mx3000P (Stratagene) using the Brilliant III Ultra-Fast QPCR and QRT-PCR Master Mix amplification kit (Agilent Technologies, 4309155). The primers used were: human HERPUD1 forward 5′-CGTTGTATGACTCTGAC-3′; human HERPUD1 reverse 5′-TCAGGAGGACCACCATATT-3′; human ribosomal protein 13a (RPL13) forward 5′-CCTGGGAGAAGGAAAGA-3′; human RPL13 reverse 5′-TTGAGGACCTCAGATTTTGCAA-3′; mouse HERPUD1 forward 5′-CAGTTGGAGTGTGAGT-3′; mouse HERPUD1 reverse 5′-CAACAGGAGGTCCGAGA-3′; mouse RPL13 forward 5′-ATGACAGAAAAACGGATG-3′; mouse RPL13 reverse 5′-CTTTCTGCGTTTCCCGTA-3′. All primers used showed optimal amplification efficiency (90% to 110%). PCR amplification of the housekeeping gene RPL13 was performed as a control. CT value was determined by MxPro software when fluorescence was 25% higher than background. PCR products were verified by melting-curve analysis.

Western blot

Equal amounts of protein from complete cell extracts were separated by SDS-PAGE (10% polyacrylamide gels) and electro-transferred to nitrocellulose. Membranes were blocked with 5% milk TBS-T. Membranes were incubated with primary antibodies at 4°C and blotted with horseradish peroxidase-linked secondary antibodies (1:5000 in 1% [w/v] milk in TBS-T). Signals were detected using EZ-ECL (Biological Industries, 20–500–1000A, 20–500–1000B) and quantified by scanning densitometry. Protein content was normalized with β-tubulin, β-actin or GAPDH.

Cell viability and apoptosis assays by flow cytometry

The integrity of the sh-Luc and sh-HERPUD1 HeLa cell plasma membranes was assessed by the ability of cells to exclude PI. Cells were collected by centrifugation, washed once with PBS, and resuspended in PBS containing 0.1 mg/mL PI. The levels of PI incorporation were quantified on a FACScan flow cytometer. Cell size was evaluated by forward-angle light scattering (FSC). PI-negative cells of normal size were considered alive. Sub-G1 population was determined in HeLa cells. The cells were collected, pooled, permeabilized with methanol for 24 h, treated with RNase for 1 h and then 2 μL PI (25 μg/mL) was added prior to flow cytometry analysis. A total of five thousand cells per sample were analyzed [32, 33].

LDH release

Lactate dehydrogenase (LDH) activity in the culture medium was assessed using a CytoTox 96w Non-Radioactive Cytotoxicity Assay (Promega, Madison, WI, USA), following the manufacturer’s instructions.
Mitochondrial membrane potential and ROS determination by flow cytometry

Mitochondrial membrane potential (Ψ_{mt}) and ROS were measured with TMRM (200 nM, 30 min) or CM-H$_2$DCFDA (10 mM, 30 min), respectively. Mean population fluorescence was measured by flow cytometry using a FACSscan system (Becton–Dickinson). CCCP or H$_2$O$_2$ were used as positive control for Ψ_{mt} loss or ROS, respectively. Data were analyzed using the Cell Quest (BD) software.

Cytoplasmic and mitochondrial Ca$^{2+}$

To determine cytoplasmic and mitochondrial Ca$^{2+}$ kinetics, time-lapse images were obtained from HeLa cells preloaded with Fluo-4AM (Invitrogen, F-14201), Fura-2AM (Invitrogen, F-1221) or Rhod-FF (Invitrogen, R23983) using a Zeiss LSM 5 Pascal/Axiovert 200 microscope, as previously described [34–36].

Intracellular ROS detection using confocal microscopy

HyPer-transfected cells were plated to glass-bottom dishes and analyzed by confocal microscopy as previously described [37]. The fluorescence (excitation/emission: 420/500 nm) was examined under confocal microscopy.

Immunofluorescence studies for cytochrome-c release

Cyt-C release was evaluated by immunofluorescence as described previously [38, 39]. HeLa cells grown on coverslips were fixed with PBS containing 4% paraformaldehyde for 10 min, permeabilized with 0.3% Triton X-100 for 10 min, and blocked for 1 h with 5% BSA in PBS. Cells were then incubated with anti-Cyt-C antibody at 1:400 and revealed with anti-mouse IgG-Alexa 488. Coverslips were mounted in DakoCytomation fluorescence mounting medium (DakoCytomation, Carpinteria, CA) and visualized by confocal microscope (Carl Zeiss Axiovert 135, LSM Microsystems).

Click chemistry

RNA transcription and protein translation in cells treated with ActD and CHX, respectively, were measured using Click Chemistry following manufacturer’s instructions. Briefly, RNA transcription was assayed using the Click-iT® RNA Alexa Fluor® 488 Imaging Kit (Life Technologies) that employs an alkyne-modified nucleoside EU (5-ethynyl uridine), which is supplied to cells and incorporated into nascent RNA [40]. For the analysis of protein translation we used the Click-iT® HPG Alexa Fluor® 488 Protein Synthesis Assay Kit, which uses L-homopropargylglycine (HPG), a methionine alkyne analog; and Alexa Fluor® 488 azide. The HPG is fed to cultured cells and incorporated into proteins during active protein synthesis. Addition of the Alexa Fluor® 488 azide leads to a chemoselective ligation or “click” reaction between the green fluorescent azide and the alkyne, allowing the modified proteins to be detected by confocal or fluorescence microscopy.

Statistical analysis

Data are mean ± SEM of the indicated sample size (n). Multiple groups were analyzed using one-way ANOVA followed by a protected Bonferroni’s test. Statistical significance was set as $p< 0.05$.

Free Radic Biol Med. Author manuscript; available in PMC 2017 January 01.
Results

HERPUD1 protein is upregulated in HeLa cells treated with H₂O₂ in a time-dependent manner

HERPUD1 protein levels were evaluated in HeLa cells treated with 500 μM of H₂O₂ at indicated times. This concentration did not compromise cell viability. Treating HeLa cells with 500 μM H₂O₂ increased HERPUD1 protein levels (Fig. 1A). This response was not cell-specific, as MEF cells behaved similarly (Fig. S2). In a dose-response curve evaluated after 30 min of treatment, HERPUD1 protein level increased with administration of 250 to 500 μM H₂O₂ (Fig. 1B).

Gene expression analysis using qPCR showed increased HERPUD1 mRNA after 3 h treatment with H₂O₂ (Fig. 1C). These data suggest that the increased HERPUD1 protein levels at 3 h of H₂O₂ treatment could be attributable to an increase in HERPUD1 mRNA levels. However, shorter H₂O₂ treatment times (30 min) did not affect HERPUD1 transcripts levels. Using ActD (a well-known gene transcription inhibitor) and the translation inhibitor CHX, the effect of H₂O₂ on HERPUD1 protein expression was studied after short (30 min) and long (3 h) intervals. While CHX treatment completely inhibited the increase in HERPUD1 protein levels, ActD treatment only partially inhibited this increase (Fig. 1D). These data suggest that the rapid HERPUD1 protein increase observed at 30 min is probably due to enhanced translation of already-synthesized HERPUD1 mRNA. To corroborate the proper interpretation of these results, we checked that ActD and CHX treatments were effective at inhibiting gene transcription and translation, respectively (Figs. S3A–B).

The translation initiator factor eIF4E is involved in rapid cell responses against oxidative stress [41]. Therefore, we reasoned that eIF4E regulation mediated the rapid increase in HERPUD1 after an oxidative insult such as H₂O₂. Indeed, we observed that the H₂O₂-induced increase in HERPUD1 level was completely abolished in cells pretreated with 4EGI-1, which inhibits the binding of eIF4E to its effector eIF4G (Fig. 1E). Moreover, preincubating HeLa cells with a soluble form of catalase (Cat) shows a not significant tendency to blunt the increase in HERPUD1 mRNA expression induced by the H₂O₂ treatment (Fig. 1F), together with inhibiting the ROS intracellular production triggered by H₂O₂ itself, without changing the total protein levels of HERPUD1 (Fig. S3C–D). Taken together, these data show that HERPUD1 is upregulated in response to exogenous H₂O₂ and that this increase may involve both the translation of preexisting mRNA (fast response) and de novo synthesized mRNA (slow response).

HERPUD1 is upregulated in response to angiotensin II in vitro and in vivo

In order to explore the physiological relevance of this mechanism, HeLa cells were treated with angiotensin II (Ang II), a known physiological H₂O₂ inducer in a variety of cell types including HeLa cells [42]. In fact, treatment with Ang II (100 nM) increased intracellular H₂O₂ production as measured by increased HyPer-mediated fluorescence, a response that is similar to the one observed with the H₂O₂ treatment (Fig. 2A). Importantly, Ang II was also sufficient to increase HERPUD1 at the protein (Fig. 2B) and mRNA (Fig. 2C) levels. HERPUD1 protein levels increased after 1 h of Ang II treatment and remained elevated until
6 h, whereas HERPUD1 mRNA increased after 3 h post-stimulation. Treatment of HeLa cells with 100 or 200 nM Ang II for 24 h did not affect cell viability. However, in HERPUD1 knockdown HeLa cells, but not in control cells, Ang II induced cell death in a dose dependent manner (Fig. 2D). To confirm the role of H2O2 in Ang II-mediated HERPUD1 upregulation, cells were again preincubated with the soluble form of Cat. As expected, Cat blunted the increase in HERPUD1 mRNA expression (Figure 2E).

HERPUD1 upregulation triggered by Ang II was also studied in vivo. HERPUD1 mRNA levels were increased in the aorta tissue of wild-type mice treated with Ang II for 2 weeks (0.75 mg/kg/day using Alzet minipumps). This increase was significantly blunted in Cat-overexpressing mice (Fig. 2F). Taken together, these data show that HERPUD1 is upregulated in response to Ang II by a mechanism involving intracellular production of H2O2 both in vitro and in vivo.

HERPUD1 regulates ITPR-dependent Ca2+ release from the ER

Because H2O2 increases intracellular and mitochondrial Ca2+ levels [43] and the HERPUD1 protein plays a role in Ca2+ homeostasis regulation [24, 28, 29] we investigated the role of HERPUD1 in H2O2-induced Ca2+ release from the ER. To this end, we recorded Ca2+ kinetics after a pulse of 500 μM H2O2 in control cells and HERPUD1 knockdown HeLa cells. Using Fluo-4 as a cytosolic Ca2+ probe, we found that H2O2 increases cytoplasmic Ca2+ levels, with a kinetic plot characterized by a fast response with a single peak and a quick return to baseline. However, the kinetic plot was different in sh-HERPUD1 cells, showing a slower Ca2+ transient that extended over time, suggesting a more prolonged Ca2+ release from the ER. All these data were further corroborated by the quantification and statistical comparison of the area under the curve and the slope (initial Ca2+ influx rate) of these kinetic experiments (Figs. 3A and S4A). Additionally, a very similar result was obtained using Fura2, a quantitative Ca2+ probe as shown in Fig. S4C.

We used XeB, a specific ITPR antagonist, to establish the role of the ITPR in Ca2+ signaling induced by H2O2 and its relationship with HERPUD1. While XeB completely abolished the intracellular Ca2+ transient in sh-Luc cells, the amplitude of the Ca2+ signal decreased in sh-HERPUD1 cells. This signal did not completely disappear, probably due to the involvement of other Ca2+ channels (Figs. 3A and S4A). These results support a role for ITPR in the Ca2+ kinetics produced by H2O2 and suggest that HERPUD1 may be involved in this regulation. To better define the Ca2+ kinetics previously observed, we compared the cytosolic Ca2+ kinetics in Ca2+-containing and Ca2+-free media to study the influence of external Ca2+ on these signals. Figs. 3B and S4B shows that the use of a Ca2+-free medium did not affect Ca2+ kinetics in sh-Luc control cells, suggesting that the kinetics in these cells are mainly dependent on internal Ca2+ stores. However, the Ca2+ kinetics produced in the sh-HERPUD1 cells showed two components, the first dependent on ITPR-related internal stores and the second dependent on extracellular Ca2+ influx. To test this finding, Ca2+ kinetics were studied in response to H2O2 using Ca2+-free medium in sh-HERPUD1 cells preincubated with XeB (Fig. 3C). Under this condition, the Ca2+ signal completely disappeared, confirming that HERPUD1 is involved in the regulation of both ITPR and external Ca2+ influx in the cells lacking HERPUD1.
HERPUD1 controls Ca\(^{2+}\) transfer from the ER to mitochondria by regulating ITPR

Because the ITPR participates in the transfer of Ca\(^{2+}\) between the ER and mitochondria, we studied the role of HERPUD1 in the mitochondrial Ca\(^{2+}\) influx in response to H\(_2\)O\(_2\). Sh-HERPUD1 and sh-Luc HeLa cells were preincubated with Rhod-FF, a Ca\(^{2+}\) probe with a preferential mitochondrial localization. In both sh-Luc and sh-HERPUD1 cells, we observed a constant Ca\(^{2+}\) influx into the mitochondria in response to H\(_2\)O\(_2\) stimulation. However, this influx was faster in HERPUD1 knockdown HeLa cells than in controls, as we deduce from the curves observation and the quantitation of their slopes (initial Ca\(^{2+}\) influx rates).

Furthermore, the mitochondrial Ca\(^{2+}\) signal decreased completely both in control sh-Luc and sh-HERPUD1 cells treated with XeB (Fig. 3D), thus confirming that ITPR is important to the Ca\(^{2+}\) influx from the ER to mitochondria and that the differences in mitochondrial Ca\(^{2+}\) signals observed in the sh-HERPUD1 cells are due to a functional deregulation of the ITPR.

To further corroborate the ITPR’s engagement in mitochondrial Ca\(^{2+}\) kinetics, histamine was used to increase ITPR levels and Ca\(^{2+}\) movement from the ER to the mitochondria via ITPR.\(^{16}\) Sh-HERPUD1 cells treated with a pulse of histamine exhibited a longer kinetic with higher amplitude than control cells. Both in sh-HERPUD1 and sh-Luc cells, mitochondrial Ca\(^{2+}\) signals were abolished with XeB (Fig. S4D), confirming that HERPUD1 regulates ITPR function and Ca\(^{2+}\) influx from ER to mitochondria.

In a previous study, Belal et al. showed that HERPUD1 modulates intracellular Ca\(^{2+}\) levels through the regulation of ITPR degradation; therefore we then studied whether cells with lower levels of HERPUD1 showed altered ITPR levels.\(^{28}\) As shown in Fig. 3E sh-HERPUD1 cells showed a significant increase in ITPR levels and compared to sh-Luc cells. This result may explain the differences observed in the Ca\(^{2+}\) kinetics triggered by H\(_2\)O\(_2\) in the sh-HERPUD1 cells and the results obtained when the ER Ca\(^{2+}\) levels were depleted with thapsigargin in cells incubated in Ca\(^{2+}\) free media. Under these conditions (Fig. S4E), the H\(_2\)O\(_2\)-triggered Ca\(^{2+}\) signal was almost abolished in the sh-Luc and sh-HERPUD1 cells despite that the levels of cytosolic Ca\(^{2+}\) post the thapsigargin challenge were considerably higher in the sh-HERPUD1 cell line.

Finally, HERPUD1 protein levels increased in sh-Luc and sh-HERPUD1 HeLa cells treated with MG132 (100 μM, 4 h), an inhibitor of proteasomal activity and an ER stress inducer (Fig. 3F). MG132 also increased the ITPR levels both in sh-Luc cells as sh-HERPUD1 cells. This evidence suggests that HERPUD1 is involved in ITPR degradation via the proteasome.

HERPUD1 exerts a Ca\(^{2+}\)-dependent cytoprotective effect against H\(_2\)O\(_2\)

Deregulation of ROS and intracellular Ca\(^{2+}\) affects cell survival against a variety of insults. We investigated whether HERPUD1 also exerts a cytoprotective effect against H\(_2\)O\(_2\). Sh-HERPUD1 cells treated with 500 μM H\(_2\)O\(_2\) for 3 h showed significantly more cell death than control cells (Fig. 4A). This difference persisted until 12 h post-treatment. We next established the relationship between cell death and H\(_2\)O\(_2\) concentration at 3 h. Differences in cell death in sh-HERPUD1 vs. sh-Luc were observed in concentrations ranging from 250 μM to 2 mM H\(_2\)O\(_2\) (Fig. 4B). A similar result was observed when viability was assessed using the Trypan blue assay (Fig. S5). These data suggest that HERPUD1 exerts a cytoprotective effect against the oxidative stress induced by H\(_2\)O\(_2\). To corroborate this data,
sh-HERPUD1 cells were transiently transfected with a plasmid-expressing mouse HERPUD1 (PGI3-mHERPUD1). The sh-mHERPUD1-transfected cells recovered the HERPUD1 protein levels and exhibited less cell death after treatment with H2O2 (Fig. 4C). In order to elucidate the mechanism by which HERPUD1 participates in cell protection, different techniques were used to elucidate the cell death pathways stimulated by H2O2 in our system. We first tested the participation of necrosis by measuring LDH release after the H2O2 treatment, but we did not observe any changes under our conditions (H2O2 500 μM) or between the sh-Luc and sh-HERPUD1 cells (Fig. 4D). Only after the treatment of both cell lines with 1000 μM of H2O2, they showed an increase of LDH. However, this result did not explain the differences observed between the cell lines in Figs. 4A and B. Next we tested three different chemical inhibitors of cell death. ZVAD (a caspase inhibitor), E64D (a calpain inhibitor), and leupeptin (a general protease inhibitor) were able to reverse the cell death caused by H2O2 in the sh-HERPUD1 cells (Fig. 4E), suggesting that apoptosis can be the main type of cell death triggered by H2O2 in our experimental model. Additionally, the measurement of Sub-G1 DNA population corroborated the importance of apoptosis in our cellular model (Fig. 4F), thus confirming our previous results. Interestingly, pre-incubation with BAPTA-AM, an intracellular Ca2+ chelating agent, resulted in a significant inhibition of cell death in the sh-HERPUD1 cells (Fig. 4D). This result suggests that the increased sensitivity to cell death observed in the sh-HERPUD1 cells could be explained by intracellular Ca2+ deregulation, which would in turn cause greater cell sensitivity to oxidative stress. Additionally, the use of EGTA, an extracellular Ca2+ chelating agent, did not blunt the H2O2-induced sh-HERPUD1 cell death (Fig. 4E). This last result suggests that increased death in the sh-HERPUD1 cells may involve the release Ca2+ from intracellular stores and not Ca2+ influx from the extracellular media, connecting these results with those obtained through Ca2+ measurements.

One of the best-known pathways that triggers cell death in response to oxidative stress involves increased mitochondria Ca2+ influx, which causes mitochondrial Ca2+ overload and MPTP opening and consequent cell death [44, 45]. As we had already established that the ITPR was responsible for the cytosolic and mitochondrial Ca2+ increases induced by H2O2 and that these signals were deregulated in sh-HERPUD1 cells, we studied the involvement of ITPR in increased sensitivity to H2O2. Sh-HERPUD1 and sh-Luc cells were treated with XeB and then with H2O2 for 3 h. As previously shown, sh-HERPUD1 cells were more sensitive to H2O2 than control cells. However, sh-HERPUD1 cells pre-incubated with XeB showed significantly lower death rates than sh-HERPUD1 cells without XeB after treatment with H2O2 (Fig. 4F). These data suggest that the increased sensitivity of the sh-HERPUD1 cells is due to deregulation of intracellular Ca2+ levels, specifically by overregulation of the ITPR.

Increased apoptosis in sh-HERPUD1 HeLa cells after H2O2 is dependent on mitochondrial depolarization and MPTP opening

To understand the role of Ca2+ overload and HERDUP1 in H2O2-induced cell death, cytochrome C (Cyt-C) subcellular redistribution from the mitochondria to cytoplasm was used as readout of mitochondrial membrane potential loss due to MPTP opening [44, 45]. As shown in Figure 5A, sh-Luc cells under control conditions had a normal punctuated Cyt-
C pattern that turned diffuse after treatment with H\textsubscript{2}O\textsubscript{2} (Figs. 5A–B). In contrast, sh-
HERPUD1 cells showed a baseline redistribution of Cyt-C to the cytoplasm, indicating that
these non-treated cells already exhibited increased mitochondrial permeability. Furthermore,
the mitochondrial pattern of Cyt-C was completely lost in the cells treated with H\textsubscript{2}O\textsubscript{2} (Figs.
5A–B). To corroborate that Cyt-C redistribution occurred in response to an ITPR-dependent
mitochondrial Ca2+ overload and MPTP opening, cells were preincubated with XeB or CsA,
respectively. CsA is an inhibitor of MPTP opening [44, 45]. Both inhibitors recovered the
punctuated pattern observed in sh-Luc cells. Moreover, sh-HERPUD1 cells recovered the
baseline punctuated Cyt-C pattern, and both compounds prevented the redistribution induced
by H\textsubscript{2}O\textsubscript{2} (Figs. 5A–B). The increased cell death after H\textsubscript{2}O\textsubscript{2} treatment was consistently
blunted in sh-HERPUD1 cells treated with CsA (Fig. 5C). Moreover, sh-HERPUD1 cells
exhibited a decreased mitochondrial membrane potential, which was recovered after cells
pre-incubation with XeB or CsA (Fig. 5D) and by the overexpression of HERPUD1 using
the mouse protein (PGI3-mHERPUD1) (Fig. 5E). All of these data suggest that the
increased cell death observed in sh-HERPUD1-treated cells is dependent on mitochondrial
Ca2+ overload and the subsequent MPTP opening.

Finally, to test whether these effects were specific to H\textsubscript{2}O\textsubscript{2} or due to a general increased
sensibility to cell death of the sh-HERPUD1 cells, HeLa cells were exposed to two
chemotoxic agents (Taxol and Cisplatin). Both agents replicated the response to H\textsubscript{2}O\textsubscript{2} (Fig.
5F), suggesting that the increased susceptibility observed in the sh-HERPUD1 cells is part
of a broad mechanism and not a specific effect to H\textsubscript{2}O\textsubscript{2}.

Discussion

HERPUD1 is an ER protein involved in the regulation of cellular homeostasis and in the
degradation of proteins through the formation of ERAD complex in the proteasomal
pathway [21–23, 46, 47]. HERPUD1 is also an early ER stress-induced protein, participating
in the unfolded protein response (UPR) and Ca2+ homeostasis [21–24, 28]. The present
study provides the first demonstration of the role of HERPUD1 in the response against
oxidative stress, which operates through maintenance of intracellular Ca2+ homeostasis and
prevention of the cell death caused by increased production of intracellular ROS (Figure 6).

In the literature, the relationship between HERPUD1 and oxidative stress is controversial,
with only two works that have attempted to elucidate this issue. Van Laar \textit{et al.} described a
slight increase in \textit{HERPUD1} mRNA levels in response to H\textsubscript{2}O\textsubscript{2} [48]. However, they
discarded HERPUD1 as cytoprotective agent against oxidative stress because they could not
replicate this observation in human fibroblasts. In contrast, we detected a consistent and
significant increase in HERPUD1 protein and mRNA levels using the same concentration of
H\textsubscript{2}O\textsubscript{2}. Moreover, we observed that the protein level increases showed a biphasic component
and that the mRNA level changes were only significant after 3 h of treatment, times that
were not evaluated by Van Laar \textit{et al} [48]. Interestingly, they also observed that osmotic
stress, a known ROS endogenous inductor [49], was also able to induce HERPUD1. In the
second work, Yan \textit{et al.} observed that HERPUD1 was induced by reductive agents but not
by H\textsubscript{2}O\textsubscript{2} or paraquat [26]. In this case, we attribute the divergent results to the different
experimental models and H\textsubscript{2}O\textsubscript{2} concentrations and times studied. We also showed that the
first rapid increase of HERPUD1 protein levels after 1 h of H$_2$O$_2$ treatment seems to depend on protein translation, specifically by a mechanism involving eIF4E factor (Fig. 1E). In contrast, the second increase of HERDUD1 protein levels ((3 h) could be related to an increase in HERPUD1 mRNA levels (Fig. 1C). Future work should clarify these points that under the current limitations of our study are beyond our scope.

More interesting was the finding using Ang II as an endogenous and physiological inductor of ROS. Ang II increased both HERPUD1 protein and mRNA levels in vitro and in vivo, effects inhibited by Cat overexpression (Fig. 2). Although there are previous reports connecting Ang II with the onset of ER stress [50], to our knowledge this is the first work showing a relationship between Ang II and HERPUD1. This result opens a new field of study where Ang II has an important pathophysiological role in the redox-induced signaling associated with the development of several cardiovascular diseases. It remains unknown whether HERPUD plays a role in ROS-dependent vascular diseases such as atherosclerosis and therefore whether HERPUD1 might be a novel pharmacological target.

Our results agree with several others works describing the role of HERPUD and Ca$^{2+}$ signaling [24, 28, 29]. Importantly, our work corroborates the findings of Belal et al. that described the interaction between HERPUD1 and the ITPR [28]. Moreover, we show here that HERPUD1 protein levels are important in regulating cytosolic and mitochondrial Ca$^{2+}$ signals induced by H$_2$O$_2$ and histamine, thus directly affecting the functional communication between the mitochondria and ER. In this context, we also established that HERPUD1 is an important regulator of mitochondrial Ca$^{2+}$ overload, regulating mitochondrial permeability and cell death. Consistent with our data, Chigurupati et al. have shown that HERPUD1 knockout renders PC12 and MN9D cells more vulnerable to MPP$^+$-induced cytotoxic cell death by a mechanism involving upregulation of CHOP expression and ER Ca$^{2+}$ depletion in the context of Parkinson disease [29]. Conversely, HERPUD1 overexpression confers protection by blocking MPP$^+$-induced CHOP up-regulation, ER Ca$^{2+}$ store depletion, and mitochondrial Ca$^{2+}$ accumulation [29]. Interestingly, we were able to reduce apoptosis in the sh-HERPUD1 HeLa cells after H$_2$O$_2$ stimuli with ITPR and MPTP inhibitors (Figure 5), strongly suggesting that HERPUD1 control of cell death involves ER-dependent mitochondrial Ca$^{2+}$ overload and the subsequent MPTP opening.

Finally, the recent work of Yan et al. described that HERPUD1 overexpression protects cells from ER stress but not oxidative stress [26]. Taken together with our results, these findings indicate that the mechanisms, by which HERPUD1 protects cells from ER and oxidative stress, although similar, are not the same. HERPUD1 seems to be a protein with a crucial role in maintaining cellular homeostasis. Any alteration of its levels (increase or decrease) triggers cellular imbalance, providing an elegant molecular mechanism that modulates different adaptive programs. Thus, in the case of ER stress, HERPUD1 is essential for avoiding the formation of toxic protein aggregates inside the cell [28]. During nutritional stress, HERPUD1 indirectly regulates protein autophagic degradation [27]. These data suggest that the role of HERPUD1 as a cytoprotective gene depends on the model and stimuli used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by CONICYT: FONDECYT grants (1120212 to S.L., 11140470 to C.Q., 11130285 to R.T. and 3130749 to C.P.); FONDAP grant (15130011 to S.L., M.C., R.T., A.S.M.) and the National Institutes of Health (HL113167 to A.S.M.). We are thankful for the PhD or MSc fellowships from CONICYT Chile to F.P., R.B. We also thank Fidel Albornoz and Gindra Latorre for their excellent technical assistance. None of the authors has a conflict of interest to declare.

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActD</td>
<td>actinomycin D</td>
</tr>
<tr>
<td>Ang II</td>
<td>angiotensin II</td>
</tr>
<tr>
<td>Cat</td>
<td>catalase</td>
</tr>
<tr>
<td>CHX</td>
<td>cycloheximide</td>
</tr>
<tr>
<td>CsA</td>
<td>cyclosporine A</td>
</tr>
<tr>
<td>Cyt-C</td>
<td>cytochrome c</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERAD</td>
<td>ER-associated degradation</td>
</tr>
<tr>
<td>ERE</td>
<td>ER stress</td>
</tr>
<tr>
<td>HERPUD1</td>
<td>homocysteine-induced ER protein</td>
</tr>
<tr>
<td>ITPR</td>
<td>inositol, 1,4,5-trisphosphate receptor</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinase</td>
</tr>
<tr>
<td>MPP+</td>
<td>methylphenylpyridinium</td>
</tr>
<tr>
<td>MPTP</td>
<td>mitochondrial permeability transition pore</td>
</tr>
<tr>
<td>Nox</td>
<td>NAD(P)H oxidase</td>
</tr>
<tr>
<td>RYR</td>
<td>ryanodine receptor</td>
</tr>
<tr>
<td>VSMC</td>
<td>vascular smooth muscle cells</td>
</tr>
<tr>
<td>XeB</td>
<td>xestospongin B</td>
</tr>
</tbody>
</table>

References

Free Radic Biol Med. Author manuscript; available in PMC 2017 January 01.

Highlights

- Oxidative stress by H$_2$O$_2$ or angiotensin II increased *HERPUD1* mRNA and protein levels in HeLa cells.
- *HERPUD1* knockdown in HeLa cells increased cytosolic Ca$^{2+}$ levels upon H$_2$O$_2$ stimulation.
- *HERPUD1* knockdown in HeLa cells increased inositol trisphosphate receptor protein levels.
- *HERPUD1* knockdown increase HeLa apoptosis through a Ca$^{2+}$-dependent mechanism.
Fig. 1.
Oxidative stress by H$_2$O$_2$ induces HERPUD1 by regulating transcription and translation. (A) HeLa cells were treated with H$_2$O$_2$ (500 μM) at indicated times. (B) HeLa cells were treated for 3 h with different concentrations of H$_2$O$_2$. HERPUD1 protein level was determined by Western blot and normalized using GAPDH. (C) HeLa cells were treated with H$_2$O$_2$ (500 μM) at indicated times, and HERPUD1 mRNA levels were determined by RT qPCR. Results were normalized using the RPL13 housekeeping gene. (D) HeLa cells were pretreated with cycloheximide (CHX, 20 μM, translation inhibitor) or actinomycin D (ActD, }
20 μM, gene transcription inhibitor) for 30 min and then treated with H2O2 (500 μM) for 30 min. (E) HeLa cells were pretreated with 4EGI-1 (60 μM) for 30 min and then treated with H2O2 (500 μM) for 30 min. HERPUD1 protein level was determined by Western blot and normalized using GAPDH. (F) HeLa cells were pretreated with catalase (Cat, 2,000 units) for 30 min and then treated with H2O2 (500 μM) for 30 min. HERPUD1 mRNA levels were determined by RT qPCR and normalized using RPL13 transcript. Values represent the mean ± SEM of 3 to 5 independent experiments; *p<0.05 and **p<0.01 vs. 0 h or control; #p<0.05 and ##p<0.01 vs. H2O2-treated cells.
Fig. 2.
Ang II induces HERPUD1 in vitro and in vivo by a ROS-dependent mechanism. (A) HeLa cells were transfected with a plasmid encoding HyPer. Transfected cells were left untreated, treated with Ang II (100 nM) or H₂O₂ (500 μM) and fluorescence was recorded using confocal microscopy (excitation/emission: 420/500 nm). Values were expressed as (F-F₀)/F₀. In the upper panel are displayed representative images of the Ang II treatment. (B) HeLa cells were treated with Ang II (100 nM) at the indicated times. HERPUD1 protein level was determined by Western blot and normalized using β-actin (ACTB). (C) HeLa cells were treated with Ang II (100 nM) at the indicated times. HERPUD1 mRNA level was determined by qPCR and normalized using RPL13. (D) HeLa cells were treated with Ang II (100 nM) at the indicated times. Caspase 3 activity was measured using a caspase 3 enzyme-linked immunosorbent assay (ELISA) kit. (E) HeLa cells were treated with Ang II (100 nM) at the indicated times. HERPUD1 mRNA level was determined by qPCR and normalized using RPL13. (F) HeLa cells were treated with Ang II (100 nM) at the indicated times. HERPUD1 mRNA level was determined by qPCR and normalized using RPL13.
were treated with Ang II (100 nM) at indicated times, and HERPUD1 mRNA levels were determined by RT qPCR. Results were normalized using the RPL13 housekeeping gene. (D) sh-Luc or sh-HERPUD1 HeLa cells were treated with Ang II (0 – 200 nM). Cell death was assessed by propidium iodide (PI) incorporation using flow cytometry. In the upper panel are displayed a representative Western blot of the cells used in this assay. (E) HeLa cells were pretreated with catalase (Cat, 2,000 units) for 30 min and then treated with Ang II (100 nM) for 3 h. HERPUD1 mRNA levels were determined by RT qPCR and normalized using RPL13 transcript. (F) Wild-type mice and catalase-overexpressing mice (CAT+/+) were treated with saline or Ang II using an Alzet mini-osmotic pump at a dose of 0.75 mg/kg/day for 7 days. Animals were euthanized and aortas extracted. HERPUD1 mRNA levels were analyzed in total mRNA from aorta tissue and normalized using RPL13 transcript. Values represent the mean ± SEM of 3 to 5 independent experiment; *p<0.05 and **p<0.01 vs. 0 h or respective control; #p<0.05 vs Ang II-treated cells.
HERPUD1 regulates intracellular and mitochondrial Ca\(^{2+}\) by controlling ITPR protein levels. (A) sh-Luc (control) or sh-HERPUD1 HeLa cells were pretreated or not with xestospongin B (XeB, 100 μM, IP3R antagonist), preloaded with Fluo-4AM (5.4 μM, cytosolic Ca\(^{2+}\) probe) for 30 min, treated with H\(_2\)O\(_2\) and then visualized under a confocal microscope. Insert: Quantitation of the area under the curve of the kinetics shown in the Figure. (B) sh-Luc (control) or sh-HERPUD1 HeLa cells were preloaded with Fluo-4AM (5.4 μM) and incubated in Ca\(^{2+}\)-containing (w/Ca\(^{2+}\)) or Ca\(^{2+}\)-free (w/o Ca\(^{2+}\)) resting media.
Insert: Quantitation of the area under the curve of the kinetics depicted in the Figure. (C) sh-Luc (control) or sh-HERPUD1 HeLa cells were preloaded with Fluo-4AM (5.4 μM), pretreated or not with xestospongin B (XeB, 100 μM), and incubated in Ca²⁺-containing (w/Ca²⁺) or Ca²⁺-free (w/o Ca²⁺) resting media. Insert: Quantitation of the area under the curve of the kinetics depicted in the Figure. (D) sh-Luc (control) or sh-HERPUD1 HeLa cells were pretreated or not with xestospongin B (XeB, 100 μM) and preloaded with Rhod-FF (5 μM, a mitochondrial Ca²⁺ probe) for 30 min. Using a fluorescence microscopy equipped with a CDD camera, serial Ca²⁺ in a single cell were recorded, and the relative total fluorescence [ratio of fluorescence difference, stimulated – baseline (Fᵢ–Fₒ), to baseline value (Fₒ)] as a function of time was calculated for each image. After recording 80 s of baseline, cells were stimulated with H₂O₂ (500 μM). Insert: Quantitation of the slopes (Initial Ca²⁺ influx rate) of the kinetics depicted in the Figure. (E) Total protein extracts were prepared from sh-Luc (control) or sh-HERPUD1 HeLa cells. ITPR and HERPUD1 levels were determined by Western blot. (F) sh-Luc (control) or sh-HERPUD1 HeLa cells were preincubated with MG132 (100 μM, proteasome inhibitor) for 30 min. Total protein extracts were prepared, and ITPR and HERPUD1 levels were determined by Western blot. Values represent the mean ± SEM of 3 to 5 independent experiments; *p<0.05 and **p<0.01 vs. sh-Luc; #p<0.05 vs sh-HERPUD1.
HERPUD1 decreases H$_2$O$_2$-induced cell death by a Ca$^{2+}$-dependent mechanism. (A) sh-Luc or sh-HERPUD1 HeLa cells were treated with H$_2$O$_2$ (500 μM). At indicated times, cell death was assessed by propidium iodide (PI) incorporation using flow cytometry. (B) sh-Luc or sh-HERPUD1 HeLa cells were treated with different H$_2$O$_2$ concentrations ranging from 0 to 2,000 μM and incubated for 3 h. (C) sh-HERPUD1 HeLa cells were transiently transfected with a plasmid overexpressing mouse HERPUD1 (PGI3-mHERPUD1; OriGene Technologies, Rockville, SC114911). Cells were treated with H$_2$O$_2$ (500 μM) for 3 h. Cell
death was determined as indicated above. (D) sh-Luc or sh-HERPUD1 HeLa cells were treated with different H₂O₂ concentrations ranging from 0 to 1,000 μM, incubated for 3 h and then LDH release was measured in the media. (E) sh-Luc or sh-HERPUD1 HeLa cells were preincubated with ZVAD (20 μM, caspase inhibitor), E64D (10 μM, calpain inhibitor) or leupeptin (100 μM, general protease inhibitor) for 30 min and then treated with H₂O₂ (500 μM) for 3 h. (F) sh-Luc or sh-HERPUD1 HeLa cells were treated with H₂O₂ 500 μM for 3 h, trypsinized, fixed, treated with PI and then assessed by flow cytometry in order to evaluate Sub-G1 DNA. (G) sh-Luc or sh-HERPUD1 HeLa cells were pretreated with BAPTA-AM (20 μM, intracellular Ca²⁺ chelating agent) or EGTA (5 mM, Ca²⁺ chelator) for 30 min and then treated with H₂O₂ (500 μM) for 3 h. (H) sh-Luc or sh-HERPUD1 HeLa cells were pretreated or not with xestospongin B (XeB, 100 μM, IP₃R antagonist). Values represent the mean ± SEM of 3 to 10 independent experiments; *p<0.05, **p<0.01 and ***p<0.001 vs. sh-Luc; #p<0.05, ##p<0.01 and ###p<0.001 vs. respective control and & & & p<0.001 vs. sh-HERPUD1 H₂O₂.
Fig. 5.
HERPUD1 reduces H$_2$O$_2$-induced cell death by decreasing Ca$^{2+}$-dependent MPTP opening. (A) Representative confocal microscopy images of immunofluorescence against cytochrome C in sh-Luc or sh-HERPUD1 HeLa cells treated with H$_2$O$_2$ (500 μM for 3 h), H$_2$O$_2$ + xestospongin B (XeB, 100 μM) or H$_2$O$_2$ + cyclosporine A (CsA, 100 μM, mitochondrial permeability transition pore (MPTP) opening). (B) Quantification of cytochrome c relocalization. (C) sh-Luc or sh-HERPUD1 HeLa cells were preincubated with CsA (100 μM) for 30 min and then treated with H$_2$O$_2$ (500 μM for 3 h). Cell death was measured by PI incorporation. (D) Relative fluorescence (TRM). (E) Relative fluorescence (TRM). (F) PI incorporation (%).
incorporation using flow cytometry. (D) sh-Luc or sh-HERPUD1 HeLa cells were preincubated with XeB (100 μM) or CsA (100 μM) for 30 min and then treated with H₂O₂ (500 μM for 3 h). Mitochondrial membrane potential (Ψₘₐₜ) was measured in cells incubated with TMRM (400 nM) and then analyzed by flow cytometry. (E) sh-HERPUD1 HeLa cells were transiently transfected with a plasmid overexpressing mouse HERPUD1 (PGI3 mHERPUD1). Cells were treated with H₂O₂ (500 μM) for 3 h. Ψₘₐₜ was determined as indicated above. (F) sh-Luc or sh-HERPUD1 HeLa cells were treated with Taxol (50 nM) or Cisplatin (5 μg/μL) for 24 – 48 h, then cell death was measured by PI incorporation using flow cytometry. Values represent the mean ± SEM of 3 to 5 independent experiments; *p<0.05, **p<0.01 and ***p<0.001 vs. sh-Luc; ##p<0.01 and ###p<0.001 vs. respective control and &p<0.05 and &&&p<0.001 vs. sh-HERPUD1 H₂O₂.
Fig. 6. Model of cell protection mediated by HERPUD1 against H$_2$O$_2$-induced apoptosis. (1) H$_2$O$_2$ induces a fast HERPUD1 (Herp) protein-level increase by transduction of preformed mRNA through an eIF4E-dependent mechanism and (2) a slow increase mediated by a transcriptional mechanism. (3) HERPUD1 induces inositol 1,4,5-trisphosphate receptor (IP$_3$R) degradation by proteasome. (4) HERPUD1 reduces Ca$^{2+}$ release from the endoplasmic reticulum, (5) reducing Ca$^{2+}$ overload in the mitochondria, impeding mitochondrial transition pore opening and decreasing apoptosis.